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1. Introduction 
 

Dynamic response is evaluated for stability assessment 

in its current state. Evaluation of damping ratios helps to 

make the prediction of dynamic instability accurate. 

Whereas, assessment of damping ratio is difficult to be 

performed in multimode system with noisy signals. As 

bridges are getting longer, small scale model test must be 

conducted to evaluate damping ratio and frequency 

considering minimum analysis conditions that have 

influence on the accuracy of system identification technique 

(Chun 2017). All parameters used in aeroelastic analysis 

can be modified by using similitude law (Buckingham 1914, 

Buckingham 1915, Simiu and Scanlan 1996). Generally,  
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experimental tests are conducted with the variable 

considering this similitude law. However, minimum 

analysis conditions (sampling rate and total time length) are 

difficult to follow similitude law and thus should be 

determined for different scale ratios. In addition, first 

vertical and torsional mode mainly affect serviceability or 

instability of long-span cable bridges. For this reason, these 

two modes are used to compute modal damping and 

frequency for all numerical models and experimental tests. 

The variable considering similitude law have been 

applied to small scale model test. When scale ratios 

changed, all parameters used in analysis of dynamic system 

can be modified by using similitude law. In this case, 

Nyquist frequency condition has been used to determine 

sampling frequency related to analysis conditions. For 

example, Nyquist frequency should be determined 

considering sampling rate is more than two times the 

natural frequency (Grenander 1959, Condon and Ransom 

2016). In addition, Nyquist frequency condition based on 

natural frequency modified by similitude law has been used 

to evaluate modal damping ratios for small scale bridge 

model. However, Nyquist frequency condition is 

insufficient to be applied to multimode systems with noisy 

signal and systems modified by similitude law. In case of 

total time length, the determination of total time length has 

been conducted by users arbitrarily or by considering 
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Abstract.  Damping ratio and frequency have influence on dynamic serviceability or instability such as vortex-induced 

vibration and displacement amplification due to earthquake and critical flutter velocity, and it is thus important to make 

determination of damping ratio and frequency accurate. As bridges are getting longer, small scale model test considering 

similitude law must be conducted to evaluate damping ratio and frequency. Analysis conditions modified by similitude law are 

applied to experimental test considering different scale ratios. Generally, Nyquist frequency condition based on natural 

frequency modified by similitude law has been used to determine sampling rate for different scale ratios, and total time length 

has been determined by users arbitrarily or by considering similitude law with respect to time for different scale ratios. However, 

Nyquist frequency condition is not suitable for multimode system with noisy signals. In addition, there is no specified criteria for 

determination of total time length. Those analysis conditions severely affect accuracy of damping ratio. The focus of this study is 

made on the determination of minimum analysis conditions for different scale ratios. Influence of signal to noise ratio is studied 

according to the level of noise level. Free initial value problem is proposed to resolve the condition that is difficult to know 

original initial value for free vibration. Ambient and free vibration tests were used to analyze the dynamic properties of a system 

using data collected from tests with a two degree-of-freedom section model and performed on full bridge 3D models of cable 

stayed bridges. The free decay is estimated with the stochastic subspace identification method that uses displacement data to 

measure damping ratios under noisy conditions, and the iterative least squares method that adopts low pass filtering and fourth 

order central differencing. Reasonable results were yielded in numerical and experimental tests. 
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similitude law for different scale ratios. Therefore, analysis 

conditions, which are both sampling rate and total time 

length, should be determined. 

The accuracy of SI techniques is important to evaluate 

modal damping ratios and frequencies. Especially, signal to 

noise ratio affects the accuracy of global solutions (modal 

damping ratio and frequency). Previous researches 

(Chowdhury and Sarkar 2003, Bartoli et al. 2009, Chun et 

al. 2017) indicated that errors of global solution were less 

than around 5% when it comes to 20% NL (25% NL for 

Bartoli et al.). Because those studies are related with flutter 

phenomenon, noise level (NL) described in Eq. (9) is 

assumed to be higher than typical damping evaluation. 

Therefore, numerical verifications of this study are 

performed with NL 10 that is maximum signal to noise ratio 

(Magalhaes et al. 2010). In addition, modal complexity 

causes the estimation of modal parameter to be difficult. 

Modal complexity means the level of damping non-

proportionality described in Table 1 and presents the 

difficulty in orthogonality of modes for damping coefficient 

and stiffness matrix. For this reason, the influence of modal 

complexity was investigated for the stochastic subspace 

identification (SSI) method and the iterative least squares 

(ILS) method described in section 2. 

Free vibration is the most useful way to obtain damping 

ratio. Especially, initial value problem (IVP) described by 

previous research has been developed for extraction of 

flutter derivatives with noisy signal under free vibration test. 

IVP also can be used to predict damping ratio and natural 

frequency. As a matter of fact, IVP is difficult to obtain 

dynamic properties without the initial condition because the 

initial condition is mainly used to obtain a transient solution 

(that consists of a modal damping ratio and natural 

frequency) of dynamic systems in free vibration tests (Craig 

and Kurdila 2006). In general, the initial condition, which 

consists of displacement and velocity, is difficult to obtain 

accurately because of environmental conditions, 

geometrical limitations and device reasons. Therefore, this 

study presents a method using the free initial value problem 

(FIVP) that uses the value of the current state without the 

original initial condition, so the method only requires 

current initial conditions, i.e., displacement and velocity at 

the current time in IVP. 

In this study, the ILS method is used to compute 

damping ratios in IVP. In addition, the covariance-driven 

stochastic subspace identification (SSI-COV) that is a kind 

of operational modal analysis is used to compare with the 

ILS method and to compute the damping ratio under 

ambient vibrations. To identify modal parameters in SSI, 

the Hankel matrix, which consists of a cross-correlation 

matrix, is extracted (Overscjee and Moor 1996, Peeters and 

Roeck 2001). In addition, the iterative least squares (ILS) 

method initiated by Chowdhury and Sarkar (2003) was used 

to compute modal damping and natural frequency for the 

free initial value problem in IVP. The ILS method was 

developed to overcome difficulty in extracting flutter 

derivatives for the Modified Ibrahim Time Domain (MITD) 

method that was described by Sarkar (1992). The 

displacement-based problem of a dynamic system generally 

adopts discretization techniques that use either central or 

compact differencing. Central differencing performs direct 

discretization. For example, velocity is obtained only by 

displacement. However, compact differencing uses the same 

contiguous variables. For example, velocity is obtained by 

both displacements and velocities that include adjacent 

velocities. Compact differencing is more accurate than 

central differencing but its performance is inversely 

proportional to data size (this means difficulty in calculation) 

when obtaining velocity and acceleration (Chu and Fan 

1998). This study uses fourth order central differencing that 

is highly accurate (𝑂(∆t)4) and less affected by data size. 

Moreover, low or high pass filtering helps eliminate errors 

that distort discrete data of the exact solution. This study 

adopted zero phase filtering (Matlab function - filtfilt) that 

minimizes the phase shift of filtered signals in the ILS 

method (James et al. 2003). 

In this study, the focus was made on the determination 

of minimum analysis conditions for different scale ratios 

and the analysis for the influence of damping ratio and 

frequency according to the level of NL. In addition, FIVP 

described in section 3 is proposed to resolve the condition 

that is difficult to know original initial value due to noisy 

signal under free vibration. To implement this objectivity, 

numerical models are classified into five types according to 

scale ratios (0, 70, 120, 200, 300). Signal to noise ratio is 

also classified into three types according to NL (3, 6, 10). 

Numerical analysis and section model tests were performed 

by developing two degree-of-freedom (DOF) models and 

adopting the SSI and ILS methods. In addition, another 

experiment was conducted with multiple modes on full 

bridge 3D model tests that applied a similitude law (real 

main span of 700 m and scale ratio of 120). Numerical 

analysis showed the independence of initial values with 

respect to time by using FIVP. Experimental tests were 

performed with free vibration test using the free initial 

value condition and ambient vibration test. 

 

 

2. System identification technique for modal 
damping and frequency 

 

2.1 The free decay of free and ambient vibration 
 

Displacement data was used to predict the free decay of 

free and ambient vibrations. Velocity and acceleration were 

discretized by displacement filtered with zero phase 

filtering. Fourth order central differencing was adopted for 

discretization with respect to time. The initial condition 

(displacement and velocity) was essential to compute for 

the motion of structures in structural dynamics. However, it 

is difficult to get an exact measurement of the initial 

condition because environmental factors and device 

limitations, etc., would interfere accurate measurement. 

This study presents a free initial condition method that 

allows free measurement of original initial conditions. 

To precisely simulate dynamic responses, the Nyquist 

frequency condition must be considered. In general, the 

ability to capture the movement of a device should be over 

two times the reference frequency, which is the natural 

frequency of each mode (James et al. 2003). In the present 
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work, the sampling rate of recorded data was more than five 

times the highest frequency among all modes. All the 

applications presented in section 7 are based on the use of a 

laser sensor device (linear response from 0–200 Hz). 

Acceleration data was verified with a one-axial load cell for 

each DOF that enabled the comparison of simulated and 

measured data.  

The measured data was then processed by performing 

system identification that used output-only data. (Juang and 

Pappa 1985, Magalhaes et al. 2010, Chun et al. 2017, Chun 

2017) In this study, system identification for modal 

parameters was based on the ILS and SSI methods. Both 

methods computed the system matrix for modal parameters 

derived by a complex eigen-solution of non-proportional 

damping (Craig and Kurdila 2006). Free vibration tests 

consisting of imposed initial condition or temporal forced 

vibration were conducted with the ILS and SSI methods, 

and ambient vibration tests were performed with the SSI 

method. 

 
2.2 Stochastic subspace identification (SSI) method 

 

The SSI method can estimate modal parameters by 

applying singular value decomposition (SVD) of Hankel 

matrix that consists of a correlation matrix for output data 

(Peeters and Roeck 2001). 

( 1) ( ) ( )

( ) ( ) ( )

,ij k i l i l

x k Ax k w k

y k Cx k v k

H R O O A 

 

  

 

 

 (1) 

The Hankel matrix ( ijH ) consists of a cross-correlation 

matrix of each measurement ( kR ) and an observability 

matrix ( iO ) is obtained by the Hankel matrix decomposed 

by SVD. i lO

  and i lO

  are obtained by removing the first 

or last l  rows from the observability matrix. System 

matrix ( A ) is extracted by the process that considers an 

adjacent block matrix of the observability matrix. Each 

variable denotes that C  is the output matrix, ( )x k  is the 

input vector, ( )y k  is the output vector, ( )w k  is the load 

matrix, and ( )v k  is the white Gaussian noise matrix. 

It is noted that the SSI method works powerfully in 

multiple-input and multiple-output (MIMO) state-space 

models. Thus, the SSI method is suitable for tests of field 

structure and 3D prototype model that can be recorded in 

many locations. The output matrix can be freely constructed 

by user selection, measuring displacement, acceleration, or 

a combination of both (Cho et al. 2015). 

The SSI method can efficiently perform modal estimates 

of the dynamic properties of an ambient vibration 

environment with stationary conditions and normally 

distributed random loads. Modal parameters must be 

determined by stabilization diagram that is obtained by 

singular value decomposition (SVD), satisfying critical 

damping ratio and modal assurance criterion (MAC) 

conditions. In this study, stabilization criteria values were 

1% for frequencies, 5% for damping ratios and 99.9% for 

MAC. This method is applied to full bridge 3D model that 

contains complicated modal parameters. 

The SSI method for structural vibrations is generally 

applied with acceleration data but can also be used with 

displacement data. The method that does not use the 

original initial condition is compatible with both the SSI 

and ILS methods that adopt the free initial value condition. 

These two methods were applied to numerical and 

experimental tests, satisfying sufficient sampling rates and 

total time length (Magalhaes et al. 2010).  

 

2.3 Iterative least squares (ILS) method 
 

The ILS method performs the identification of the 

system matrix using a state–space equation and least square 

(LS) method that used iterative algorithms. Dynamic 

equations of free decay are expressed in an effective form 

that can be organized into four differential equations 

(Ghilani and Wolf 2006). This is called a state–space 

equation. 

 1 1

0 I XX
or X A X

M K M C XX
 

     
      

     
 (2) 

 A  is the mechanical matrix of the state space form 

and the solution of the first order matrix differential 

equation is shown below. 

 
0

A t
X e X  (3) 

Eq. (3) is used to illustrate the derivation of the free 

initial condition denoted as
0X . The ILS method performs 

an iterative procedure to obtain the system matrix as shown 

below. 

    
 

   
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X  is the vector of displacement and velocity related to 

the recorded and then discretized data for each DOF. X  is 

the differentiation process with regard to the time of X . 

[ ]iA  is the system matrix that consists of the mechanical 

stiffness and damping coefficient matrix. Index i denotes the 

number of iterative procedures and 0X  is the measured 

data. The initial value of the system matrix ( 0[ ]A ) is 

generally obtained by the LS method that is linear model. 

ILS is similar to the LS method but uses an updated value  

( iX ) computed from the iterative process and state-space 

equation. The system matrix was obtained with iteration 

level ( iR ) under 610 . The displacement in the vertical and 

lateral directions was expressed in meters while rotation is 

expressed in radians when solving whole equations. 

The error ratio of the modal parameter of ILS method is 

under 5% when the noise to signal ratio is 20% as 

mentioned in the introduction. Therefore, estimation of the 

modal solution from the ILS method is accurate in adverse  
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conditions. The fit of exponential decay was determined 

after the application of an optimization process that 

searched for the optimal time interval with minimum 

residual error between measured and simulated values. 

 

 

3. Free initial value problem (FIVP) in free vibration 
 

3.1 Time shift and initial value problem 
 

If the time variable of system 2 is related to that of 

system 1, then the time variable of system 2 consists of the 

time variable of system 1 and ∆t. The subindex denotes 

each system that has different initial values but consists of 

the same model. 

2 1t t t   (5) 

System 1 uses the solution of the state–space equation 

expressed below. Let the solution of system 1 at time t  

be equal to initial condition of system 2. 

 
1 2( )

A t
X t e X X


    (6) 

We can derive the relationship between systems 1 and 2 

using Eq. (6) as shown below 

   
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From Eq. (7) the solution of system 1 can be expressed 

with the initial condition of system 2. These relationships 

can make conversion useful between different systems. 

Specifically, the current initial condition can be used to 

compute the system matrix even though the original initial  

condition was not measured.  
1X ,

2X  are the initial 

 

 

conditions with respect to each system. This relationship is 

shown in Eq. (7), hereinafter referred to as the free initial 

condition. In section 3.2, the comparison of between true 

and simulated values will be verified using the original and 

free initial conditions. 

From Eq. (7) the solution of system 1 can be expressed 

with the initial condition of system 2. These relationships 

can make conversion useful between different systems. 

Specifically, the current initial condition can be used to 

compute the system matrix even though the original initial 

condition was not measured. 
1X ,

2X  are the initial 

conditions with respect to each system. This relationship is 

shown in Eq. (7), hereinafter referred to as the free initial 

condition. In section 3.2, the comparison of between true 

and simulated values will be verified using the original and 

free initial conditions. 

 

3.2 Numerical simulation 
 

The accuracy of the free initial condition must be 

verified. Thus, Eq. (8) which follows MKS units is used to 

simulate numerical response shown in Figs. 1 and 2. This 

properties extracted by operational data were used to reflect 

real environmental condition (Bogunovic Jakobsen and 

Hjorth-Hansen 1995). Vertical and torsional mode mainly 

affect serviceability or instability of long-span cable bridges. 

For this reason, these two modes are used in this study. Fig. 

1 indicates the model that presents damping ratios 0.1559% 

and 0.0226%, and natural frequencies 2.0157 Hz and 5.1325 

Hz for modes 1 and 2. In addition, mass is 2.6526 and 

0.0189 for each mode. 

420.100 59.181

1.755 19.659

8.931 0.080

0.435 0.039

K

C

 
  
 

 
  
 

 (8) 

  
(a) Vertical DOF (b) Rotational DOF 

Fig. 1 Comparison between true and simulated values for 2DOF in time domain using the ILS method and the original 

initial condition (system 1) 

44



 

Determining minimum analysis conditions of scale ratio change to evaluate modal damping ratio in long-span bridge 

 

 

 

 

 

 

The original initial displacement was 0.0116 m and 

1.7189° (0.03 rad) and the original velocity was zero for 

each DOF (system 1). The simulated data using the original 

initial condition is shown in Fig. 1. The current initial value 

(system 2) was -0.0073 m and -0.0053° for each DOF. The 

simulated data using the current initial value is shown in  

Fig. 2. Both true and simulated values precisely matched  

 

 

 

 

the free initial condition as well as the original initial 

condition. 

The initial time was divided into 10 s intervals from 10-

60 s in terms of the time of the original system. The 

numbers for the time designated in Fig. 3 present the time 

that occurs maximum error among whole initial time cases 

and then this time can be equal to the initial time of new 

systems. Therefore, the free initial condition is suitable for 

any free vibration when the original initial condition is 

unknown regardless of the initial time. Additionally, the 

errors shown in Fig. 3 result from the discretization process 

because the maximum difference between the free initial 

value and original initial value problem is nearly zero (less 

than 1110 ). 

 

 

4. The effect of dynamic property with signal to 
noise ratio 
 

Signal to noise ratio has influence on extracting solution 

in SI technique and greatly affects accuracy of damping 

ratios. Table 1 presents the system properties for models 

that have different damping ratio. SMHD (seperated model 

with high damping case) model presents high damping ratio 

used in typical structures. In addition, SMLD (seperated 

model with low damping case) model presents low damping 

ratio used as design value in long-span bridges (KSCE 

2006). Those two models have none modal complexity 

  
(a) Vertical DOF (b) Rotational DOF 

Fig. 2 Comparison between true and simulated values for 2DOF in time domain using the ILS method and the free initial  

condition (system 2) 

Table 1 The system properties for models that have different damping ratio 

Model Modal complexity Non-proportionality of damping 
Mode 1 Mode 2 

f (Hz)   (%) f (Hz)   (%) 

SMHD None 0.01 0.2404 2.6834 0.6131 1.5849 

SMLD None 0.01 0.2404 0.3001 0.6131 0.3001 

 

Fig. 3 The accuracy of the free initial value problem 

compared with the original initial value problem (Each 

number on the circle-symbol indicates the time [s] of 

occurrence) 
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that means separated frequency between two modes and 

have non-proportionality of damping that satisfies 

orthogonality condition for damping coefficient matrix. 

Analysis of those two models is conducted by the ILS 

method. In addition, this analysis is performed with several 

total time length (1, 2, 5, 10, 20, 30, 40, 50 min) and 

sampling rate (3, 5, 10, 12, 24 Hz). Two model is analyzed 

with three noise level (NL) that consist of 3, 6 and 10. 

Table 2 indicates that low damping condition is difficult 

to identify damping ratios than high damping condition. 

Although damping ratios are easily evaluated in low NL, 

damping ratios were accurately extracted in NL 10. All 

those minimum conditions were computed when errors 

were less than 6%. Each case was simulated 100 times. 

The noise level (NL), noise to signal ratio, indicates the 

number of errors contained in a signal expressed as a 

percentage. NL was defined by Sarkar (1992) as follows 

2

2 2

( )
(%) 100

( ) ( )

i

i i

E
NL

E Y E




 


 (9) 

 

 

 

 

Table 2 Minimum analysis conditions according to NL 

NL 
SMHD SMLD 

Sampling rate Total time length Sampling rate Total time length 

3 3 1 10 5 

6 3 5 10 10 

10 10 5 10 20 

*NL: Noise level, a unit of sampling rate is [Hz], a u

nit of total time length is [min] 

 

where, Y  is noisy signal vector,   is total noise vector, 
iY ,

i  are the elements of vectors Y ,   respectively, and 

( )E   denotes the expected value. All the numerical models 

in this study are based on theoretical values with 10% NL 

generated with random white Gaussian noise containing all 

information on the occurred frequency without bias. The 

NL is conservative in cases of well-conducted ambient 

vibration tests. 
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(a) SMHD (b) SMLD 

Fig. 4 Minimum analysis conditions for sampling rate with NL 10 
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(a) SMHD (b) SMLD 

Fig. 5 Minimum analysis conditions for total time length with NL 10 
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5. Minimum analysis conditions for different scale 
ratios 

 

As bridge is getting longer, experimental model should 

be designed with small scale model. Minimum analysis 

conditions for different scale ratios should be determined 

for making global solution stable. In this section, all 

analysis are performed under NL 10 that guarantees 

conservative analysis condition and use numerical model 

described in Table 1 that presents the system properties for 

models that have different damping ratio. Analysis of those 

two models was conducted by ILS method as shown in 

Figs. 4 and 5. This analysis was performed with several 

scale ratios: For scale ratio 1, analysis was performed with 

several total time length (1, 2, 5, 10, 20, 30, 40, 50 min) and 

sampling rate (2, 3, 5, 10, 12, 24 Hz); For scale ratio 70, 

analysis was performed with several total time length (5, 

10, 20, 30, 40, 80, 144, 300 s) and sampling rate (20, 50, 80, 

100, 150, 200 Hz); For scale ratio 120, analysis was 

performed with several total time length (5, 7, 10, 20, 40, 

60, 180, 300 s) and sampling rate (20, 30, 50, 100, 200, 300 

Hz); For scale ratio 200, analysis was performed with 

several total time length (4, 5, 7, 14, 30, 60, 120, 240 s) and 

sampling rate (30, 60, 140, 200, 300, 350 Hz); For scale 

ratio 300, analysis was performed with several total time 

length (3, 4, 5, 10, 20, 40, 60, 180 s) and sampling rate (34, 

68, 150, 200, 300, 400 Hz). All those minimum conditions 

were also computed when error rates were less than 6%. 

Low damping ratio condition needs conservative analysis 

condition than high damping ratio. From those results, 

minimum analysis conditions can be derived by comparison 

between the result obtained by SI technique and Nyquist 

frequency condition. Each case was simulated 100 times.   

Table 3 synthesizes minimum condition of total time 

length and sampling rate for different damping ratios. The 

system that has low damping ratio should be identified with 

conservative condition. In other words, low damping ratio 

condition needs higher total time length and sampling rate 

for extracting damping ratio. Square mark indicates total 

time length extracted by the ILS method and circle mark 

presents total time length adopting similitude law applied to 

reference total time length (for scale ratio 1) in Figs. 4 and 

5. Sampling rate and total time length by similitude law 

indicate that total time length and sampling rate for scale 

ratio 1 are changed by applying similitude law for each 

scale ratio. In case of sampling rate, proposed sampling rate 

can be defined by considering Nyquist frequency concept. 

Nyquist frequency condition means that signals can be  

 

 

simulated when sampling rate is more than twice the 

reference frequency of the system. In this study, Nyquist  

( k ) was used to define a specific sampling rate. Nyquist (

k ) means that sampling rate is k  times the reference 

frequency of a system. As shown in Figs. 4(a) and 4(b), 

Each of Nyquist (17) and Nyquist (30) is a critical line in 

high and low damping case, respectively. To guarantee 

reliability, conservative criteria was determined using 

Nyquist (20) and Nyquist (35) for each case. When the 

damping ratio has unknown values, Nyquist (35) should be 

applied to the sampling rate. 

In case of total time length (Fig. 5), tendency of SMHD 

and SMLD is different. The fact that total time length by 

similitude law is lower than by SI technique shows that 

similitude law should not be applied to total time length. 

Therefore, it is noted that minimum total time length must 

be determined by SI technique. 

 

 

6. Numerical verification under free vibration 
 
6.1 Description of numerical model 

 

Verification of the free initial value problem was 

conducted with a simple model that had no interference in 

each mode as shown in Eq. (8). An SM1 model with a high 

damping ratio is constructed to verify proposed minimum 

analysis conditions described in section 5. The free initial 

value problem is also applied to additional models having 

modal complexities and closed frequencies for each mode 

described in Tables 4 and 5. Modal complexity refers to the 

level of damping non-proportionality described by 

Magalhaes et al. (2010). Non-proportionality is defined as 

the ratio between the sum of the absolute values of the off-

diagonal elements and the sum of the absolute values of the 

diagonal elements of the modal coordinate damping matrix. 

The proportionality of the system is important in order to 

orthogonalize and diagonalize the system matrix in terms of 

different mode shapes (Nagarajaiah and Yang 2015). 

Therefore, if non-proportionality is high, it is difficult to 

accurately estimate the dynamic properties of modal 

damping ratio and frequency. This section presents four 

numerical models, shown in Table 5, that adopt the ILS 

method and free initial condition. Table 5 that is theoretical 

solution presents the natural frequency and modal damping 

ratios for each mode. 

 

 

Table 3 Minimum analysis conditions with NL10 according to scale ratio 

Scale ratio 
SMHD SMLD 

Sampling rate [Hz] Total time length [s] Sampling rate [Hz] Total time length [s] 

1 10 300 10 1200 

70 50 10 80 40 

120 100 40 200 60 

200 140 30 200 60 

300 150 20 300 20 
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The SM model indicates well separated frequency while 

CM model indicates closed frequency. An SM1 model with 

a damping ratio will be verified as shown in Table 6. 

Because the SM1 model has well separated frequency, it is 

useful for checking and comparisons with several 

conditions despite of its strong non-proportionality of 

damping. 

 

6.2 Simulation of free decay 
  

An SM1 model, based on experimental settings that had 

been conducted in wind tunnel test of Korea University, was 

constructed with a scale ratio 70. Fig. 6 presents the modal 

natural frequency and damping ratio for case 3e, which has 

strong modal complexity, which is simulated 100 times and 

shows accurate results for all modes (mean values 2.3729% 

and 2.2630%, and standard deviations 0.0526 and 0.0578, 

respectively, for two modes in the case of damping ratios). 

It is found that estimation of damping is performed well in 

strong non-proportionality condition and frequency 

estimation is less dependent to noise signal. In Fig. 7, the 

minimum total time length and sampling rate could be 

determined as 40 s and 80 Hz within 6% error, respectively. 

From Mode2_20 in Fig. 7(a), even though the total time 

length is enough to identify system parameters, it is noted 

that the damping ratio can be distorted under the conditions 

of insufficient sampling rate. From Table 7, it is found that 

proposed minimum analysis conditions gives conservative 

bound and helps results to be evaluated reasonably. 

 

 

 

 

Table 6 The cases of numerical model for SM1 

Sampling 

frequency [Hz] 

Total time length (s) 

5 10 20 30 40 80 144 300 

20( ) 1a 1b 1c 1d 1e 1f 1g 1h 

40( ) 2a 2b 2c 2d 2e 2f 2g 2h 

80( ) 3a 3b 3c 3d 3e 3f 3g 3h 

100( ) 4a 4b 4c 4d 4e 4f 4g 4h 

200( ) 5a 5b 5c 5d 5e 5f 5g 5h 
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Fig. 6 Numerical simulation of case 3e with modal damping 

ratio and natural frequency for two modes 

Table 4 The system properties for all numerical models 

Model M [ kg ] K [ /N m ] C [ /N s m ] 

SM1 
2.6526 0 420.100 -59.181 0.040 -0.080 

0 0.0189 1.755 19.659 0.435 0.039 

CM1 
1250 26.3 100000 0 327.5 -72.5 

26.3 1250 0 100000 -72.5 327.5 

CM2 
1250 26.3 100000 1050 327.5 -72.5 

26.3 1250 -1050 100000 -72.5 327.5 

CM3 
1250 26.3 100000 2000 327.5 -72.5 

26.3 1250 -2000 100000 -72.5 327.5 
 

*SM: Separated model for frequency; CM: Closed model for frequency 

Table 5 Numerical models and dynamic properties for non-proportionality of damping and adjacent frequency 

Model Modal complexity 

Non-proportionality  

of  

damping 

Mode1  Mode2 

f (Hz)  (%)  f (Hz)  (%) 

SM1 Strong 15.73 2.0179 2.3570  5.1268 2.2658 

CM1 None 0.00 1.4088 1.1286  1.4387 1.8080 

CM2 Some 0.50 1.4105 1.0800  1.4370 1.8564 

CM3 Strong 0.95 1.4152 0.8548  1.4325 2.0812 
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Fig. 8 Mean and standard deviation of modal damping 

ratio of case 3e with two modes for all numerical models 

(the ILS method in red, the SSI method in blue, and 

theoretical values in green) 

 

 

The condition satisfied with 40 s and 80 Hz was used to 

verify all numerical models shown in Table 4 and 

experimental tests. Fig. 8 presents the theoretical results and 

the results extracted by the ILS and SSI method for all 

numerical models described in Table 4 and shows the well-

matched mean values. In addition, standard deviation 

described in Fig. 8 is high in closed frequency model and 

higher modes. The SSI method showed good agreement 

with the precision of damping ratios at high modes for all 

models. 

 

 

 

 

 

7. Experimental test 
 

An experimental test was conducted with a 2DOF 

section model and a full aeroelastic bridge 3D model that 

adopted the similitude law proposed by Chun (2017) to 

simulate a performance identical to that of a real bridge. 

The section model test described in Fig. 9 was conducted 

with ambient and free vibration tests, applying the ILS and 

SSI methods with FIVP. Free vibration tests with imposed 

initial condition and temporal forced vibration were  

conducted with the ILS and SSI methods, and ambient 

vibration tests were performed with section models and a 

full aeroelastic bridge 3D model under turbulent flow 

coming toward the test model. 

Identification of all experimental tests is performed 

considering proposed minimum analysis conditions. 

Because experimental test models had low damping, 

Nyquist (35) condition was applied to sampling rate. 

Minimum total time length of the section model test was 

determined as 40 s considering several simulations with the 

ILS method. 

 

7.1 Section model test 
 
The section model test was conducted with ambient and 

free vibration tests, and the test was carried out five times 

under different initial conditions. The properties of section 

models were classified into two groups, consisting of a 

well-separated model and closed model (natural frequencies 

1.95 Hz and 3.82 Hz for each mode in the well-separated 

model and 1.958 Hz and 1.988 Hz for each mode in the  

  
(a) Mean values (b) Standard deviation rate values 

Fig. 7 Mean and standard deviation rate of modal damping ratio for each case of SM1 (mode 1 represented by blue lines, 

mode 2 by red lines; dashed lines present theoretical values) 

Table 7 Comparison between proposed analysis condition and simulated condition of case 3e for high damping 

Scale ratio 
SM1 

Proposed minimum analysis conditions 

Nyquist (17) Nyquist (20) 

Sampling rate [Hz] Sampling rate [Hz] Sampling rate [Hz] 

70 80 87 102 

* Nyquist ( k ) means that sampling rate is k  times the highest reference frequency of a system 
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closed model). The target modal damping ratio was 

approximately 0.3% and 0.265% for each mode in the SMT 

model (SMT 1-3) and 0.26% and 0.27% for each mode in 

the CMT model. 

A laser transducer device was used to measure the 

displacement and an axial force transducer was installed to 

measure acceleration for comparison with simulated  

 

 

 

 

 

 

 

acceleration for each DOF as shown in Fig. 9. Because 

mass of section model can be calculated, acceleration is 

obtained by axial force transducer. The free vibration tests 

were carried out under temporal forced vibration conditions 

and imposed initial conditions. Ambient vibration tests in 

section model test were conducted under turbulent flow 

conditions with turbulence intensity under 10%.

 

Fig. 9 Test set-up for free and ambient vibrations for vertical and torsional mode in Korea university 

  
(a) Vertical DOF (b) Rotational DOF 

Fig. 10 Time history displacement data using the ILS method under 40 s and 120 Hz in SMT 2 for all modes (simulation 

values were compared with measured values) 

  

Fig. 11 FFT diagram of subjected forces for each DOF (mode 1 in left, mode 2 in right) 
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In the ILS method, the process to determine the optimal 

modal damping is used to choice the free initial condition 

that has the minimum sum of residuals compared with 

recorded data, for various initial times. For example, if test 

data is acquired totally for 60 s, modal damping is 

determined by the solution of optimal signal among several 

cases that have total time length 40 s and the total number  

 

 

 

 

of those cases which is equal to 120 (sampling rate) times 

the difference between 40 s (total time length) and 60 s 

(totally recorded time). In this manner, optimal signal was 

selected through the process that finds the signal having 

lowest residual among several cases (120 20 ). The SSI 

method was used to evaluate modal parameters for turbulent 

flows. Fig. 10 presents comparisons of both measured and  

  

  
(a) Vertical DOF (b) Rotational DOF 

Fig. 12 Time history displacement data using the ILS method under 40 s and 120 Hz in SMT 3 for all modes (simulation 

values were compared with measured values) 

  
(a) Vertical DOF (b) Rotational DOF 

Fig. 13 Time history displacement data using ILS method under 40 s and 120 Hz in CMT for all modes (displacement at the 

top, velocity in the middle, acceleration at the bottom; simulation values were compared with measured values) 
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simulated values, estimating the damping ratio 0.3067% 

and 0.2622% and natural frequency 1.9539 Hz and 3.8548 

Hz, respectively, taken from the average of the five-time 

measurements. It was found that the free initial condition 

can be used without any original initial value. The 

simulated signals for all DOF accurately matched the 

measured values as shown in Fig. 10. 

The temporal forced vibration test (free vibration test) 

was conducted by applying sinusoidal resonant loads with 

estimated frequencies of 1.953 Hz and 3.516 Hz for modes 

1 and 2, respectively, as shown in Fig. 11. In addition, Fig. 

12 presents time history data of temporal forced vibration 

for 2DOF. The simulated values presented on the right in 

Fig. 12 delivered good results for time domain data which 

can be implemented when modal frequency and modal 

damping were accurately evaluated for all modes. 

Displacement data was used for the ILS method under 50% 

of maximum displacement after loading. 

Fig. 13 presents comparisons of both measured and 

simulated values, with estimated damping ratios 0.2507% 

and 0.2672%, and natural frequencies 1.9581 Hz and 1.9880 

Hz, respectively, taken from the average of five-time 

measurements. The closed frequency case is less accurate 

than the well-separated model in same conditions according 

to the results of numerical analysis described in Fig. 6. For 

this reason, the simulated acceleration was compared with 

measured acceleration recorded with an axial force  

 

 

 

 

transducer. The simulated acceleration was more stable for 

outlier noise compared to discretized acceleration, and had 

more similarities with measured acceleration. In general, 

truncation errors and environmental noise accumulated 

during the discretization process. Nonetheless, 

displacement-based problems can provide reliable velocities 

and acceleration by adopting the free initial condition and 

the ILS method and low pass filtering methods. 

The estimated modal damping and natural frequency are 

summarized for the four experimental models in Table 8. 

SMT1-3 had the same experimental settings as those used 

for different vibration tests and provided similar mean 

values for the two modes. The ambient vibration test 

showed higher variations than free vibration for modal  

damping estimation as shown in Fig. 14. In particular, the 

temporal forced vibration results had less variation since 

these were similar to the deterministic problem (noise was 

relatively smaller than the amplitude of displacement). The 

SSI method of ambient vibration test (SMT1) was reliable 

for noise loading similar to turbulent flow conditions. The 

CMT with closed frequency also provided good quality 

results. Moreover, natural frequency was accurately 

predicted for all experimental models regardless of the 

identification method. 

 

 

 

Table 8 Mean values of section model tests 

Model Type of free decay 
Mode1  Mode2 

f (Hz)   (%)  f (Hz)   (%) 

SMT1 Ambient vibration 1.9551 0.2982  3.8566 0.2701 

SMT2 Free vibration 1.9539 0.3067  3.8548 0.2622 

SMT3 Free vibration (temporal forced vibration) 1.9536 0.2962  3.8543 0.2672 

CMT Free vibration 1.9581 0.2507  1.9880 0.2672 
 

*SMT: Separated model test for frequency; CMT: Closed model test for frequency 
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(a) Modal damping ratios (b) Modal natural frequencies 

Fig. 14 Mean and standard deviations of damping ratio and frequency under 40 s and 120 Hz for all models in section 

model tests 
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7.2 Full bridge 3D model test 

 

A full bridge 3D model of a composite cable-stayed 

bridge with a main span of 700 m described in Fig. 15 was 

designed with Korea University and Pyunghwa engineering 

consultants associated with the super-long span bridge of 

the R&D center of Korea Expressway Corporation in 

Korea. As the main span of the full bridge 3D model 

becomes longer, a similitude law must be applied for testing 

in scaled experimental tests. This test model had scale ratio 

of 120 for a damping ratio of 0.3% regardless of the scale 

ratio (super long-span bridge is conservatively designed as 

0.3%). In the full bridge 3D model test, the free vibration 

tests imposed by the initial condition were analyzed using 

the ILS and SSI methods, and the ambient vibration tests 

were conducted using the SSI method at 1.38 m/s (15.1 m/s 

in field environment), which generated turbulent flow that 

represented a turbulence intensity of approximately 15% at 

the measured location. 

Table 9 synthesizes the design values of a prototype for 

representative modes of the lateral, vertical, and torsional 

directions. When comparing the difference between 

designed and measured values, the maximum error was 

3.45% for the natural frequency of the vertical mode and 

11.3% for the damping ratios of the lateral mode, except for 

the second mode. Thus, the full bridge 3D model was well 

constructed since the damping ratio of each representative 

mode was approximately 0.3% and the natural frequency of 

each mode provided proper results. The full bridge 3D 

model tests were measured with 60 s and 200 Hz, described 

in Figs. 16 and 17. When considering proposed analysis 

condition, sampling frequency should be 200 Hz since  

 

 

 

 

Nyquist (35) is applied to the highest mode. In addition, 

optimal total time length was determined as 60 s under 

Nyquist (35). The estimation of modal damping and natural 

frequency was summarized for the full bridge 3D model in 

Table 9 and Fig. 16. The full bridge 3D model that consists 

of multiple modes faces challenges in estimating the 

dynamic properties of systems and computes more 

variations in results compared to the 2DOF section model 

test with regards to modal damping ratios. The maximum 

standard deviation of modal damping ratio was around 

0.075 for the lateral mode. Therefore, the method presented 

in this paper properly identified modal damping ratios and 

natural frequencies. The free vibration test was separately 

conducted for each mode. The SSI method was used to 

estimate modal parameters with multiple output under 

turbulent flow, simultaneously measuring the displacement  

at target points (the number of measured points was seven). 

The result of the SSI method under turbulent flow was 

evaluated by singular value decomposition and stabilization 

diagram as shown in Fig. 17. The second mode was not 

captured by the SSI method under turbulent flow. The first 

mode of each representative direction was similar to 

damping ratio and natural frequency in free vibration test,  

whereas damping ratio had rather difference under SSI 

methods with turbulent flow. 

Fig. 18 presents the motion of the superposed mode in 

the vertical direction composed of V1 and V2 as described in 

table 9. It is found that the superposed time series data is 

well constructed and FIVP is properly applied to multiple 

modes. 

 

 

Table 9 Mean value of full bridge 3D model tests for multiple modes 

Direction of motion Order of mode 
Prototype design  Measurement (ILS) 

f (Hz)   (%)  f (Hz)   (%) 

Lateral (L1) 1 1.9410 0.3  1.9677 0.3339 

Vertical (V1) 1 2.8814 0.3  2.8821 0.3253 

Vertical (V2) 2 5.0374 0.3  4.7124 0.4323 

Torsional (θ1) 1 5.2926 0.3  5.4754 0.3020 
 

 

Fig. 15 General view of full bridge 3D model 
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(a) Modal damping ratios (b) Modal natural frequencies 

Fig. 16 Mean and standard deviation of modal damping ratio and frequency under 60 s and 200 Hz for all modes, using 

the ILS and SSI method in full bridge 3D model tests 

 

Fig. 17 SVD and stabilization diagram obtained with the SSI method in full bridge 3D model tests 

 

Fig. 18 Time history data of superposed vertical mode using the ILS method and FIVP 

54



 

Determining minimum analysis conditions of scale ratio change to evaluate modal damping ratio in long-span bridge 

8. Conclusions 
 

This paper proposed minimum analysis conditions that 

can be applied to small scale bridge model. It was derived 

from the comparison between the sampling frequency 

considering similitude law and the sampling frequency 

extracted by the ILS method. Minimum sampling rate was 

defined considering Nyquist (20) and Nyquist (35) for high 

damping and low damping model, respectively. Generally, 

Nyquist (35) is recommended for stable application. In 

addition, total time length should be determined after 

stabilization process adopting Nyquist (35). 

The second original contribution of present work is 

proposal and application of FIVP to free vibration test. 

FIVP was extensively used to evaluate modal damping 

ratio. FIVP could be helpful in the environments that had 

difficulty in measuring original initial value under free 

vibration. FIVP was applied to both the ILS and SSI method 

and computed reasonable damping ratio and natural 

frequency. 

Finally, extensive validation of proposed minimum 

analysis conditions was conducted in section model tests 

and full bridge 3D model tests. Experimental tests 

consisting of free and ambient vibration tests yielded 

reasonable results using the ILS and SSI methods. In a full 

bridge 3D model, the accuracy of damping ratio was 

decreased in the high mode, while natural frequency was 

accurate in all modes. The displacement-based ILS method 

computed reasonable acceleration data under noisy 

conditions. In this manner, the ILS method is suggested to 

get acceleration data than discretization technique in 

displacement-based condition. 
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