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1. Introduction 
 

Atmospheric turbulence produces a temporal and spatial 

random variation of the refraction index of the air; this is 

responsible for a random variation of the speed of light 

which distorts the wavefront of incoming plane waves (Fig. 

1). Adaptive optics (AO) has revolutionized astronomy by 

correcting in real-time the wavefront aberrations using a 

deformable mirror (DM) with an array of actuators (Tyson 

2000). There are AO mirrors of all sizes, but a minimum 

size is generally required by the field of view of the 

telescope; typical DM diameter for a few hundred actuators 

is 150-200 mm; future giant telescopes (Gilmozzi and 

Spyromilio 2008) will use AO mirrors with thousands of 

actuators and a diameter of more than one meter, e.g., the 

AO mirror M4 of E-ELT will have a diameter of 2.5 m and 

will have 5800 actuators (ESO 2011). As the size of the 

mirror grows, the natural frequencies of the vibration modes 

drop and the vibration modes tend to be excited by the 

control system. The interaction between the AO control 

system and the flexible modes of the mirror is the main 

subject of the present study. 
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The paper starts with a review of some optical 

background (for readers who are not familiar with Adaptive 

Optics); section 3 introduces briefly the various 

technologies for deformable mirrors, with a particular 

attention to the bimorph piezoelectric mirrors used later in 

this study. Section 4 discusses the quasi-static control using 

singular value decomposition; section 5 considers the 

feedback control based on a quasi-static model and section 

6 analyzes how the closed-loop response is affected by the 

flexible modes, leading to control-structure interaction 

discussed in section 7 where criteria for avoiding the 

spillover instability are developed. The role of damping is 

highlighted and two methods for damping augmentation 

(passive and active) are discussed. 

 

 

2. Optical background 
 
2.1 Wavefront aberration 
 
The wavefront aberration may be expressed either in 

displacement amplitude w(r, θ) (in microns) or in phase, ϕ(r, 

θ) = 2πfflw(r, θ) / λ (in radians). The root-mean-square (RMS) 

value over the whole optical surface is an indicator of the 

quality of the optical system; it is considered as nearly 

perfect if the RMS wavefront error is less than λ/14. 

The Fried length r0 defines the maximum size of a 

diffraction limited telescope for a given site; it is the 

aperture above which there is no improvement of the 

resolution without Adaptive Optics. If D ≤ r0, the telescope 

is diffraction limited; if D ≥ r0, the resolution is limited by 

the seeing: λ / r0; the seeing is a property of the telescope 

site; it improves with altitude and depends strongly on  
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humidity; this is why telescopes are located in remote, 

mountainous and dry places such as the Atacama desert. r0 

depends on the wavelength; typical values are r0 = 10-20 

cm at λ = 0.55 µm (visible) and r0 = 53-106 cm at λ = 2.2 

µm (infrared). 

The atmospheric turbulence may be seen as a frozen 

shape transported by the wind at velocity V (Taylor 

assumption). The phase delay associated with this frozen 

shape may be represented by the Kolmogorov turbulence 

model, (see Dainty 2000). According to this model, the 

Mean-Square (MS) error of the phase for a telescope of 

diameter D is given by 

 ϕ
2=1.03 (

 

 0
)
5 3⁄

 (1) 

If D = r0,   ≈ 1 rad. 

Assuming a circular pupil of radius R, the wavefront 

aberration is often expressed as 

 ϕ(  , θ)=∑     

 

 =1

( , θ) (2) 

where Zi ( , θ) are a set of orthogonal functions defined on 

the unit circle in polar coordinates called the Zernike 

polynomials or Zernike modes (Noll 1976). The analytical 

expressions of the low order Zernike polynomials is given 

in appendix. 

Since the atmospheric turbulence is a random process, 

the MS phase error may be written 







1

22

i

ia  (3) 

where <|ai|
2
> stands for the mathematical expectation of the 

square amplitude of the Zernike modes. The Zernike modes 

with low radial order have the largest contribution to the 

MS error. 

 

 

The Strehl Ratio S is a measure of the image quality; it 

is equal to 1 for a perfect diffraction limited telescope. The 

so-called Marechal Approximation (Roddier 1999) relates S 

to the MS phase error by 

  =  - 2   (S > 0.1)   (4) 

The approximation 

  ≈ 1- 2   (  ≪ 1) (5) 

is also often used. The threshold of image acceptability 

corresponds to D = r0, thus   = 1 rad, leading to S ≈ 0.37. A 

well corrected system has a Strehl ratio S ≥ 0.8, 

corresponding to  ϕ
2
 = 0.2 rad

2
, that is a wavefront 

aberration of  w ≈ λ/14. Notice that the effect of a 

deformable mirror is to introduce a modification of the 

wavefront twice that of the deformed mirror within the 

pupil. 

 

 

   

Fig. 2 Number of Zernike modes which have to be perfectly 

cancelled to achieve a Strehl ratio of S = 0.5 as a function of 

the diameter D of the primary mirror, for two values of the 

Fried length r0 

 
 

Fig. 1 Principle of adaptive optics to correct atmospheric turbulence. A small deformable mirror is controlled in real time 

to compensate the wavefront aberrations, measured with a wavefront sensor (Shack-Hartmann) 
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Fig. 2 gives the number of Zernike modes which have to 

be perfectly cancelled to achieve a Strehl ratio of S = 0.5 as 

a function of the aperture D of the telescope. This number 

gives an indication of the number of independent actuators 

which will be necessary on the AO mirror; it depends 

strongly on the wave length. In the visible, it exceeds 

rapidly 1000 for diameters above 10 meters. 

 

2.2 Power spectral density of the zernike modes 
 

Since the atmospheric turbulence consists of a frozen 

random field transported by the wind, at velocity V, the 

Zernike mode amplitudes of the phase aberration consist of 

zero-mean stationary random processes. The temporal 

Power Spectral Density (PSD) of the amplitudes of the 

Zernike polynomials expansion of the phase error has been 

studied (Conan et al. 1995). For a given radial degree (n > 

1), it can be roughly approximated by a constant value Φ0 

until the cut-off frequency f* followed by a decay rate of  

f 
−17/3

 (Fig. 3(a)). The cut-off frequency depends on the 

radial order n and the wind velocity according to 

 
*
=0.3( +1)  ⁄  (6) 

With this simplified model, the corresponding MS error (of 

Zernike polynomial of order i) without control is 

〈|  |
2〉=1.21Φ0 

*
 (7) 

The contribution of the various Zernike components to 

the total phase variance is represented in Fig. 3(b) 

[normalized according to (D/r0)
5/3

, so that the sum of them 

is equal to 1.03 as stated by Eq. (1)]. One sees that the 

contributions of the low order Zernike modes are 

significantly larger than that of the high order modes. 

 
2.3 Wavefront sensor 
 
Adaptive Optics requires the real-time measurement of the 

wavefront distortion induced by the non-uniform light 

propagation velocity within the telescope aperture. This is done 

by a beam splitter that deviates part of the incoming light 

towards a wavefront sensor (Fig. 1). The most popular 

wavefront sensor in astronomy is the Shack-Hartmann (S-H) 

sensor; it consists of an array of lenslets and a detector located at  

 

 

their focal distance. If the wavefront is flat, the light coming 

from every lenslet converges towards the focal point of the 

corresponding sub-aperture; if the wavefront is tilted, the focal 

point will be shifted in its sub-aperture and the shift is a linear 

function of the slope of the wavefront. If the wavefront is curved 

within the sub-aperture, the light will spread in the focal plane to 

form a spot, but the centroid of the spot will still be a linear 

function of the average slope of the wavefront within the sub-

aperture. Thus, a Shack-Hartmann sensor provides the 

measurement of the slopes of the wavefront in an array of 

discrete points corresponding to the various sub-apertures (each 

sub-aperture provides the two slopes ϕx and ϕy, with a total of 

sensor outputs equal to twice the number of active lenslets). 

Shack-Hartmann sensors are very photon-efficient and require 

little signal processing; they are well adapted to real time 

applications and the sampling frequency can reach 1000 Hz. 

Since the total wavefront distortion is the combination of the 

high frequency atmospheric turbulence and the low frequency 

geometric aberration of the telescope, the latter belongs to the 

range of Active Optics and can be isolated by low-pass filtering 

in the time domain. 

 

 

3. Deformable mirrors for adaptive optics 
 
Deformable mirrors are used in many applications, including 

astronomy, ophthalmology, power laser, etc.. The present 

discussion is limited to AO mirrors in astronomy. There are AO 

mirrors of all sizes, from microsystems to more than a meter, but 

a minimum size is generally required by the field of view of the 

telescope; typical DM diameter for a few hundred actuators is 

150-200 mm. The number N of independent actuators (also 

called number of degrees of freedom - DOF) depends on the size 

of the telescope, the wavelength and the requested optical quality; 

the diagram of Fig. 2 may be regarded as a lower bound. One 

sees that this number may become very large for a telescope 

working in the visible. The most common way to actuate a 

deformable mirror is to apply out-of-plane forces; these forces 

may be generated electromagnetically by voice coils acting on 

tiny permanent magnets, by piezoelectric stacks, or by 

electrostatic actuators. An excellent review of the various 

technologies is available (Madec 2012). The up-scaling of these 

designs will inevitably increase the weight of the AO mirror and  

 

Fig. 3 (a) Sketch of the Power Spectral Density of Zernike polynomials of radial order n = 2 and n = 4; the corner 

frequency is f* = 0.3(n + 1)V/D and (b) Normalized phase variance of the Zernike modes: <|ai|
2
>(D/r0)

-5/3
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the dynamic coupling with the telescope structure. Alternatively, 

the AO mirror can be actuated by in-plane forces generated by 

piezoelectric layers acting in the d31-mode. These Bimorph 

mirrors have a very simple configuration, they are lightweight 

and can be easily produced at a relatively low cost (Gebhardt et 

al. 2007). 

Fig. 4 shows the most common electrode layouts of bimorph 

mirrors. Fig. 5 shows a bimorph deformable mirror made of a 

Silicon wafer of 150 mm diameter and 800 µm thickness, 

covered with a thick film of PZT of 70 µm (Rodrigues et al. 

2009); it is actuated by an array of 91 independent electrodes 

with a honeycomb configuration, the voltage of which can be 

adjusted independently between 0 and 160 V. Fig. 6 shows 

examples of shapes obtained experimentally with this mirror; 

color maps of the voltage distributions are also shown 

(Rodrigues 2010). 

 

 

 

 

 

 

4. Quasi-static control 
 

Once the number and shape of the actuators and the 

configuration of the Shack-Hartmann sensor have been 

chosen, the quasi-static behavior of the AO mirror is 

described by the linear equation 

  =    (8) 

where s is the vector of output of the SH sensor and v is the 

vector of input voltages applied to the piezoelectric actuators. 

The actuator input which cancels the sensor output is obtained 

using the pseudo inverse of the Jacobian matrix 

 =     (9) 

 

 

Fig. 4 Most common electrode layouts of bimorph mirrors. Left: The Keystone layout is well suited to controlling the low 

order Zernike modes. Right: The honeycomb layout is homogeneous and well suited to scaling up and segmented design 

 

Fig. 5 Deformable mirror made of a 150 mm Silicon wafer covered on its back side with an array of screen printed PZT 

actuators with honeycomb electrodes acting in the d31 mode 

 

Fig. 6 Deformable mirror: typical corrected aberrations with the corresponding voltage distribution within the honeycomb 

electrodes (Rodrigues 2010) 
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If a Singular Value Decomposition (SVD) of J is carried out 

   =     =∑       
 

 

 =1

 (10) 

(ui are the orthogonal sensor modes and vi the orthogonal 

actuator modes), the pseudo-inverse reads 

   =       = ∑
1

  
    

 

 

 =1

 (11) 

This solution is that minimizing ||s-Jv||
2
. The sum normally 

extends to all singular values. However, because they 

appear as  i
-1

 the smallest singular values tend to generate 

unnecessary large control inputs without bringing any 

contribution to improvement of the fitting error. The 

problem may be solved either by truncating the SVD 

expansion of J
 
 after r terms, to eliminate the smallest 

singular values, or to use a Tikhonov regularization, 

minimizing 

min[‖    ‖2+ 2‖ ‖2] (12) 

 

 

 

 

where  
2
 is a tuning parameter, the method is also known as 

damped least squares (see Buss 2004). The solution is 

  = (   + 2 )
-1
    (13) 

The singular value expansion of J
 
 now reads 

   =       = ∑
  

  
2+ 2

    
 

 

 =1

 (14) 

 
 
5. Feedback control based on quasi-static model 
 

5.1 SVD controller 
 
In this approach, the mirror is assumed to behave in a 

quasi-static manner and the wavefront is measured by a SH 

sensor; the input-output relationship between the voltages 

applied to the control electrodes and the SH sensor output is 

defined by the Jacobian J of Eq. (8). The block diagram of 

the control system is shown in Fig. 7. The disturbance d 

consists of a frozen Kolmogorov turbulent screen  

 
 

Fig. 7 Block diagram of the control system. The input-output relationship is s = Jv. The feedback loop consists of the 

SVD controller K(s) = VH(s) 
 
U

T
 . The disturbance d consists of a frozen Kolmogorov turbulent screen transported by the 

wind. The performance is measured by the Zernike expansion of the residual error 

 

Fig. 8 (a) PSD of a Zernike polynomial; f* = 0.3(n + 1)V/D where n is the radial order and (b) Squared amplitude |T|
2
 of 

the sensitivity function (the compensator of Fig. 9 is in dashed lines) 
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transported at the wind velocity. The performance is 

measured by the Zernike expansion of the residual phase 

variance. 
The feedback loop consists of a SVD controller: V 

 
U

T
 

is the inverse of the plant (the Jacobian J). The sensor 

output is projected into the sensor modes U; the diagonal 

pseudo inverse matrix  
 
 provides an equal authority on all 

singular value modes; the set of filters H(s) provide 

adequate disturbance rejection and stability margin; H(s) 

may be a scalar function if the same loop shaping is applied 

to all the output modes. Finally, the commands are 

converted into voltages by the projection matrix V (actuator 

modes). We now examine the effect of the SVD controller 

on the Zernike modes. 

 
5.2 Control of Zernike modes 
 
As discussed earlier, the PSD Φ(f) of the Zernike modes 

may be roughly approximated as represented in Fig. 8(a). In 

order to analyze the residual error with feedback control, let 

us first assume that all the control loops use the same filter 

H(f) = fc / jf (integral control with crossover frequency fc); 

this filter is convenient to derive simple analytical results 

and guarantee a zero static error; a more sophisticated one 

will be discussed below. The transfer function between the 

disturbance and the system output error is given by the 

sensitivity function (Fig. 8(b)) 
2

2

2 2

1 1

1 1 c c

f
T T

H f jf f f
  
  

 

The closed-loop MS residual error in the Zernike mode i is 

given by 

〈|  |
2〉  =∫ | |2Φ( )

 

0

   (15) 

where Φ(f) is the PSD of the Zernike mode. Assuming for  

 

 

 

Φ(f) the shape of Fig. 8(a) and that fc ≫ f*, one finds 

〈|  |
2〉   ≈ 0.708Φ0 

 * (
 
 *

 
 

)

2

≈ 0.585 〈|  |
2〉 (

 
*

 
 

)

2

 (16) 

after using Eq. (7). Thus, the ratio between the closed-loop 

and the open-loop variance reads 

〈|  |
2〉  

 〈|  |
2〉

 ≈ 0.585(
 
*

 
 

)

2

 (17) 

Since f* increases with the radial order of the Zernike 

mode, the foregoing result might suggest that fc should be 

larger for higher order modes; however, as rightly observed 

by (Conan et al. 1995), the contribution <|ai|
2
> of the 

Zernike modes with low radial orders to the total MS error 

is much larger than that of the higher modes (Fig. 3(b)), 

necessitating a higher control bandwidth for the low order 

modes. 
The integral controller used above is convenient for 

illustration purposes and computing orders of magnitude, 

but it does not provide optimal performances and, as we 

shall see next, it is prone to spillover (i.e., exciting the 

dynamics not included in the model of the plant). In the 

compensator of Fig. 9, the integral control has been 

supplemented with a lag filter to magnify the gain at low 

frequency; a lead filter is included near crossover to 

increase the phase margin and a second order Butterworth 

filter is added at high frequency to increase the roll-off and 

reduce spillover. The poles and zeros of the compensator 

are shown in the figure. The controller may be scaled to the 

appropriate bandwidth by simply translating the Bode plots 

along the frequency axis until the crossover frequency fc has 

the appropriate value. The square amplitude of the 

sensitivity function |T|
2
 has been added in dashed lines in 

Fig. 8(b). The effect of this compensator on the Zernike 

modes can be analyzed numerically. 

 

Fig. 9 Compensator with improved performance (normalized to fc = 10 Hz). It consists of an integrator, a lag filter, a lead 

filter and a Butterworth second order filter. The position of the poles and zeros are indicated on the Bode plots (left). The 

bandwidth may be adjusted by translating the Bode plots along the frequency axis until the proper crossover frequency fc 

is reached. This leaves the Nichols plot (right) unchanged 
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A simulation code has been developed (Wang et al. 

2017) which allows to generate turbulent screens with 

Kolmogorov distribution (for a given Fried length r0) and 

calculate the time-history of the Zernike mode amplitudes 

when the turbulent screen is transported by the wind at a 

velocity V over the telescope aperture D. From the time-

histories, the PSD are estimated. The closed-loop MS 

amplitude is then calculated using Eq. (15). The following 

data have been assumed in the calculations: telescope 

aperture: D = 5 m, Fried coherence length: r0 = 79 cm 

(defined at λ = 2.2 µm for a 0.57 arcsec seeing), wind speed 

V = 10 m/s. Fig. 10(a) shows the evolution of the 

normalized phase variance amplitude of the Zernike modes 

for various values of the crossover frequency fc of the 

integral controller; Fig. 10(b) shows the normalized 

cumulative phase variance with the two controllers as a 

function of fc; it is based on the first 100 Zernike modes 

{∑〈|  |
2〉  

100

 =2

} (  0⁄ )-5 3⁄  

 

 

 

The residual phase variance may be transformed directly in 

optical quality using Eq. (4). Recall that all the foregoing 

results have been obtained assuming a quasi-static behavior 

of the mirror; the influence of the flexible modes is analyzed 

below. 

 
 
6. Dynamic response of the AO mirror 

 
6.1 Dynamic model of the mirror 

 
The simulation has been extended to include a dynamic 

model of the mirror, a representation of the piezoelectric 

effects (Piefort 2001) (Marinkovic 2012), and a model of 

the Shack-Hartmann (SH) sensor (assuming perfect 

dynamics). The mirror used in the simulation is represented 

in Fig. 11; it consists of a SiC substrate of 216 mm diameter 

and 1000 µm thickness, covered on its back by an array of 

127 PZT actuators of 200 µm with honeycomb electrodes. 

The pupil has a diameter of 100 mm and the SH sensor 

consists of a square array of 17×17 lenslets (225 activated).  

 

 

Fig. 10 Estimated closed-loop performance. (a) Normalized phase variance of the Zernike Modes <|ai|
2
>(D/r0)

-5/3 
for 

various values of the crossover frequency fc using the controller in Fig. 9 and (b) Normalized phase variance  CL
2
(D/r0)

-5/3
, 

for various values of crossover frequency fc. 

 

Fig. 11 AO mirror configuration used in the simulations. The left side shows the piezoelectric actuator array and the right 

side shows the lenslet array of the SH sensor 
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The front side of the mirror is supplemented by a ring of 

piezoelectric material outside the pupil, whose double role 

is to improve the thermal balance and provide additional 

damping to the system (this will be clarified later). It is 

assumed that a separate mirror takes care of the tip-tilt 

disturbance, so that the control system discussed here 

handles the Zernike modes of radial order n ≥ 2. Several 

boundary conditions are possible, which affect the Jacobian 

as well as the spectrum of natural frequencies of the mirror; 

in this study, the mirror is assumed simply supported on the 

edge, but there is no restriction to applying other boundary 

conditions. 

If Ka stands for the matrix relating the input voltages to 

the equivalent piezoelectric forces acting on the mirror, Φ is 

the matrix of mode shapes (normalized to a unit modal 

mass) and S is the matrix relating the SH output to the 

deflections of the mirror, the mirror input-output matrix 

may be written 

 
2 2

1

2

T

a

i i i

G s S diag K
s s

 
    

   
 (18) 

where ωi are the resonance frequencies and ξi the modal 

damping of the various vibration modes. The size of G(s) is 

(450×127) in this case. With these notations, the Jacobian 

describing the quasi-static response of the mirror reads 

   =  (0) =  Φ     *
1

ω 
2
+  Φ    (19) 

It is clear that the control approach based on a quasi-

static model is legitimate if the crossover frequency of the 

compensator is very small compared to the natural 

frequencies of the AO mirror: fc ≪ f1= ω1 / 2π. However, as 

the AO mirrors become larger and the control bandwidth 

increases, this condition is no longer satisfied and the 

dynamic response of the mirror will interfere with the 

control system, leading to spillover and eventually to 

spillover instability (Balas 1978) (Preumont 2018). 

 
6.2 Residual phase variance error 
 

We now re-examine the residual phase variance error  

 

 

when the dynamic response of the mirror is accounted for. 

Referring to Fig. 7, the simulation includes a dynamic 

model of the deformable mirror while the controller is 

based on a quasi-static model of the mirror (SVD 

controller). Fig. 12 shows the phase variance residual error 

of the mirror, for various values of the modal damping, 

when the time-history analysis includes the SH sensor and a 

dynamic model of the mirror; the compensator is that of 

Fig. 9. The phase variance corresponding to a quasi-static 

response is shown in dashed lines. For low values of the 

crossover frequency fc, the results of the dynamic and the 

quasi-static analyses are identical, but when fc increases, the 

dynamic response of the mirror tends to deteriorate the 

phase error because of the contribution of the flexible 

modes of the mirror; for larger values of fc, the system 

becomes unstable. One sees that the phase error 

deterioration occurs even though the control bandwidth fc is 

much below the first resonance of the mirror (f1 = 208.9 Hz 

in this case), and that it depends strongly on the structural 

damping of the mirror. This phenomenon is known as 

control-structure interaction; it is explained below. 

 
 

7. Control-structure interaction 
 
7.1 SISO system 
 
To introduce the problem, let us first consider the SISO 

position control system of Fig. 13; it consists of a single 

axis piezoelectric actuator of stiffness ka acting on a mass m 

(representing the mirror). If δ is the unconstrained 

piezoelectric displacement (proportional to the voltage 

applied), the actuator may be modelled as a spring of 

stiffness ka in parallel with a force actuator kaδ (see 

Preumont 2018). It is straightforward to establish that the 

input-output relationship of the system is 

 
δ⁄  =  (  )= 

1

1+2  ξ     
 

⁄ -(   
 

⁄ )
2
 (20) 

 
 

 

Fig. 12 Phase variance residual error when the SH and the dynamics of the mirror are included in the analysis as a 

function of the crossover frequency fc of the controller of Fig. 9. The deterioration of the performance for larger fc is 

highly dependent on the damping ξ 
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with fn = ωn/2π, ωn

2
 = ka/m and 2ξωn = c/m. The 

compensator is the integral control H(f) = fc / jf as 

previously. If the structure is assumed to behave quasi-

statically, G(f) = 1 and G(f)H(f) = fc / jf which has infinite 

gain margin (GM) and 90º phase margin (PM). On the 

contrary, if the full dynamics is included, the amplitude 

Bode plot of the control system is that on the right side of 

Fig. 13. Accordingly, the system stability requires that fn / fc 

> 1/2ξ and the gain margin is expressed simply as 

    = 20 log [
2ξ  

  
]       (in d )  (21) 

This formula points out the two parameters which 

dominate the control-structure interaction: the frequency 

ratio fn / fc and the structural damping ξ. Of course, the 

compensator used in this analysis is not the best possible 

one, and the situation may be improved by adding a 

 utterworth filter as the one of Fig. 9, but for a given 

compensator, the two parameters remain the same. Fig. 14 

gives the gain margin (in dB) as a function of the frequency 

ratio fn / fc for a few values of the damping ratio ξ, for the 

compensator of Fig. 9. Eq. (21) is represented in dashed 

line. The interest of increasing the damping of the structure 

is obvious from this plot. The damping augmentation can be 

done passively or actively. 

 
7.2 MIMO system 
 

For the Multi-Input Multi-Output (MIMO) system  

 

 

 

 

governed by Eq.(18), the problem is more complex, but one 

can use the stability robustness tests based on the small gain 

theorem to develop a sufficient condition for stability 

(Doyle and Stein 1981) (Maciejowski 1989) (Kosut et al. 

1983): Accordingly, the dynamic system G(s) may be 

decomposed into its nominal (quasi-static) part G0 = J and 

the residual one GR(s) 

   ( ) =  ( )- 0 =  Φ     *
1

 2+2ξ ω  +ω 
2
-
1

ω 
2
+  Φ    (22) 

In this way, the control structure interaction problem can be 

easily transformed into a classical form of multiplicative 

uncertainty (Fig. 15) for which the following sufficient 

condition for stability applies 

 ( 0
-1  ) <  [ +(  0)

-1] (23) 

where   and   stand respectively for the maximum and 

the minimum singular value and K(s) is the SVD controller 

inverting the plant (Fig. 7); the inverse G0
−1

 must be 

understood as a pseudo-inverse. The left hand side 

expresses the relative value of the residual response (GR) 

with respect to the quasi-static one (G0); it is small at low 

frequency and becomes large in the vicinity of the vibration 

modes, where the amplitude of the peaks is governed by the 

structural damping; increasing the structural damping will 

lower the resonance peaks and increasing the natural 

frequencies of the structure will move them to the right. The 

right hand side of Eq. (23) is concerned only with the 

nominal system; the curve is essentially flat within the  

 

Fig. 13 Left: Position control of a single axis system with a piezoelectric actuator of stiffness ka and unconstrained 

piezoelectric displacement δ. Right: Bode amplitude plot of the open-loop FRF G(f)H(f) 

 

Fig. 14 SISO system of Fig. 13 controlled with the compensator of Fig. 9. Gain margin in dB as a function of the 

frequency ratio fn / fc for various values of the structural damping ξ 
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bandwidth of the control system; above the crossover 

frequency, the rate of increase is the inverse of the roll-off 

rate of KG0. Fig. 16 shows the result of the application of 

this test to our problem; a structural damping of 0.5% has 

been assumed; the distance between the two curves may be 

interpreted as a lower bound of the gain margin; if the two 

curves cross each other, there is a danger of instability. One 

sees that for a control bandwidth of fc = 20 Hz, the stability 

robustness test is violated; this can be alleviated by 

increasing the modal damping of the first vibration mode of 

the mirror as discussed below. 

 

 

 
 
The degree of conservatism of the robustness test may 

be estimated from Fig. 17 which compares the prediction of 

the robustness test to the stability limit predicted by the 

time-history analysis. The value of fc corresponding to the 

minimum variance in Fig. 12 is also indicated (above this 

value, the phase variance begins to deteriorate). 

 
7.3 How to handle the mirror dynamics? 
 

The first option coming to mind is to use the “brute 

force” and to develop a model-based dynamic controller,  

 

Fig. 15 (a) Block diagram of the control system with the residual dynamics and (b) Multiplicative uncertainty 

 

Fig. 16 MIMO stability robustness test for various values of fc. A structural damping of 0.5% is assumed. The effect of 

inductive shunt damping of the first mode of vibration is shown on the structural uncertainty curve (a zoom of the first 

resonance is shown on the right side) 

 

Fig. 17 Maximum crossover frequency fc as a function of the structural damping. The lower curve is that predicted by the 

robustness test, the upper one is the stability limit predicted by the time-history analysis and the middle one is that 

corresponding to the minimum variance in Fig. 12 
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using for example a LQG technique, see e.g., (Nechak et al. 

2014) (Kulcsar et al. 2012). This approach brings 

difficulties: (i) the flexible modes have rather high 

frequencies (see Fig. 18), leading to tough constraints on 

the sampling frequency, and (ii) the modal density increases 

rapidly with the order of the modes; how many of them 

should be included (where to truncate the model)? What 

about spillover of the higher modes? 

On the other hand, we have seen in the previous section 

that the dynamic behavior of the mirror remains very close 

to the quasi-static one, even for large values of the control 

bandwidth, provided that the structural damping is large 

enough. Based on this observation, the damping 

augmentation (passive or active) has been selected to handle 

the mirror dynamics. It is discussed below. 

 
7.4 Passive damping 
 

The vibration modes retained in the reduced-order 

numerical model are represented in Fig. 18, which assumes 

that the first 10 modes dominate the dynamics of the 

system. In the configuration represented in Fig. 11, the front 

side of the mirror is equipped with a ring of piezoelectric 

material; the electrode is segmented in 6 parts, which offers 

the possibility to combine them in different ways, 

depending on the targeted mode. In this case, the first mode 

is axisymmetric, so that the six segments have the same 

curvature; it is therefore possible to connect the six 

piezoelectric patches in parallel to a single RL circuit  

 

 

 

 

 

(Hagood and von Flotow 1991), which is illustrated in Fig. 

19. With adequate tuning of the inductive shunt, it is 

possible to achieve ξ1 = 0.053 which reduces significantly 

the resonance peak as shown in Fig. 15. The passive 

damping can be further enhanced using a negative 

capacitance (de Marneffe 2007). Note that, beyond the 

damping discussed here, the PZT patches on the front side 

improve the thermal balance of the mirror. Besides, the 

outer ring may be used to introduce a concave curvature, 

which allows to apply control voltages at the back of the 

mirror with a positive bias (Alaluf 2016). 

 
7.5 Active damping 
 

Another option consists of implementing a low authority 

active control loop (LAC) using the same sensor and 

actuator array pairs (Fig. 20), which takes advantage of the 

large sensor array (SH) and the large PZT actuator array to 

implement modal filters. Modal active damping is applied 

to the critical modes which threaten the stability of the 

shape control loop. Modal filters were pioneered in 

(Meirovitch and Baruh 1985). Large sensor arrays are 

commonly used in vibration-based health monitoring, see 

e.g., (Deraemaeker et al. 2010) (Mendrok and Uhl 2010) 

(Mendrok et al., 2015). In the present study, instead of 

designing a specific transducer array for vibration control 

(Zenz et al. 2013) and spillover reduction (Cinquemani et 

al. 2015), the active damping loop uses the PZT actuator 

array and SH sensor array already used for the shape control 

of the mirror, without any addition. 

 

Fig. 18 Vibration mode shapes and natural frequencies of the AO mirror of Fig. 11. The pupil is represented in dashed 

lines. Notice the possible confusion between mode 1 and mode 6 within the pupil, and similarly between modes 2-3 and 

9-10 

 

Fig. 19 Passive damping with RL shunt of the front layer ring of PZT 

787



 

Kainan Wang, David Alaluf, Bilal Mokrani and André Preumont 

 
 

 
 

The starting point is Eq. (18). If Φ̂ is the set of modes 

that must be reconstructed (a small number of low 

frequency modes), the matrices C=SΦ̂ and B=Φ̂
T
Ka may be 

constructed and the pseudo-inverse C
 
 and B

 
 may be 

computed (taking care of possible ill-conditioning as 

discussed before). If s is the output vector of the SH sensor, 

the modal amplitudes of the reconstructed modes read 

 ̂ =     = ( Φ̂)
 
  (24) 

Next, a set of damping filters may be introduced to provide 

the selected modes with the appropriate active damping ξi
d 

  ( ) =     (2ξ 
 
ω  ) (25) 

Finally, the modal control is projected on the control 

electrodes by the matrix B
 
 

   =    ( )     (26) 

 
Spatial aliasing: Although orthogonal over the entire 

mirror, the vibration modes are not orthogonal within the 

limited size of the pupil, which leads to some ill 

conditioning in the C and B matrices as illustrated in Fig. 

21. Fig. 21(a) shows the condition number of the matrices 

C
T
C and B

T
B as a function of the the reconstruction order; 

one sees that the condition number increases sharply when 

an ambiguous mode is added to the reconstructed ones. 

Observe that the matrix B is better conditioned than C  

 

 

 

 

because the actuator array extends beyond the pupil of the 

mirror. Fig. 21(b) indicates that the ill-conditioning of C 

depends very much on the size of the pupil. This is 

responsible for spatial aliasing in the modal filter, as 

illustrated in Fig. 22 that represents the modal input-output 

relationship for mode 1 and mode 2 and 3 respectively. Fig. 

22(b) shows the ideal modal filter for mode 1 and the actual 

one when mode 6 (which has a shape similar to mode 1 

inside the pupil) is included or excluded of the matrix C. 

One sees that if mode 6 is included in the Φ̂ matrix, the 

modal filter follows nicely the ideal one, while in the other 

case, a spurious peak appears in the modal filter at the 

frequency f6 = 1274.6 Hz of the ambiguous mode. The same 

phenomenon is observed in Fig. 22(c) for modes 2-3 and 

modes 9-10. Note that, if the sampling rate of the control 

loop is limited, the spurious component in the modal filter 

will be aliased in the time domain and appear at a lower 

frequency, which will degrade the closed-loop performance 

of the AO system. 

To illustrate this, Table 1 shows the results of time 

domain simulations performed with a dynamic model of the 

mirror and the controller of Fig. 9; a modal damping of 

0.5% is assumed for the vibration modes. Two values of the 

control bandwidth are considered, fc = 20 Hz for which the 

dynamic model follows closely the quasi-static one, and fc = 

30 Hz which is unstable (Fig. 12); two values of the 

sampling frequency are considered, fs = 1000 Hz and fs = 

2000 Hz. 

 

Fig. 20 HAC/LAC strategy for active damping of the mirror. The shape control loop (HAC) is supplemented by a modal 

active damping (LAC) of the critical low frequency modes 

 

Fig. 21 (a) The condition number of C
T
C and B

T
B as a function of reconstructed orders and (b) The condition number of 

C
T
C as a function of reconstructed orders with various pupil diameters 
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Table 1 Time-history calculation of the closed-loop system 

with HAC/LAC strategy 

Reconstructed 

modes 
Corrected modes 

Phase variance[×10−3 / 

(D/r0)
5/3] 

fs = 1000 

Hz 

fs = 2000 

Hz 

fc = 20 Hz 

Quasi-static model 3.95 3.74 

LAC loop deactivated 4.00 3.79 

1-6 1 3.95 3.75 

1-6 1-3 7.19( ,ffi) 5.04( ) 

1-10 1-3 3.96(ffi) 3.75 

fc = 30 Hz 

Quasi-static model 1.96 1.81 

LAC loop deactivated UNSTABLE 

1-6 1 2.05 1.91 

1-6 1-3 5.23( ,ffi) 3.13( ) 

1-10 1-3 2.06(ffi) 1.91 
( ) Spatial aliasing. 
(ffi) Temporal aliasing. 

 
 
The quasi-static model is taken as reference. In the first 

set of results, one sees that if the LAC loop of the controller 

is deactivated (quasi-static control), there is a small penalty 

due to the vibration of the mirror; the penalty disappears if 

the LAC loop is activated on mode 1 and the reconstruction 

includes modes 1 to 6 (to include the ambiguous mode). 

However, the response is degraded if one wants to control 

mode 1 to 3 in the LAC loop without reconstructing the 

ambiguous modes 9 and 10 (because of spatial and temporal 

aliasing). The penalty disappears if modes 1 to 10 are 

included in the reconstruction; a very small degradation 

(3.96 instead of 3.95) is observed when fs = 1000 Hz 

because of temporal aliasing of mode 2 (f2 = 600.7 Hz is  

 

 

aliased into a component at 499.3 Hz). For fc = 30 Hz, the 

control system is unstable when the LAC loop is 

deactivated and one can recover nearly the performance of a 

quasi-static model when the LAC loop is activated with 

active damping of mode 1. The previous observations 

regarding the mode reconstruction may be repeated here. 

 
 

8. Conclusions 
 

Large deformable mirrors are often necessary to 

accommodate a large number of actuators; this usually 

results in a low natural frequency f1 which conflicts with the 

control bandwidth, leading to control-structure interaction 

and possibly spillover instability. The main parameters 

controlling the phenomenon are the frequency ratio fc / f1 

and the structural damping ξ. Robustness tests have been 

used which allow to evaluate a lower bound of the stability 

margin. Various ways of damping augmentation (passive 

and active) have been explored and it has been shown that, 

by increasing the damping of very few low frequency 

vibration modes of the mirror, it is possible to increase 

significantly the bandwidth of the AO control system. 

An alternative way to solve the problem associated with 

the low values of the resonance frequencies is to use a 

segmented AO mirror (Bastaits et al. 2014) for which the 

natural frequency f1 is that of a segment, no matter how 

many segments form the mirror and thus, the resonance 

frequency is independent of the size of the AO mirror. 

However, segmented AO mirrors cannot operate with a SH 

wavefront sensor alone, because the SH sensor cannot 

detect the piston motion; it must be complemented by edge 

sensors which measure the relative displacement between 

adjacent segments. 

 

Fig. 22 (a) Block diagram of the open-loop modal input-output relationship. Modal filter: comparison between the ideal 

filter and the reconstructed model, (b) Mode 1 and (c) Modes 2 and 3 
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Appendix: Zernike modes 
 
 

 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 23 Optical aberrations: low order Zernike polynomials ranked according to their azimuthal and radial order 

Table 2 Zernike polynomials (  < 1) 

Polynomial Denomination 

1 Piston 

2 cos θ Tilt 

2 sin θ Tilt 

√3(2 2-1) Defocus 

√6( 2 sin 2θ) Primary Astigmatism 

√6( 2 cos 2θ) Primary Astigmatism 

√8(3 3-2 ) sin θ Primary Coma 

√8(3 3-2 ) cos θ Primary Coma 

√8 3 sin 3θ Trefoil 

√8 3 cos 3θ Trefoil 

√5(6 4-6 2+1) Spherical aberration 
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