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1. Introduction 
 

With the rapid progress of high-speed railways for 

stimulating economic growth, amounts of long-span railway 

bridges have been built in China (Wang et al. 2013). As 

typical flexible structures, the long-span bridges are 

characterized by low natural frequency and high flexibility 

and may experience large-amplitude structural vibrations 

under the action of wind loading. Also, a significant number 

of stress cycles will occur at the critical structural 

components under the normal wind conditions, which may 

lead to accumulated fatigue damage or even structural 

failure. Up to now, there are several accidents attributed to 

wind-induced fatigue (Robertson et al. 2001, Peil and 

Behrens 2002). To understand the mechanism of wind-

induced fatigue problem, it is necessary to analyze the 

stochastic properties of wind field nearby the bridge during 

the periods of construction and operation. 

In the past two decades, structural health monitoring 

(SHM) systems have been installed on more and more  

                                          

Corresponding author, Associate Professor 

E-mail: cexwye@zju.edu.cn 
a MSc Student 
b MSc Student 
c Chief Engineer 

 

 

large-scale bridge structures. They can provide an 

extremely large number of field monitoring data from 

different types of sensors for grasping the long-term service 

performance of the instrumented bridges (Ni et al. 2010, Ni 

et al. 2012, Ye et al. 2016, Ye et al. 2017, Ye et al. 2018a,b). 

Koo et al. (2013) described the multi-component 

instrumentation of Tamar Bridge and presented the 

corresponding performance observations based on the SHM 

system. Comanducci et al. (2015) analyzed the existence of 

damage in the bridge by using structural vibration and 

environmental condition data. Ding et al. (2013, 2015) 

presented the wind characteristic parameters based on the 

monitoring data and used a statistical method to evaluate 

the coherence function of these parameters. 

In order to investigate the stochastic characteristics of 

wind field around the bridge site, the statistical methods are 

usually developed for the analysis of the wind monitoring 

data. In recent years, many researchers have employed the 

probability density function (PDF) models to describe the 

distribution of wind characteristics. Ye and Xiang (2011) 

analyzed the weather station observations for the 

development of the joint distribution of wind speed and 

direction near a bridge. Feng et al. (2015) developed a 

modeling method for establishment of joint distribution of 

wind speed and direction with the aid of wind monitoring 

data. Gu et al. (1999) established the joint PDF of wind 

speed and direction to estimate the fatigue life of the bridge 

girder. Many research efforts have been devoted to the 
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construction of continuous joint PDF models of wind speed 

and direction. For example, Weber (1991) used an isotropic 

Gaussian model to describe the joint PDF of wind speed 

and direction. Qu and Shi (2010) applied the Farlie-

Gumbel-Morgenstern (FGM) approach to construct the 

bivariate joint distribution of wind speed and direction. 

Johnson and Wehrly (1978) proposed an angular-linear 

(AL)-based method to establish the joint distribution of 

bivariate random variables. Erdem and Shi (2011) modeled 

different bivariate joint distributions by the use of the AL, 

anisotropic lognormal, and FGM methods. 

This paper presents the statistical analysis and bivariate 

modeling of wind characteristics based on the long-term 

wind monitoring data acquired by the anemometers 

installed on an arch railway bridge. One-year wind 

monitoring data measured by the ultrasonic anemometer are 

employed to analyze the wind characteristics, such as the 

mean wind speed and direction, turbulence intensity, 

turbulence integral scale, and power spectral density (PSD). 

A sequential quadratic programming (SQP) algorithm-based 

finite mixture modeling method is proposed to estimate the 

parameters in the joint PDF of wind speed and direction. 

For the PDF of wind speed, a double-parameter Weibull 

distribution function is used, and a von Mises distribution 

function is applied to represent the PDF of wind direction. 

The SQP algorithm with multi-start points is employed to 

estimate the parameters in the bivariate model, namely 

Weibull-von Mises mixture model. The optimal model is 

jointly judged by the Bayesian information criterion (BIC) 

and coefficient of determination, R2. 

 

 

2. The investigated bridge and SHM system 
 

2.1 Description of the investigated bridge 
 

The investigated bridge, as illustrated in Fig. 1, is a 

long-span continuous steel truss arch bridge. The bridge has 

an overall length of 9,723 m with the main bridge length of 

1,608 m. The main span of the bridge is a double 

continuous steel truss girder with the span arrangement of 

108 m + 192 m + 336 m + 336 m + 192 m + 108 m. The 

location of the investigated bridge is shown in Fig. 2.  

 

 

 

Fig. 1 The investigated bridge 

 

 

 

Fig. 2 Location of the investigated bridge 

 

 

 

The bridge spans the Yangtze River and has six tracks 

including two lines for Beijing-Shanghai High-Speed 

Railway, two lines for Shanghai-Wuhan-Chengdu Railway 

and two lines for Nanjing Metro. The design speed of 

railway is set as 350 km/h. The construction of the bridge 

began in 2006 and completed in 2010 with the official 

operation in 2011. The bridge is recognized as the longest 

bridge with a continuous arch in the world. 

 

2.2 SHM system and layout of anemometers 
 

In recognition of the important role of the bridge, a 

long-term SHM system has been installed to monitor the 

integrity, durability and reliability of the bridge during the 

operation period. The SHM system includes more than 100 

sensors to monitor the environmental condition, structural 

temperature, dynamic strain, structural vibration, structural 

displacement, and traffic condition. The sensors were 

permanently deployed on the bridge to continuously acquire 

the monitoring data for structural condition assessment and 

safety evaluation of the bridge. 

For the environmental monitoring at the bridge site, two 

anemometers were installed at different locations on the 

bridge to continuously measure the wind speed and 

direction data. These two anemometers including one 

mechanical anemometer and one ultrasonic anemometer 

monitored wind data at different sections and altitudes of 

the bridge. The detailed installation locations of the 

anemometers are shown in Fig. 3(a). The section 1-1 

represents the mid-span section of the northern main span 

and the section 2-2 is the southern arch foot of the southern 

main span. As shown in Figs. 3(b) and 3(c), the mechanical 

anemometer named as FS-11-1 and the corresponding 

anemoscope named as FX-11-1 were installed on the 

downstream vault of the north arch. The ultrasonic 

anemometer and the corresponding anemoscope, named as 

FS-17-1 and FX-17-1 were fixed on the steel truss between 

two high-speed railways. The sampling frequency of the 

mechanical anemometer is set as 1 Hz and the sampling 

frequency of the ultrasonic anemometer is set as 10 Hz. 
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3. Statistical characteristics of wind monitoring data 
 

In this section, the wind monitoring data during 2015 

are extracted for further analysis. Because there are several 

typhoons in 2015, the wind monitoring data measured by 

the high-frequency ultrasonic anemometer are selected to 

analyze the statistical characteristics of wind field. The 

average wind characteristics, i.e., mean wind speed and 

direction, and turbulence wind characteristics, i.e., 

turbulence intensity, turbulence integral scale and PSD are 

calculated based on the selected measurement data. 

 

3.1 Mean wind speed and direction 
 

For the ultrasonic anemometer, the measured wind data 

include the wind speed U(t) and wind direction θ(t). The 

wind direction angle 0º denotes north and 90º denotes east, 

rotating in a clockwise direction. Thus, in the coordinate 

system, the y-axis is defined as the direction of north and x-

axis is set to be the direction of east. The basic time interval 

T is 10 minutes according to the Chinese standard (Xiang et 

al. 2004). The wind monitoring data are decomposed into 

two components, i.e., Ux and Uy in the coordinate system 

within 10 minutes. After the orthogonal decomposition of 

recorded wind data, the wind speed in the two orthogonal 

directions for each set of wind data can be calculated. The 

mean values in the two directions, i.e., xU  and yU , can  

 

 

be computed by the sum of two axis components of wind 

data within 10 minutes, which are expressed as 
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where T is the time interval, and N is the number of wind 

data within the time interval. 

The mean wind speed U and mean wind direction θ
_

 

are defined as an average over the time interval T and can 

be calculated by 

22

yx uuU   (3) 

 

U

u
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According to the calculated mean wind direction θ
_

, the 

wind monitoring data can be decomposed into the along-

wind component u(t) and across-wind component v(t), 

which are parallel and perpendicular to the mean wind 

direction, as expressed by 

 
(a) Front view of the investigated bridge 

 
 

(b) Section 1-1 (c) Section 2-2 

Fig. 3 layout of anemometers on the investigated bridge 
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Uφtuφtutu yx  )sin()cos()(  (5) 

 

 )cos()sin()( tututv yx   (6) 

The wind rose diagram of mean wind data at the bridge 

site during the period of one year is presented in Fig. 4(a). It 

can be found in Fig. 4(a) that the distribution of wind 

direction is uneven and dominated by northeastern direction 

and southwestern direction, which satisfies with the 

monsoon climate characteristics of the bridge site. In each 

wind direction, the low wind speed components hold a 

large proportion. Fig. 4(b) shows the extreme mean wind 

speed in each direction and indicates that the extreme wind 

speed varies with different directions. The maximum 10-

min mean wind speed is 14.1 m/s in the direction of SWW. 

This direction is approximately perpendicular to the bridge 

and the wind load in this direction will cause the greatest 

impact on the bridge. 

 

3.2 Turbulence intensity 
 

The turbulence intensity reflects the turbulence 

characteristics of the wind monitoring data. The turbulence 

intensities in the along-wind and across-wind directions 

expressed as Iu and Iv are defined as 

U

σ
I u

u   (7) 

 

 

 

 

U
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where σu and σv are the root mean square (RMS) values of 

the turbulence components in the along-wind and across-

wind directions within 10 minutes, respectively, and U is 

the corresponding 10-min mean wind speed in the 

longitudinal direction. 

Based on the long-term wind monitoring data, the 

turbulence intensities of 10-min mean wind speed are 

calculated by Eqs. (7) and (8). The relationships between 

the mean wind speeds and turbulence intensities in the 

along-wind and across-wind directions are shown in Fig. 5. 

It is obvious that the turbulence intensity decreases 

gradually with the increase of mean wind speed. The value 

of turbulence intensity ranges from 0 to 0.5 with the 

corresponding mean wind speed over 4 m/s. The mean 

value of turbulence intensities in the along-wind and across-

wind directions are 0.5202 and 0.4238, respectively, and the 

ratio of mean turbulence intensities in two directions Iu : Iv 

is 0.814 which is approximate to the mean turbulence 

intensities ratio 0.81 calculated by Chen et al. (2013). 

 

3.3 Power spectral density 
 

For the continuous signals, the PSD describes the 

distribution of a signal or time series over frequency based 

on measured data. The PSD can be defined as 

])([lim)(
2
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(a) Along-wind direction 

 
(b) Across-wind direction 

Fig. 5 Relationship between turbulence intensity and mean 

wind speed 

 

 
(a) Windrose diagram 

 
(b) Extreme wind speed diagram 

Fig. 4 One-year mean wind speed and direction 
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where E[] is the expectation function, and xT(ω) is the 

truncated Fourier transform function as expressed by 


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The energy distribution of the fluctuating wind can be 

expressed in the formulation of PSD. In this section, several 

power spectra including Karman spectrum (Von Karman 

1948), Kaimal spectrum (Kaimal et al. 1972), and 

Teunissen spectrum (Teunissen 1980) are adopted to 

compare the PSD of the wind monitoring data in the along-

wind direction and across-wind direction. These spectra are 

defined as: 

For Karman spectrum (along-wind direction) 
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where Su is the auto-PSD of along-wind turbulence, n is the 

natural frequency of the fluctuating wind, Z is the 

corresponding height of the fluctuating wind speed, U is the 

mean wind speed at the standard height, β is the coefficient 

of the friction wind speed, σu is the standard deviation of the 

fluctuating wind speed, Lu is the longitudinal turbulence 

integral length scale, and u* is the friction wind speed which 

can be calculated by the energy unitary method (Simiu and 

Scanlan 1996), as expressed by 

βσu u /)( 22*   (13) 

For Kaimal spectrum (along-wind direction) 
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For Teunissen spectrum (along-wind direction) 
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For Karman spectrum (across-wind direction) 

6112

2

2* )2.2831(

]2.7551[4

)(

),(

f

ffβ

u

nZnSv




  (18) 

 

UnLf x

u  (19) 

where Sv is the auto-PSD of cross-wind turbulence. 

For Kaimal spectrum (across-wind direction) 
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For Teunissen spectrum (across-wind direction) 
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The wind monitoring data measured during monsoon 

climate and typhoons are used to analyze the turbulence 

PSD in the along-wind and cross-wind directions. The 

number of discrete Fourier transform (DFT) points to be 

used in the PSD calculation is 2,048, and the Hamming 

window with 50 percent overlap is adopted to reduce the 

signal leakage in the frequency domain. The calculated PSD 

of the wind monitoring data is compared with three typical 

spectra. The comparative study for the monsoon monitoring 

data is shown in Fig. 6 and that for the typhoon monitoring 

data is shown in Fig. 7. Fig. 6 reveals that the measured 

PSD for the along-wind direction fits relatively well with 

three typical spectra. 

 

 

 
(a) Along-wind direction 

 
(b) Across-wind direction 

Fig. 6 Wind power spectra of monsoon monitoring data 
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(a) Along-wind direction 

 
(b) Across-wind direction 

Fig. 7 Wind power spectra of typhoon data 

 

 

For the PSD of the cross-wind direction, the measured 

SPD matches well with Kaimal spectrum and Teunsissen 

spectrum, while Karman spectrum overestimates the 

turbulence PSD in the low-frequency range (0.005 Hz ~ 

0.03 Hz). As shown in Fig. 7, the measured PSD of the 

typhoon monitoring data are totally different with that of 

the monsoon monitoring data. For both the along-wind and 

cross-wind directions, the measured PSD increases rapidly 

in the high-frequency region and the apparent gaps present 

in the high-frequency region (3 Hz ~ 5 Hz), although three 

typical spectra match well in the low-frequency and middle-

frequency regions. It means that the turbulence wind has a 

great energy in the high-frequency region during the period 

of the typhoon. 

 

 

4. Probabilistic modeling of wind speed and 
direction 
 

4.1 Joint probability distribution model 
 

The basic finite mixture model of independent scalar or 

vector observations y can be expressed as (Richardson and 

Greem 1997) 
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where f(y;N,Θ) is the predictive mixture density function 

with estimated parameters Θ, and f(y;θl) is the subfunction 

family of all component densities which indexed by 

component parameters θl. The number of components in the 

family is N and wl is the corresponding weights. 

For the wind monitoring data, the observations include 

the wind speed variable and wind direction variable. It is 

assumed that the wind speed and direction follow the finite 

mixture density with conditionally independent component 

densities and the joint PDF of the bivariate finite mixture 

distribution of the wind speed and direction is expressed as 

     iiθ

N

i

iivi κμθfβαvfwNv,θf ,;,;,;
1




Θ  (25) 

where f(v,θ) is the joint PDF of the wind speed and 

direction, fv(v) is the PDF of the wind speed, and fθ(θ) is 

PDF of the wind direction. wj is the weight of each mixture 

component and satisfies that the summation equals one as 

expressed as 

1
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In the finite mixture distribution function, the two-

parameter Weibull distribution is chosen as the wind speed 

distribution function fv(v), which is expressed by 
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where αi (i=1,…,N) represents the scale parameter, βi 

(i=1,…,N) is the shape parameter. For the PDF of the wind 

direction fθ(θ), the von Mises distribution is employed 

which can be expressed by 
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where κi (i=1,…,N) is the measure of the location, and μi 

(i=1,…,N) represents the concentration parameter. In Eq. 

(5), I0(κi) is the modified Bessel function of first kind and 

order zero and can be calculated by 
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4.2 Mixture parameter estimation 
 

To estimate the parameters in the finite mixture model, 

the SQP method is used to estimate the parameters in the 

finite mixture model by minimizing the value of the 

objective function based on the function Fmincon with the 

linear inequality constraint in Matlab. The process of 

mixture parameter estimation is the minimization of real-

valued objective function fobj in the parameter-space D 

defined by the constraints of each parameter, as expressed 

by 

)i.e.(0)(s.t.

)(min

ubΘlbΘ

ΘΘ
θ





b

fobj
 (30) 

where Θ is the estimated parameters, lb is the vector of 

lower bounds, and ub is the vector of upper bounds. 

The SQP method is an iterative method for nonlinear 

optimization which transforms the complex optimization 
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problem into a sequence of optimization subproblems, and 

each of them optimizes a quadratic model of the objective 

subjected to the corresponding constraints. At the ith 

iteration, the SQP method defines an appropriate search 

direction di as the resolution to the quadratic programming 

subproblem, as expressed by 

0)()(s.t.

),(
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where λ is Lagrange multiplier, and L is the Lagrange 

function of the objective function 

)()(),,( ΘΘΘ bλfσλL T  (32) 

The joint distribution of the wind speed and direction 

exhibits the multimodal and two-dimensional characteristic. 

In this case, the objective function fobj has a lot of local 

minima, and finding the global minimum is different. There 

are two main factors to determine the calculation speed and 

precision: the initial parameter values and the objective 

function. On one hand, the MultiStart algorithm is selected 

to eliminate the effect of the initial parameter values by 

using the multiple start point from the problem structure. 

On the other hand, the establishment of the fitness function 

is also crucial. 

Assuming that we have wind monitoring data 

y=[y1,y2,y3,…,yn]
T which is a two-dimensional and n size 

dataset, yi=[yi1,yi2] as a two-dimensional vector including 

the wind speed variable yi1 and the wind direction variable 

yi2, we select sections Vd (d=1,2) which just contain all data 

for each dimension and then divide the section into Пvd 

equal intervals with the width sjd, and vd depicts the number 

of intervals for each dimension. For the two-dimensional 

wind monitoring data, the size of the jth area (jd=1,2,3,…,vd) 

is Sj=[sj1,sj2] and the proportion of the jth area ξj is a 

rectangle with sides sj1 and sj2, as ξv=sj1×sj2. Using a 

histogram, the data are counted into the nonoverlapping and 

equally sized areas, and the quantity of the observations Nj 

falling into the jth area Vj is counted out. When f(y;Θ) is the 

continuous PDF, the probability that the observation y will 

fall inside the jth area is given by 
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where ξj represents the jth area, and yj is the center point of 

the jth area. The frequency of the data falling in the jth area pj 

is given by 
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N
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where N represents the total number of the data, and Nj is 

the number of the observation data which fall into the jth 

area. 

The objective function measures the quality of the 

produced parameters and judges whether these paramete

rs are optimal solutions. The closer the model and the 

measured data distribution, the smaller the gap between 

the frequency pj and ∫f(y;Θ). In this study, we use the 

following function as the objective function 
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4.3 Optimal model selection 
 

In this study, the BIC is employed to evaluate the 

quality of the predicted model of the wind monitoring data 

Schwarz (1978). When the predicted model fits well with 

the wind monitoring data, it can find that the likelihood 

function value increases with the number of parameters, 

while the unlimited increase may result in overfitting. This 

problem can be avoided by the penalty term in BIC. 

For the wind monitoring data, the data size n is much larger 

than the number of parameters k in the model. Thus, BIC is 

more appropriate for selecting an optimal model from the 

set of candidate models. The BIC value of the model is 

defined as 

 Lkn ln2)ln(BIC   (36) 

where k is the number of unknown parameters to be 

estimated in the finite mixture distribution, L is the 

maximized value of the likelihood function of the model, 

and n is the number of data point. When determining the 

optical model, the one with the lowest BIC is preferred. 

In this study, the R2 criterion is also used to determine 

the optical model based on the proportion of the total 

variation between the expected and observed frequencies of 

the bins. It is obvious that the R2 value is between zero and 

one, and the higher R2 value is, the more likely the 

measured data match the distribution model. The R2 is 

defined as 

tot

res

SS

SS
R -12   (37) 

where the term SStot denotes the total sum of squares which 

shows the proportional to the variance of the data. It is 

defined as the sum of the squared differences between the 

observed and average frequency of all bins. The term SSres 

denotes the sum of squares of residuals which reflects the 

total discrepancy between the observed data and the 

estimation model, as expressed by 

2
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4.4 Application to the investigated bridge 
 

The one-year wind monitoring data measured by SHM 

system of the investigated bridge are applied for the 

construction of the joint distribution of wind speed and 

direction based on the proposed SQP algorithm-based finite 
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mixture modeling method. In consideration of several 

typhoons in the summer of 2015, the monitoring data 

measured by a high-frequency ultrasonic anemometer are 

selected for further analysis. 

As presented above, the joint probability distribution model 

adopts the Weibull-von Mises finite mixture distribution 

model. Because the increase of the component number will 

lead to the radical increase of the number of parameters and 

the dimension of parameter domain, the maximum 

component number of the finite mixture distribution model 

is set to ten. The number of multiple start points within the 

parameter also needs to increase to eliminate the effect of 

the initial value of parameters. The number of multiple start 

points is set to change with the number of parameters 

linearly. After estimating the parameters of all models, the 

optimal joint probability distribution model is selected from 

the ten predicted models with the component number from 

one to ten. For each bivariate model, the BIC and R2 are 

used to evaluate the fitness performance of each model and 

choose the optimal one. 

In this study, the SQP method is chosen to estimate the 

parameters for the Weibull-von Mises finite mixture 

distribution model, i.e., wi, αi, βi, μi, and κi. According to the 

characteristics of Weibull distribution and von Mises 

distribution, the low bound vector of the corresponding 

estimated parameters is [0,0,0,0,0] and the upper bound 

vector is [1,10,20,2π,100]. In consideration of the increase 

of parameter number and the constraint of computation time, 

the number of multiple start points is set as ten thousand 

times the number of parameters. 

 

 

 
(a) BIC values of different component numbers 

 
(b) R2 values of different component numbers 

Fig. 8 Wind power spectra of typhoon data 

 
(a) Predicted joint distribution model 

 
(b) Histogram of wind speed and direction 

Fig. 9 Joint distribution model of wind speed and 

direction 

 

 

To maximize the likelihood function value of the wind 

monitoring data, the wind speed and direction ranging from 

their minimum value and maximum value are divided into 

30 bins with an equal width. Based on the probability of the 

wind monitoring data, the parameters of the proposed 

models with different components are estimated. Fig. 8 

shows the values of BIC and R2 with different numbers of 

components. It can be seen from Fig. 8(a) that the BIC 

value of one component model is large and gradually 

decreased when the number of components is less than four. 

The BIC values reach the minimum value at three 

components and begin to gradually increase when the 

number of components is more than five. Fig. 8(b) indicates 

that R2 values have the same tendency. The R2 values reach 

the maximum value at three components and then go down. 

What’s more, the R2 values of nine components and ten 

components are less than zero which means that the sum of 

squares of residuals is greater than the total sum of squares. 

This is because there are not enough initial start points to 

cover the parameter domain when the number of 

components is more than five. Limited start points converge 

to a local optimum without the global optimum. According 

to the values of BIC and R2, the proposed bivariate model 

with three components is regarded as the optimal joint  
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Table 1 Estimated parameters of the optimal model 

Distribution Parameter value 

Component (N) 1 2 3 

Weight (w) 0.5966 0.2181 0.1853 

Weibull 

distribution 

Scale 

parameter (α) 
2.1519 2.5870 2.5485 

Shape 

parameter (β) 
1.6979 2.4204 2.4893 

von Mises 

distribution 

Location 

parameter (μ) 
5.8358 1.5896 0.9893 

Concentration 

parameter (κ) 
0.2910 33.9939 32.6738 

 

 

probabilistic model of wind speed and direction, and the 

parameters of the selected optimal bivariate model are listed 

in Table 1. The joint probabilistic model of the wind speed 

and direction established based on the proposed modeling 

method is illustrated in Figs. 9(a), and 9(b) shows the 

histogram of the wind speed and direction. As shown in Fig. 

9, the histogram of the wind speed and direction exhibits a 

multi-peak characteristic which has three main peaks. The 

predicted finite mixture model with three components 

including three peaks can fit well with the monitoring data 

of wind speed and direction. 

 

 

5. Conclusions 
 

This paper addressed the statistical analysis of wind 

characteristics nearby a bridge site by using the long-term 

wind monitoring data collected by the SHM system, and the 

bivariate modeling of the wind speed and direction based on 

the proposed SQP algorithm-based finite mixture modeling 

method. The wind characteristics were analyzed and 

presented based on one-year wind monitoring data. The 

calculated mean wind speed and direction were adopted to 

conduct the bivariate modeling of the wind speed and 

direction by using the proposed SQP algorithm-based finite 

mixture modeling method. The joint distribution model was 

formulated by the finite mixture model, in which a double-

parameter Weibull distribution was selected to represent the 

wind speed distribution and a von Mises distribution is 

applied to represent the wind direction distribution. The 

SQP algorithm with multi-start points was employed to 

estimate the parameters in the proposed finite mixture 

model, namely Weibull-von Mises mixture model and the 

optimal model is jointly determined by the BIC and R2. 

By statistical analysis and bivariate modeling of the 

wind monitoring data, the results show: (i) the probabilistic 

properties of the wind field at the bridge site can be 

effectively characterized by the long-term monitoring data 

measured by the SHM system; (ii) the proposed SQP 

algorithm-based finite mixture modeling method has good 

performance in bivariate modeling of the wind speed and 

direction; (iii) the predicted joint distribution model of the 

wind speed and direction can well reflect the multi-peak 

characteristic of the wind monitoring data. The achieved 

results from this study will facilitate the structural condition 

assessment and wind-induced fatigue damage estimation of 

long-span railway bridges. 
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