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1. Introduction 
 

The functionally graded [FG] material has been evolved 

with the technological advancements in fabricating a 

material with functional properties. This new class of 

material has attracted many researchers to assess their 

mechanical behavior through basic structures like the beam, 

plate and shells (Ray et al. 1992, Kondaiah et al. 2015, 

2017, Jiang and Ding 2004, 2005, 2007, Wang and Ding 

2007, Ray et al. 2001, Kiran and Kattimani 2017, 2018a).  

The utilization of FG materials as structural components 

has steadily increased in aerospace, civil and mechanical 

application in recent years due to their high strength and 

excellent thermal resistant properties (Mortensen and 

Suresh 1995, Pompe et al. 2003, Miyamoto et al. 2013, 

Ebrahimi et al. 2009, Ebrahimi and Rastgoo 2009, 2011). 

The functionally graded magneto-electro-elastic [FGMEE] 

material is one such material with functional properties and 

exhibit coupled piezoelectric and magnetostrictive behavior. 

Boomgaard (1978) introduced magneto-electro-elastic 

(MEE) composite constituted by piezoelectric and 

magnetostrictive constituents. Such composites exhibit 

magneto-electric coupling in addition to the electro-elastic 

and magneto-elastic coupling found in their individual 

phases. The material characteristics of MEE composite 

exhibit a controlled response to external factors such as 

mechanical loads, electric fields, and magnetic fields. This 

unique ability of these materials facilitates  
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larger scope for their application in sensing, actuating, and 

controlling devices. They mainly find their presence in 

critical aerospace and marine structures (Koma and Zimick 

2003). In addition, sensitivity of these materials makes them 

most suitable for surface sensitive electronic probes, 

devices (Nan et al. 2008) and in many sensors and actuators 

(Zhang et al. 2014). Applications of multiferroic MEE 

composites are related to high-frequency devices such as 

filters and oscillators that could be tuned by magnetic field, 

and recently, electrically tuneable microwave applications 

such as filters, oscillators and phase shifters (Nan et al. 

2008). Further, they are also used in stress monitoring and 

non destructive testing devices (Kurlyandskaya et al. 2009, 

Barandiaran et al. 2009). The possibility of coupling the 

different fields can be exploited in transducer application, 

structural health monitoring, vibration control, energy 

harvesting and other applications (Milazzo 2014a). 

The composites made of MEE materials are extensively 

investigated to assess their free vibration characteristics and 

static behavior under various loading conditions (Buchanan 

2004, Wang et al. 2003, Ramirez et al. 2006, Guan 2012, 

Bhangale and Ganesan 2005, Chen et al. 2014, Lage et al. 

2004, Moita et al. 2009). Pan and his co-researchers (Pan 

2001, Pan and Heyliger 2002, 2003, Pan and Han 2005) 

proposed various analytical solutions to evaluate the free 

vibration and static response of MEE plate. Millazo (2014a, 

b, 2016) established different methods to study the behavior 

of MEE plate subjected to large deflection and free 

vibration. Kattimani and Ray (2014a, b, 2015) attained 

effective control of nonlinear vibrations in MEE plates and 

shells using active constrained layered damping treatment. 

The scaled boundary FE method was implemented by Liu et 

al. (2016) to ascertain the higher order solutions for MEE 
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plate composed of non-uniform material. Wakmanski and 

Pan (2016) evaluated free vibration of multilayered MEE 

plate with non-local effect using 3-D analytical solutions. 

Influence of imperfect interface and fibre distribution on 

MEE properties of fibre reinforced composites was 

evaluated by Almeyda et al. (2017). 

The study of FG structures has attracted many 

researchers recently. Li et al. (2008) investigated the 

structural characteristics of an FG, transversely isotropic, 

MEE circular plate subjected to a uniform load. Wang et al. 

(2011) studied the static behavior of an FG MEE circular 

plate under axisymmetric bending. Ebrahimi et al. (2017) 

analysed the vibration characteristics of porous material 

FG-MEE plates resting on elastic foundation. The effect of 

guided wave propagation in infinite FG plate was 

investigated by Xiao et al. (2016) via Chebyshev spectral 

element method. Zhou and Zhu (2016) analysed the 

vibration and bending characteristics of multiferroic 

rectangular plates using third-order shear deformation 

theory. A three-dimensional exact solution was explored by 

Li et al. (2017) for the uniformly loaded MEE field with an 

elliptical crack in shear mode. Ebrahimi and Barati (2016) 

investigated the buckling behavior of piezoelectrically 

actuated FG-MEE nano plates under the influence of 

magnetic field. Static characteristic of multiphase MEE 

beams under thermal load is investigated by Vinyas and 

Kattimani (2017a, b). Free vibration and bi-axial buckling 

of MEE nanoplate resting on an elastic foundation are 

studied by Jamalpoor et al. (2017). Bagheri et al. (2017) 

studied the static behavior of FG MEE strip containing 

multiple moving cracks. Vibration analysis of multiphase 

MEE plate under the influence of harmonic forces is 

presented by Shooshtari and Razavi (2017). Ebrahimi and 

Dabaggh (2017) studied the flexural wave propagation 

responses in FG MEE nano plate. The geometrically 

nonlinear vibration of multiferroic plates and shells was 

investigated by Kattimani (2017). Chen et al. (2017) studied 

the wave propagation characteristics on multilayered MEE 

plate.  

The effect of geometrical changes in terms of skew 

angle on the structural characteristics of various FG 

structures has been extensively investigated. Kiran et al. 

(2018b) studied the influence of porosity on free vibration 

and static characteristics of the skew-FGMEE plate. Free 

vibration of FG quadrilateral microplates in the thermal 

environment was studied by Shenas and Malekzadeh 

(2016). Ruan and Wang (2016) investigated the transverse 

vibrations of moving skew plates made of FG material. 

Adineh and Kadkhodayan (2017) carried out three-

dimensional thermo-elastic analysis and also obtained 

dynamic response of a multi-directional FG skew plate on 

elastic foundation. Free vibration characteristics of FG-

CNT reinforced composite skew plates were assessed by 

Kiani (2016). García-Macías et al. (2016) investigated the 

static and free vibration behavior of FG-CNT reinforced 

skew plates. Ardestani et al. (2017) developed isogeometric 

analysis to assess the effect of CNT orientation on the static 

and vibration response of CNT-reinforced skew composite 

plates. An analytical investigation of dynamic instability of 

FG skew plates under periodic axial compression was 

carried out by Kumar et al. (2017). 

The extensive literature review suggests that much work 

has been carried out in assessing the structural behavior of 

multilayered and FG rectangular MEE plates. Further, 

literature suggests that the skew plates possess excellent 

structural characteristics over rectangular plates. To the best 

of authors’ knowledge, no attempt has been previously 

made to assess the structural characteristics of FGSMEE 

plates. Hence, in the current article, it is intended to 

evaluate the influence of geometric changes introduced in 

terms of plate skewness on the free vibration and static 

behavior of the FGSMEE plate. A finite element 

formulation is developed incorporating the transformation 

of local skew coordinates on to the global plate coordinates.  

The influence of skew angle on the natural frequencies 

of the FGSMEE plate has been effectively investigated. 

Further, the static behavior of FGSMEE plate is evaluated 

thoroughly in terms of primary and secondary structural 

parameters such as the displacements, electric potential, 

magnetic potential, stresses, electric displacement, and 

magnetic induction. In addition, the influence of material 

gradient index is also studied. Further, the effect of 

boundary conditions, thickness ratio, and aspect ratio on the 

structural behavior of the FGSMEE plates is thoroughly 

investigated. 

 

 

2. Problem description and governing equation 
 

A schematic diagram of an FGSMEE plate with a 

Cartesian coordinate system attached to the corner of the 

plate is shown in Fig. 1(a). The length, the width and the 

total thickness of the plate are a, b and h, respectively. The 

skew angle of the FGSMEE plate is α. Fig. 1(b) illustrates 

the top view of the FGSMEE plate. The two opposite 

boundaries are lines y = 0 and y = b cos 𝛼, and the two 

opposite skewed edges are defined by the lines x = y tan 𝛼 

and x = a + y tan 𝛼. The material properties of the FGSMEE 

plate are assumed to vary across the thickness. The bottom 

surface of the plate is piezoelectric (BaTiO3) and the top 

surface being magnetostrictive (CoFe2O4). The 

displacement components u, v and w along x-, y-, and z-

direction at any point in the FGSMEE plate can be 

represented by 

0

0

2

0

x

y

z z

u(x, y, z, t)  =  u ( x, y, t ) z  θ ( x, y, t )

 v(x, y, z, t)  =  v ( x, y, t ) z  θ ( x, y, t )                              

 w(x, y, z, t)  =  w ( x, y, t ) z θ ( x, y, t ) z ( x, y, t )





 

 (1) 

where u0 and v0 are the translational displacements at any 

point on the mid-plane of the plate along x- and y- 

directions while w0 is the transverse displacement along z-

direction at any point in the FGSMEE plate. θx denote the 

generalized rotation of the normal to the middle plane of the 

FGSMEE plate about the y-axis while θy denote the 

generalized rotation of the normal to the middle plane of the 

FGSMEE plate about the x-axis. θz and z  are the 

generalized rotational displacements for the FGSMEE plate 

with respect to the thickness coordinate.  
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For the ease of computation, rotational and translational 

displacements are considered separately as follows 

   0 0 0

T

t
d   u  v  w ,  

T

r x y z z
d θ  θ  θ       (2) 

The selective integration rule is utilized to facilitate the 

computation of elemental stiffness matrices linked with the 

transverse shear deformation. This is achieved by separating 

the state of strain at any point in the plate by in-plane and 

transverse normal strain vector  b
  and the transverse 

shear strain vector  s  as follows 

 
T

b x y z xy           ,  
T

s xz yz        (3) 

where, x , y  and z  represent the normal strains along 

x-, y- and z-directions, respectively; 
xy

  represents the in-

plane shear strain, 
xz

  and yz  are the transverse or out 

of plane shear strains. Making use of the displacement 

fields given in Eq. (1) and from the linear strain-

displacement relations, the strain vectors  b
  and  s  

defining the state of inplane, transverse normal and 

transverse shear strain at any point in the FGSMEE plate 

can be expressed as 

      b bt 1 br
Z    ,       s st 2 sr

Z     (4) 

wherein  bt
  and  st

 are the strain vectors 

corresponding to translation-bending and translation-

rotation;  br
 and  sr

  are the strain vectors 

corresponding to rotational-bending and rotational-shear; 
the transformation matrices [Z1] and [Z2] are expressed as 

 

 

 

 

0 0 0 0

0 0 0 0

0 0 0 1 2

0 0 0 0

1

z

z
Z =

z

z

 
 
 
 
 
 

, 

 
2

2

1 0 0 0

0 1 0 0
2

z z
Z =

z z

 
 
 

 

 

The generalized strain vectors appearing in Eq. (4) are 

given by 

0 0 0 0{ } 0

T

bt

u v u v
      

x y y x


    
  

    
, 

0 0{ }

T

st

w w
 

x y


  
  

  
, 

{ }

T

y yx x

br z z
      θ   

x y y x

  
 

   
  

    
 and 

 
T

z z z z

sr x y
    

x y x y

   
  

    
  

    
 

 

Analogous to the strain vectors given in Eq. (3), the 

state of stress at any point in the FGSMEE plate can be 

written as follows 

 
T

b x y xy z
σ  σ   σ     σ    ,  

T

s xz yz
σ          (5) 

in which, 
x

σ , 
y

σ  and 
z

σ  are the normal stresses along x-

, y- and z-directions, respectively; 
xy

  is the in-plane shear 

stress; 
xz

  and 
yz

  are the transverse shear stresses along 

 

 

(a) (b) 

Fig. 1 Schematic representation of (a) Functionally graded skew MEE plate. (b) Top view of FGSMEE plate 
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xz- and yz- directions, respectively. Considering the effect 

of coupled fields, the constitutive equations for the FGS 

MEE plate can be expressed as follows 

  [ ( )]{ } {e ( )} {q ( )}
b b b b z b z

C z z E z H    , 

{ } [ ( )]{ }
s s s

σ C z   
(6a) 

 

33 33
{ ( )} { } ( ) ( )T

z b b z z
D e z z E d z H     (6b) 

 

33 33
{ ( )} { } ( ) ( )T

z b b z z
B q z d z E z H     (6c) 

where,  ( )
b

C z  and  ( )
s

C z  are the FG material 

coefficient matrices given as 

 

11 12 13 16

12 22 23 26

13 23 33 36

16 26 36 66

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

b

C z C z C z C z

C z C z C z C z
C z

C z C z C z C z

C z C z C z C z

 
 
 
 
 
 

  55 45

45 44

( ) ( )
( )

( ) ( )
s

C z C z
C z

C z C z

 
  
 

 

(7) 

while, 
33

( )z  and 
33

( )z  are the dielectric constant and 

the magnetic permeability constant, respectively; 
33

( )d z  is 

the electromagnetic coefficient. The electric displacement, 

the electric field, the magnetic induction and the magnetic 

field along the z-direction are represented by Dz, Ez, Bz and 

Hz, respectively. The electric coefficient matrix { ( )}
b

e z  

and the magnetic coefficient matrix  ( )
b

q z  are given by 

31

32

33

36

( )

( )
{ ( )}

( )

( )

b

e z

e z
e z

e z

e z

 
 
 

  
 
 
 

, 

31

32

33

36

( )

( )
{ ( )}

( )

( )

b

q z

q z
q z

q z

q z

 
 
 

  
 
 
 

 (8) 

The material properties are graded along the thickness 

direction of the plate by implementing the volume fraction 

power law distribution. The present study considers smooth 

and continuous variation of the constituent materials 

governed by power law gradient index. A simple power law 

for a functionally graded material can be assumed as 

(Kattimani and Ray 2015) 

1

2

η

z
V=

h

    
    

    
  

where, h is the thickness of the plate, z the thickness 

coordinate (0 ≤ z ≤ h), and η is the power law gradient index.  

According to the definition of the volume fraction and 

rule of mixtures (Bhangale and Ganesan 2006), the various 

effective material properties can be written as follows 

( )   ( -  )fg F B F
C z C C C V  , 

( )   ( -  )
fg F B F

z V     ,  
(9) 

( )   ( -  )fg F B F
e z e e e V  , ( )   ( -  )

fg F B F
q z q q q V   

fg
( ) = + ( - )

F B F
z V    , ( )   ( -  )

fg F B F
z V      

where, ( )
fg

z corresponds to the functionally graded 

material density. The subscript “fg” and the overlines stand 

for the effective material properties obtained by the above 

equations for a particular power law gradient index η. For 

the sake of brevity, the variation of functionally graded 

material properties in accordance with the variation in the 

power law gradient index is represented for elastic constant 

C11 alone for the sake of brevity in Fig.2. 

Employing the principle of virtual work (Kattimani and 

Ray 2015), the governing equations for the FGSMEE plate 

is established as 

   

 

{ } { } { } { }

( )

0

T T

b b s s

T

t t z z

T el

z z t t

A

σ d σ d

d z d d E D d

H B d d  F   dA

 

 



     

    

  








 




  

 

 

 

 (10) 

where,   indicates the volume of the plate; A
el
 

corresponds to the elemental surface area of the plate; 
t

F  

is the applied force with sinusoidal distribution on the top 

surface area A
el 

(Lage et al. 2004); ρ(z) denotes the mass 

density variation through the thickness. 
z

E  and 
z

D  are 

the electric fields and the electric displacements, 

respectively, while Hz and Bz are the magnetic fields and 

magnetic induction, respectively. The transverse electric 

field (Ez) related to the electric potential and the transverse 

magnetic field (Hz) is related to the magnetic potential in 

accordance with Maxwell’s equation as follows (Kattimani 

and Ray 2015) 

z
E

z


 


 and 

z
H

z


 


 (11a) 

 

 

 

Fig. 2 Variation of C11 for different gradient index values η 
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where,   and   are the electric and magnetic potential. 

It is noteworthy to mention that the thickness of FGSMEE 

plate is very small and hence, the variation of electric 

potential and magnetic potential functions can be assumed to 

be linear across the plate thickness.  

Eq. (11(a)) can be rewritten as 

 z
E

z



 


 and  z

H
z



 


     (11b) 

 

 

3. Finite element formulation 
 

The FGSMEE plate is discretized using eight noded iso-

parametric elements. Each node of the quadrilateral element 

has nine degree of freedom comprising of three translational 

DOF, three rotational DOF, one higher order rotation, one 

electrical, and one magnetic degree of freedom. In 

accordance with Eq. (3), the generalized displacement 

vectors  ti
d  and  ri

d  associated with the i
th

 node 

(where, i = 1, 2, 3, . . ., 8) of an element can be expressed as 

   
T

ti 0i 0i 0i
d   u  v  w  and  

T

ri xi yi zi zi
d θ  θ  θ        (12) 

At any point within the element, the generalized 

displacement vectors  td  and  r
d , the magnetic 

potential vector { }  and the electric potential vector { }  

can be expressed in terms of nodal generalized 

displacement vectors { }el

t
d  and { }el

r
d , the nodal 

magnetic potential vector  el  and the nodal electric 

potential vector  el , respectively, as follows 

    el

t t t
d N d ,     el

r r r
d N d , 

   el= N


    and    el= N


       
(13) 

in which 

       
T

T T T
el el el el

t t1 t2 t8
d d  d . . . d 

 
, 

       
T

T T T
el el el el

r r1 r2 r8d d  d . . . d 
  

, 

   1 2 8

Tel        . . .    , 

   1 2 8

Tel      . . .    , 

   
T

t t1 t2 t8
N N  N . . . N ,    

T

r r1 r2 r8
N N  N . . . N , 

2 8

T

1
N N  N . . . N

   
       ,

2

T

1 8
N N  N . . . N

   
        

ti i t ri i r
N n I , N n I   

(14) 

where  t
N ,  r

N , N


    and N


    corresponds to the 

shape function matrices, respectively and their expanded 

form is provided in Appendix. It and Ir are the identity 

matrices, respectively. in  is the shape function  of 

natural coordinate associated with the i
th

 node. 
i
  (where, 

i = 1, 2, 3, . . ., 8) are the electric potential degrees of 

freedom and 
i

  are the magnetic potential degrees of 

freedom. Considering   and   from Eq. (13) and 

substituting in Eq. (11(b)), the transverse electric field (
z

E ) 

and the transverse magnetic field (
z

H ) are given by 

 el

z
E b


     and   el

z
H b


      (15) 

where 

i
N

b
z





 
       

, 
i

N
b

z





 
       

  

Now, using Eqs. (4) and (14), the generalized strain 

vectors at any point within the element can be expressed in 

0.terms of the nodal generalized strain vectors as follows 

    el

b t tb t
b d   ,     el

b r rb r
b d   

    el

ts ts t
b d   ,     el

rs rs r
b d   

(16) 

in which,  tb
b ,  rb

b ,  ts
b  and  rs

b  are the nodal 

strain-displacement matrices and are provided in Appendix. 

Substituting Eqs. (4), (6), (14), (15) and (16) into Eq. (10) 

and simplifying, we obtain the elemental equations of 

motion for the FGSMEE plate as follows 

       

   

el el el el el el el el

t tt t tr r t

el el el

t t

M d k d k d k

k F









               

   

 (17) 

 

        0
T

el el el el el el el el

tr t rr r r r
k d k d k k

 
                   (18) 

 

      0
T T

el el el el el el

t t r r
k d k d k
  

              (19) 

 

      0
T T

el el el el el el

t t r r
k d k d k
  

              (20) 

The matrices and the vectors appearing in Eqs. (17) - (20) 

are the elemental mass matrix  elM   , the elemental elastic 

stiffness matrices el

tt
k   , el

tr
k    and el

rr
k   , the elemental 

electro-elastic coupling stiffness matrices and the elemental 

magneto-elastic coupling stiffness matrices are 
el

t
k


   , 

el

r
k


    and 

el

t
k


   , 

el

r
k


   , respectively;  el

t
F  is the 

elemental mechanical load vector; 
elk


    and 
elk


    are 

the elemental electric and elemental magnetic stiffness 

matrices, respectively. The stiffness matrices appearing in 

Eqs. (17) - (20) can be broadly classified correspondingly 

into mechanical, electrical, mechanical and couplings in 

Table 1. 
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The elemental matrices and vectors are given by 

el el el

tt tb ts
k k k            , el el el

tr trb trs
k k k            , 

el el el

rr rrb rrs
k k k            , 

el el T

t t
k k

 
       , 

el el T

t t
k k

 
       ,

el el T

r r
k k

 
       ,

el el T

r r
k k

 
        

 

where 

    
0 0

a bel el
Tel

tb tb tb tb
k b D b dx dy      , 

    
0 0

a bel el
Tel

ts ts ts ts
k b D b dx dy     

    
0 0

a bel el
Tel

trb tb trb rb
k b D b dx dy      , 

    
0 0

a bel el
Tel

trs ts trs rs
k b D b dx dy       

    
0 0

a bel el
Tel

rrb rb rrb rb
k b D b dx dy      , 

    
0 0

a bel el
Tel

rrs rs rrs rs
k b D b dx dy       

 
0 0

a bel el
Tel

t tb t
k b D b dx dy

  
            , 

 
0 0

a bel el
Tel

r rb r
k b D b dx dy

  
            , 

 
0 0

a bel el
Tel

t tb t
k b D b dx dy
  

            , 

 
0 0

a bel el
Tel

r rb r
k b D b dx dy

  
            , 

0 0

a bel el
T

elk b D b dx dy
   

                , 

0 0

a bel el
T

elk b D b dx dy
   

                 

(21) 

where, a
el
 and b

el
 corresponds to the length and width of the 

element under consideration.  tb
D ,  ts

D ,  trb
D ,  trs

D , 

 rrb
D ,  rrs

D , 
t

D


   , 
r

D


   , 
t

D


   , 
r

D


   , D


    and 

D


    are the rigidity matrices appearing in Eq. (21) are 

given as follows 

   
2

2

h/

tb b

h/

D C dz



  ,    
2

2

h/

ts s

h/

D C dz



  ,  

    
2

1

2

h/

trb b

h/

D C Z dz



  ,      
2

2

2

h/

trs s

h/

D C Z dz



    

      
2

1 1

2

h/

T

rrb b

h/

D Z C Z dz



  , 

(22) 

      
2

2 2

2

h/

T

rrs s

h/

D Z C Z dz



 
 

 
/2

/2

1
( )

h

t b

h

D e z dz
h





     ,  
/2

/2

1
( )

h

t b

h

D q z dz
h





     , 

   
/2

1

/2

1
( )

h

T

r b

h

D z e z dz
h





      

   
2

1

2

1
h/

T

r b

h/

D z q ( z ) dz
h





    
 

33
1 0( )

0 1

z
D

h


  
     

 
, 

33

1
( )D z

h


     

 

3.1 Skew boundary transformation 
 

In case of FG skew MEE plates, the supported adjacent 

edges of the boundary element are not parallel to the global 

axes (x, y, z). Hence, in order to specify the boundary 

conditions at the skew edges of the plate, the displacements 

u’, v’ and w’
 
at any point on the skew edges of the local 

coordinates must be restrained along the x’-, y’- and z
’
-

directions. The boundary conditions can be specified 

conveniently by transforming the element matrices 

corresponding to the global axis to the local axis along the 

edges. A simple transformation relation can be expressed 

between the local degrees of freedom and the global 

degrees of freedom for the generalized displacement vectors 

of a point lying on the skew edges of the plate as follows 

    't t t
d L d ,     'r r r

d L d  

  0 0 0

T
' ' ' '

t
d   u  v  w      ,  

T
' ' ' ' '

r x y z z
d θ  θ  θ       

(23) 

where,  td ,  r
d  and  'td ,  'rd  are the displacements 

on the global and the local edge coordinate system, 

respectively.  t
L  and  r

L  are the transformation 

matrices for a node on the skew boundary and is given by 

 
0

0

0 0 1

t

c s

L s c

 
 

 
 
  

,  

0 0

0 0

0 0 1 0

0 0 0 1

r

c s

s c
L

 
 

 
 
 
 

 (24) 

 

Table 1 Classification of stiffness matrix 

Stiffness matrix Coupling 

el

tt
k   , 

el

tr
k   , 

el

rr
k    Mechanical 

elk


    Electric 

elk


    Magnetic 

el

t
k


   , 

el

r
k


    Electro-elastic coupling 

el

t
k


   , 
el

r
k


    Magneto-elastic coupling 
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in which, c  cos  and s  sin , the skew angle of 

the plate is α. It may be noted that for the nodes which does 

not lie on the skew edges, the transformation from global 

coordinates to the local coordinates is not required. The 

transformation matrices in such cases are the diagonal 

matrices in which the values of the principle diagonal 

elements are unity. Thus, considering Eq. (21), the 

elemental stiffness matrices of the element containing the 

nodes laying on the skew edges are given as follows 

   1 1

el T el
tt tt

k T k T       
,    1 2

el T el
tr tr

k T k T         

   2 2

el T el
rr rr

k T k T       
,    1 1

Tel elM T M T        

(25) 

where, the transformation matrices [T1] and [T2] are given 

by 

 

 
 

 
 

 
 

 
 

1

t

t

t

t

t

t

t

t

L o o o o o o o

o L o o o o o o

o o L o o o o o

o o o L o o o o
T

o o o o L o o o

o o o o o L o o

o o o o o o L o

o o o o o o o L

 
 
 
 
 
 

  
 
 
 
 
 
 

 , 

 

 
 

 
 

 
 

 
 

2

r

r

r

r

r

r

r

r

L o o o o o o o

o L o o o o o o

o o L o o o o o

o o o L o o o o
T

o o o o L o o o

o o o o o L o o

o o o o o o L o

o o o o o o o L

 
 
 
 
 
 

  
 
 
 
 
 
 

 

(26) 

in which, o and o are the (3×3) and (5×5) null matrices, 

respectively and the number of  t
L and  r

L  matrices are 

equal to the number of nodes in the element. The elemental 

equations of motion are assembled to obtain the global 

equations of motion of the FGSMEE plate as follows 

          

 

g g g g

t tt t tr r t t

t

M d k d k d k k

F

 
                 


 (27) 

 

         0
T

g g g g

tr t rr r r r
k d k d k k

 
               (28) 

 

      0
T T

g g g

t t r r
k d k d k
  

              (29) 

 

      0
T T

g g g

t t r r
k d k d k
  

              (30) 

where,  M  is the global mass matrix; g

tt
k   , g

tr
k    and 

g

rr
k    are the global elastic stiffness matrices;  

g

t
k


    and 

g

r
k


    are the global electro-elastic coupling stiffness 

matrices; 
g

t
k


    and 
g

r
k


    are the global magneto-

elastic coupling stiffness matrices;  tF  is the global 

mechanical load vector; 
gk


    and 
gk


    are the global 

electric and the global magnetic stiffness matrices, 

respectively. Solving the global equations of motion (Eqs. 

(28)-(30)) to obtain global generalized displacement vector 

 td  and  r
d  by condensing the global degrees of 

freedom for    and    in terms of  r
d  as follows 

     
1 1T T

g g g g

t t r r
k k d k k d
   


 

            , 

     
1 1T T

g g g g

t t r r
k k d k k d
   


 

                , 

       
1 T

r 3 2 t
d K K d



   

(31) 

Now, substituting Eq. (31) in Eq. (27) and upon 

simplification, we obtain the global equations of motion in 

terms of the global translational degrees of freedom as 

follows 

       t t t
M d K d F   

and          1 T

1 2 3 2
K K K K K



   
(32) 

where, the global assembled matrices are given as follows 

 
1 1T T

g g g g g g g

1 tt t t t t
K k k k k k k k

     

 

                             

 
1 1T T

g g g g g g g

2 tr t r t r
K k k k k k k k

     

 

                             

 
1 1T T

g g g g g g g

3 rr r r r r
K k k k k k k k

     

 

                             

 

 

 

4. Results and discussion 
 

This section involves the validation of present FE 

formulation and to ascertain new results corresponding to 

the free vibration and static behavior of FGSMEE plate. 

The material properties used in the present analysis are 

given in Table 2 (Kattimani and Ray 2015). The non- 

homogeneous transversely isotropic FGSMEE plate is 

functionally graded along the thickness by implementing 

the power law (Kattimani and Ray 2015). For all the values 

of power law index (except for pure magnetostrictive and 

pure piezoelectric plate i.e., η = 0 and η = ∞) different 

variation of material properties in between the bottom 

piezoelectric and the top magnetostrictive plate is achieved. 

The value of the shear correction factor is used as 5/6. 

Three point Gaussian integration rule are considered for 

computing the element matrices corresponding to bending 

deformation while two points of that are used for computing 

the element matrices corresponding to transverse shear 

deformation. The boundary conditions involved in the 

present analysis are given as follows: 

(31) 
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(a) Simply supported edges 

at x = y tanα, x = a + y tanα : 

0 0= = = = = = 01 1 1 1 1 1

y zv w      

at y = 0, y = b cosα: 

(a) 0 0= = = = = 0zu w     

(33) 

(b) Clamped edges 

at x = y tanα, x = a + y tanα: 

0 0 0
= = = = = = = = 01 1 1 1 1 1 1 1

x y z
u v w       

at y = 0, y = b cosα: 

0 0 0 x y
= = = = = = = = 0

z
u v w       

(34) 

(c) Free edges 

at x = y tanα, x = a + y tanα: 

0 0 0
= = = = = = = 01 1 1 1 1 1 1 1

x y z
u v w        

at y = 0, y = b cosα: 

0 0 0 x y
= = = = = = = 0

z
u v w        

(35) 

where, 𝜙 and ψ are the electric and magnetic potential 

degrees of freedom, respectively, as specified in the 

previous section. 

 

4.1 Validation studies 
 
The correctness of the FE model proposed in the 

previous section is verified against some of the available 

studies in literature. The free vibration study of FGMEE 

plate proposed by Milazzo (2014a) is considered for the 

validation. The natural frequencies for the simply supported 

FGMEE having the material gradient index, η = 1, aspect 

ratio of b/a = 2 and thickness ratio of h/a = 0.1 and 0.2 is 

presented in Table 3. The convergence study is also 

presented in Table 3. It can be seen from the tabulated 

results that for a 20 × 20 mesh size, an excellent agreement 

is achieved with the solutions available in literature. 

 

 

Table 2 Material properties of BaTiO3 and CoFe2O4 

(Kattimani and Ray 2015) 

Material properties BaTiO3 CoFe2O4 

C11 = C22 (109 N/m2) 166 286 

C12 (109 N/m2) 77 173 

C13 = C23 (109 N/m2) 78 170.5 

C33 (109 N/m2) 162 269.5 

C44 = C55 (109 N/m2) 43 45.3 

C66 (109 N/m2) 44.5 56.5 

ρ  (kg/m3) 5300 5800 

e31 = e32  (C/m2) - 4.4 - 

e33 (C/m2) 18.6 - 

ξ11 = ξ22 (10-9 C/Nm2) 11.2 0.08 

11 = 22 (10-6  Ns2/C2) 5 - 590 

33 (10-6  Ns2/C2) 10 157 

q31 = q32 (N/Am) - 180.3 

q33 (N/Am) - 699.7 

 

Therefore, for all the subsequent analysis, a mesh size of 20 

× 20 is considered. It may be noted that to the best of 

authors' knowledge, the study related to skew MEE plates 

are not available in literature. Hence, the effectiveness of 

the FE formulation to assess the influence of skew angle on 

the plate characteristics is evaluated for the laminated 

composite plate by degenerating the coupling co-efficients 

and considering only the elastic co-efficients. The results 

are presented in Tables 4 and 5 for the simply supported 

laminated composite plate with width to thickness ratio of 

a/h =10 and the aspect ratio of b/a = 1. The orthotropic 

material properties are considered similar to Garg et al. 

(2006) and Kanasogi and Ray (2013) given as follows: 

E1/E2 = 40, E2 = E3, G12 = 0.6E2, G13 =G23= 0.5E2, υ12 = υ13 

= υ23 = 0.25. The tabulated results display an excellent 

agreement with the results found in the literature (Garg et al. 

2006, Kanasogi and Ray 2013). Hence, the correctness of 

the present FE formulation is assessed and further extended 

the procedure to evaluate the structural characteristics of 

FGSMEE plate. 

 

4.2 Free vibration of FGSMEE plate 
 

In this section, the free vibration characteristic of 

FGSMEE plate is analysed. The material property 

distribution is governed by the power law. Further, the 

FGSMEE plate having an aspect ratio of b/a = 1 and 

thickness ratio of a/h = 100 is evaluated for various skew 

angles i.e., α = 0
0
, 15

0
, 30

0
 and 45

0
. The effect of skew 

angle (α) on the natural frequency corresponding to a 

different gradient index (i.e., η = 0, 0.2, 0.5, 1, 2, 5 and 100) 

is presented in Table 6 for simply supported and clamped 

FGSMEE plate. It can be observed that irrespective of η, the 

natural frequencies of the FGSMEE plate increase with the 

increase in skew angle. It can be attributed to the fact that 

the stiffness of the skew plate increase with the decrease in 

the plate area and the perpendicular distance between non-

skew edges causing frequency enrichment. It can also be 

noticed that the increase in gradient index (η) values 

effectively decrease the natural frequencies of the FGSMEE 

plate. The increase in gradient index values increases the 

BaTiO3 concentration against CoFe2O4 concentration in the 

FGSMEE plate. The natural frequency decreases with the 

increase in gradient index values is due to the lower 

piezoelectric elastic properties than the magnetostrictive 

properties. It is evident from Table 6 that the clamped 

FGSMEE plate yields higher natural frequency over the 

simply supported plate. This trend is perhaps due to the 

increase in local flexural rigidity of the FGSMEE plate as 

the edge support stiffens. 

The effect of thickness ratio (a/h) on the natural 

frequencies of simply supported FGSMEE plate is 

encapsulated in Table 7 for different material gradient index 

and its influence on free vibration characteristics is clearly 

evident. The aspect ratio is considered b/a = 1 to assess the 

influence of different thickness ratio. The skew angle 

largely affects thin plates over thick and moderately thick 

plates. The thin plates display higher natural frequency with 

the increase in skew angle over thick and moderately thick 

plates.   
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Table 8 presents the effect of aspect ratio on the natural 

frequency of the simply supported FGSMEE plate. The 

influence of aspect ratio is studied for a constant plate 

thickness ratio of a/h = 100. It can be observed from the 

presented results that the increase in aspect ratio leads the 

decrease in natural frequency of FGSMEE plate irrespective 

of the gradient index and skew angle. Since a and h are 

constants in non-dimensional frequency parameter, the 

increase in b will certainly decrease the frequency. 

 

 

 

 

 

 

 

 

4.3 Static analysis of FGSMEE plates 
 
This section addresses the static response characteristics 

of the FGSMEE plate for various geometrical conditions 

and material gradient index. Eq. (36) represents the 

sinusoidal distributed load with an applied force F0 on the 

top surface of the FGSMEE plate to study the static 

behaviour (Lage et al. 2004). The geometrical parameters 

are considered as follows: simply supported boundary 

condition; a/h = 100; b/a = 1, unless otherwise stated. The 

effect of skew angle on the primary and secondary 

Table 3 Convergence and validation studies of normalized natural frequencies of FG-MEE plate 

h/a  
Modes 

1 2 3 4 5 6 7 8 9 

 

 

 

 

 

0.2 

Present (44) 6.798 7.923 11.283 13.595 13.642 15.202 18.982 18.693 19.326 

Present (88) 6.638 7.894 11.213 13.487 13.608 15.183 18.888 18.601 19.295 

Present (1212) 6.623 7.872 11.208 13.462 13.592 15.172 18.854 18.592 19.283 

Present (1616) 6.619 7.863 11.203 13.458 13.588 15.167 18.849 18.583 19.278 

Present (2020) 6.618 7.860 11.198 13.455 13.583 15.161 18.843 18.579 19.273 

Milazzo (2014a) 6.735 8.223 11.882 13.463 15.049 16.951 19.027 20.178 20.415 

 

 

 

 

 

0.1 

Present (44) 9.720 13.598 14.909 23.158 27.195 27.290 28.106 31.411 35.006 

Present (88) 9.663 13.421 14.821 22.986 26.943 27.102 27.994 31.387 34.885 

Present (1212) 9.652 13.417 14.811 22.963 26.932 27.082 27.979 31.372 34.869 

Present (1616) 9.639 13.413 14.807 22.959 26.928 27.078 27.971 31.367 34.862 

Present (2020) 9.637 13.408 14.801 22.952 26.921 27.069 27.967 31.361 34.858 

Milazzo (2014a) 9.584 12.852 14.733 22.577 25.701 28.339 28.734 32.391 36.341 

Table 4 Non-dimensional frequency parameter 
2 2 1/2

2
λ  ω b / π h (ρ/E )  for the clamped-clamped laminated 

composite plate (a/h = 10) 

Skew  

angle 

(α) 

Source 

 

Antisymmetric cross-ply 

(00/900/00/900) 

Antisymmetric angle-ply 

(450/-450/450/-450) 

Symmetric cross-ply 

(900/00/900/00/900) 

 Modes   Modes   Modes  

1 2 3 1 2 3 1 2 3 

 

00 

 

 

Ref. 1 2.2990 3.7880 3.7880 2.2119 3.7339 3.7339 2.3687 3.5399 4.1122 

Ref. 2 2.3315 3.6531 3.6545 2.2433 3.6000 3.6012 2.3201 3.4769 4.4102 

Present 2.2990 3.5913 3.8695 2.1767 3.5746 3.5139 2.3400 3.3655 4.2382 

 

150 

Ref. 1 2.3809 3.7516 4.0785 2.3099 3.6997 4.0438 2.4663 3.6255 4.3418 

Ref. 2 2.3741 3.5856 3.8401 2.3049 3.5346 3.8092 2.3699 3.4821 4.4049 

Present 2.3992 3.5560 4.0841 2.2344 3.5111 3.9290 2.3160 3.4637 4.2346 

 

300 

 

 

Ref. 1 2.6666 3.9851 4.7227 2.6325 3.9549 5.2107 2.7921 3.9557 5.0220 

Ref. 2 2.5240 4.1943 4.5373 2.4945 3.6113 5.0932 2.5366 3.5696 4.4734 

Present 2.4903 3.8967 4.4609 2.4722 3.5807 5.0199 2.4896 3.6363 4.7949 

 

450 

Ref. 1 3.3015 4.6290 5.8423 3.3015 4.6290 5.8423 3.4739 4.7129 5.8789 

Ref. 2 2.8377 4.7614 5.6620 2.8377 4.7614 5.5162 2.8665 4.7074 5.4562 

Present 2.7948 4.5102 5.6270 2.8348 4.5102 5.4970 2.9439 4.6545 5.4362 

* Re Ref. 1:  Kanasogi and Ray 2013; Ref. 2:  Garg et al. 2006: 
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Table 5  Non-dimensional frequency parameter 
2 2 1/2

2
λ  ω b / π h (ρ/E )  for the simply supported laminated 

composite plate (a/h = 10) 

Skew  

angle 

(α) 

Source 

 

Antisymmetric cross-ply 

(00/900/00/900) 

Antisymmetric angle-ply 

(450/-450/450/-450) 

Symmetric cross-ply 

(900/00/900/00/900) 

 Modes   Modes   Modes  

1 2 3 1 2 3 1 2 3 

 

00 

 

 

Ref. 1 1.4829 2.4656 3.2522 1.7974 3.3351 3.3351 1.5699 2.8917 3.7325 

Ref. 2 1.5076 2.4380 3.2254 1.8493 3.3359 3.3370 1.5635 2.4383 3.5033 

Present 1.4836 2.4392 3.1328 1.8111 3.2351 3.4889 1.5314 2.4392 3.6614 

 

150 

Ref. 1 1.5741 2.5351 3.0270 1.8313 3.2490 3.6724 1.6874 3.0458 3.9600 

Ref. 2 1.5796 2.5775 2.9892 1.8675 3.2075 3.5810 1.6571 2.9840 3.6505 

Present 1.5653 2.5961 3.0730 1.8219 3.1232 3.4560 1.6261 2.8245 3.5161 

 

300 

 

 

Ref. 1 1.8871 2.9372 3.4489 2.0270 3.4431 4.2361 2.0840 3.4023 4.6997 

Ref. 2 1.8226 2.9585 3.2357 1.9894 3.2365 4.3208 1.9596 3.1690 4.6796 

Present 1.8354 3.0573 3.4428 1.9409 3.2648 4.1836 1.9262 3.1844 4.4912 

 

450 

Ref. 1 2.5609 3.3126 4.0617 2.5609 3.3131 4.2772 2.8925 4.1906 5.4149 

Ref. 2 2.2996 3.4773 4.4889 2.3194 3.4870 4.5009 2.4811 4.4875 5.3289 

Present 2.3263 3.4126 4.3756 2.2676 3.4056 4.3425 2.4260 4.1908 5.2113 

* Re Ref. 1: Kanasogi and Ray 2013;  Ref. 2: Garg et al. 2006 

  
(a) (b) 

  
(c) (d) 

 
(e) 

Fig. 3 Through thickness variation of displacement u for different skew angles at gradient index values (a) η = 0, (b) η = 

0.2, (c) η = 0.5, (d) η = 2 and (e) η = 5 
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parameters is thoroughly investigated. The secondary 

parameters such as stresses, electric displacement, and 

magnetic induction are derived from the primary parameters 

such as displacement and potentials (electric and magnetic). 

Further, the effects of gradient index, boundary condition, 

thickness ratio and aspect ratio on the static behavior of 

FGSMEE plate are evaluated. 

t 0

x y
F F sin sin

a b

    
    

   
 (36) 

The effect of skew angle on the displacement u across 

the thickness is shown in Figs. 3(a)-3(e) for the various 

gradient indexes.  It is evident from the figures that for all  

 

 

 

 

the power law index values, u decreases with increase in 

skew angle. This is due to the fact that the stiffness of the 

FGSMEE plate increases with increase in skew angle. It can 

also be observed from these figures that for the gradient 

index η = 0 (i.e., pure magnetostrictive), the displacement is 

lower and steadily increases with the increase in gradient-

index value. This may be attributed to the fact that with the 

increase in power law indeed (η), the volume fraction of 

BaTiO3 increases. Since the elastic properties of BaTiO3 are 

lower than CoFe2O4, the displacements produced are higher 

for higher value of η.  Fig. 3 depicts the effect of skew 

angle on the displacement for varios gradient index values. 

It may be seen from Fig. 3 that for all the skew angles, the 

displacement quantity u across the thickness direction  

  
(a) (b) 

  
(c) (d) 

 
(e) 

Fig. 4 Through thickness variation of displacement v for different skew angles at gradient index values (a) η = 0, (b) η = 

0.2, (c) η = 0.5, (d) η = 2 and (e) η = 5 
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experiences only bending. Figs. 4(a)-4(e) present the 

through-thickness behavior of the displacement quantity v 

across the z-direction. It can be observed from the Fig. 4(a) 

that for η = 0, the FGSMEE plate experiences only bending 

for all the skew angles while stretching is dominant for 

other gradient index values. The increase in gradient-index 

values witnessed an increase in stretching and decrease in 

bending of the plate. This phenomenon can be attributed to 

the piezoelectric material possesing a tendency to increase 

the stiffness of the plate in the polling direction by induced 

electric field due to the strains developed (Ray et al. 1992, 

Bhangale and Ganesan 2006). Hence, the plate with low 

BaTiO3 concentration experiences lower induced electric 

field resulting in bending only. The increase in BaTiO3 

concentration causes the increase in induced electric field in  

 

 

the polling direction i.e., z-direction, there by reduces the 

bending in the thickness direction and increases stretching 

along in-plane direction. 

The effect of skew angle on electric and magnetic 

potentials is investigated. The slope in the z-direction for 

electric potential decreases with the increase in skew angle 

as observed from Figs. 5(a)-5(e). It can also be seen that the 

electric potential ϕ increase with the increase in η. This is 

due to piezoelectric enrichment of FGSMEE plate due to 

increase in the η. Similarly, the effect of skew angle on the 

magnetic potential of FGSMEE plate for various gradient 

index η is shown in Figs. 6(a)-6(e). It is noticed from these 

figures that the magnetic potential vary linearly symmetric 

across the thickness (negative potential at the bottom and 

positive at the top). It can also be noticed that the magnetic  

  
(a) (b) 

  
(c) (d) 

 
(e) 

Fig. 5 Through thickness variation of electric potential ϕz for different skew angles at gradient index values (a) η = 0, (b) η 

= 0.2, (c) η = 0.5, (d) η = 2 and (e) η = 5 
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potential decreases with the increase in skew angle, 

irrespective of gradient index. Further, the increase in 

gradient-index values had minimal effect on magnetic 

potential. 

The effect of skew angle (α) on the normal stress (σxx) 

for different gradient index is given in Figs. 7(a)-7(e). The 

normal stress (σxx) for FGSMEE plate with zero skew angle 

(α = 0
0
) and gradient index η = 0, linearly vary across the 

thickness. The bottom half of the plate experiences 

compressive stress while the top half experiences tensile 

stress as shown in Fig. 7(a). For η > 0, the through-

thickness variation of σxx appears to be non-linear whereas, 

at η = 0, the behavior is linear.  For FGSMEE plate with 

the skew angle α = 15
0
, 30

0
, and 45

0
, irrespective of  

 

 

 

gradient index η, the lower half of the plate experience  

tensile stress while the upper half experience compressive 

stress. Further, for FGSMEE plate with η = 0, the normal 

stress (σxx) increases for α = 15
0
, 30

0
 while for α = 45

0
, a 

decrease in the normal stress (σxx) is seen.
 
Similar trends can 

be observed for other gradient index values. The normal 

stress (σyy) can be seen in Figs. 8(a)-8(e) having the similar 

behavior of σxx for all the considered cases. The effect of 

skew angle on the in-plane shear stress (τxy) of FGSMEE 

plate is reported in Figs. 9(a)-9(e) corresponding to various 

η values. The in-plane shear stress (τxy) increases with the 

increase in skew angle for all the considered gradient index 

values. 

 

  
(a) (b) 

  
(c) (d) 

 
(e) 

Fig. 6 Through thickness variation of magnetic potential ψz for different skew angles at gradient index values (a) η = 0, (b) 

η = 0.2, (c) η = 0.5, (d) η = 2 and (e) η = 5 
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Figs. 10(a)-10(e) present the transverse shear stress (τxz) 

distribution across the thickness of various gradient index 

values. It can be clearly seen from the Fig. 10 that the 

transverse shear stress decreases with the increase in skew 

angle. 

Through the thickness variation of magnetic induction 

(Bz) and electric displacement (Dz) for different skew angles 

and gradient index values is presented in Figs. 11(a)-11(e) 

and 12(a)-12(e), respectively. For the case of a pure 

magnetostrictive plate, as seen in Fig 11(a), the magnetic 

induction decreases with the increase in skew angle for α ≤  

 

 

 

30
0
. It can also be observed that for skew angle α ≤ 30

0
, the 

plate experiences linear variation with positive Bz at the 

bottom surface of the plate and negative at the top surface. 

However, for α = 45
0
, the FGSMEE plate exhibit negative 

Bz at the bottom half of the plate and positive at the top half 

of the plate. For certain gradient index values (i.e., η = 0.2, 

0.5, 2 and 5), the bottom surface of the FGSMEE plate 

experiences nearly zero magnetic induction Bz irrespective 

of the skew angle. 

 

 

  
(a) (b) 

  
(c) (d) 

 
(e) 

Fig. 7 Through thickness variation of normal stress σxx for different skew angles at gradient index values (a) η = 0, (b) η = 

0.2, (c) η = 0.5, (d) η = 2 and (e) η = 5 
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Table 6 Influence of skew angle on the natural frequency of FGSMEE plate 

Skew angle 

(α) Power law index  η 
Boundary 

condition 
Natural frequencies 

1 2 3 4 5 

 

 

 

 

 

00 

0 SSSS 4.561 11.782 11.848 23.655 25.466 

CCCC 10.646 22.006 22.066 33.028 36.367 

0.2 SSSS 4.357 11.292 11.327 22.850 24.462 

CCCC 10.357 21.322 21.363 31.924 35.230 

0.5 SSSS 4.240 11.010 11.029 22.376 23.882 

CCCC 10.116 20.755 20.781 31.021 34.297 

2 SSSS 4.123 10.726 10.731 21.884 23.296 

CCCC 9.748 19.894 19.900 29.673 32.891 

5 SSSS 4.053 10.555 10.558 21.604 22.941 

CCCC 9.588 19.520 19.522 29.094 32.278 

100 SSSS 3.927 10.240 10.255 21.110 22.293 

CCCC 9.190 18.549 18.574 27.616 30.705 

 

 

 

 

 

150 

0 SSSS 6.600 12.600 14.638 24.289 28.824 

CCCC 11.231 22.753 23.996 35.284 39.202 

0.2 SSSS 6.346 12.081 14.038 23.396 27.660 

CCCC 10.923 22.065 23.236 34.111 37.980 

0.5 SSSS 6.197 11.783 13.692 22.876 26.990 

CCCC 10.668 21.493 22.607 33.149 36.980 

2 SSSS 6.045 11.483 13.342 22.342 26.312 

CCCC 10.277 20.621 21.656 31.711 35.477 

5 SSSS 5.957 11.306 13.137 22.034 25.917 

CCCC 10.107 20.243 21.247 31.092 34.824 

100 SSSS 5.799 10.989 12.769 21.490 25.215 

CCCC 9.685 19.283 20.201 29.514 33.147 

300 

0 SSSS 8.805 16.015 20.886 29.138 37.879 

CCCC 13.385 26.297 29.852 43.037 48.861 

0.2 SSSS 8.424 15.376 19.994 27.979 36.326 

CCCC 13.008 25.552 28.913 41.657 47.347 

0.5 SSSS 8.203 15.009 19.480 27.308 35.424 

CCCC 12.696 24.932 28.138 40.518 46.106 

2 SSSS 7.981 14.636 18.964 26.627 34.511 

CCCC 12.220 23.984 26.967 38.801 44.242 

5 SSSS 7.851 14.417 18.659 26.231 33.979 

CCCC 12.014 23.571 26.463 38.060 43.435 

100 SSSS 7.618 14.028 18.112 25.530 33.025 

CCCC 11.500 22.532 25.177 36.168 41.370 

450 

0 SSSS 13.156 22.879 34.065 41.884 57.023 

CCCC 18.884 34.854 44.131 59.703 71.843 

0.2 SSSS 12.553 21.988 32.526 40.222 54.670 

CCCC 18.336 33.891 42.749 57.994 69.709 

0.5 SSSS 12.205 21.474 31.642 39.255 53.297 

CCCC 17.883 33.095 41.608 56.571 67.954 

2 SSSS 11.858 20.951 30.759 38.271 51.908 

CCCC 17.195 31.880 39.886 54.393 65.303 

5 SSSS 11.654 20.647 30.238 37.700 51.099 

CCCC 16.896 31.352 39.145 53.444 64.152 

100 SSSS 11.287 20.110 29.298 36.682 49.642 

CCCC 16.149 30.042 37.253 51.045 61.219 
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Further, it is seen from Figs. 11(b)-11(e) that the magnitude 

of Bz decreases with the increase in skew angle. For the case 

of a pure magnetostrictive plate as seen in Fig. 12(a), no 

influence of skew angle on the electric displacement Dz is 

observed. For rest of the gradient index values (i.e., η = 0.2, 

0.5, 2 and 5), the top surface of the FGSMEE plate 

experience zero electric displacement Dz, irrespective of 

skew angle (α). The magnitude of Dz decreases with the 

increase in α. The square (α = 0
0
) FGSMEE plate 

experiences positive Dz for all the η values while the 

increase in α leads to negative Dz for all η values. 

 

 

 

 

The effect of aspect ratio on the static behavior of FGSMEE 

plate is presented in Figs. 13(a)-13(j). The plotted results 

are obtained for the thickness ratio of a/h = 100. From the 

plots, it can be seen that aspect ratio has a significant 

influence on the primary and secondary quantities. The 

displacements u and v increases for the aspect ratio b/a = 2 

in comparison with b/a = 1. The potentials display an 

increase in the magnitude and amongst them, the influence 

on electric potential is found to be more dominant.  

 

 

  
(a) (b) 

  
(c) (d) 

 
(e) 

Fig. 8 Through thickness variation of normal stress σyy for different skew angles at gradient index values (a) η = 0, (b) η = 

0.2, (c) η = 0.5, (d) η = 2 and (e) η = 5 
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The normal stress (σxx) experiences tension at the bottom 

half and compression at the top half for the square 

FGSMEE plate while for a plate with b/a = 2, the bottom 

half experiences compression and the top half experiences 

tension. The normal stress σyy and in-plane shear stress (τxy) 

increases with the increase in the lateral dimension of the 

plate. The transverse shear stress (τxz) decreases with the 

increase in aspect ratio. The magnetic induction (Bz) 

decreases for higher aspect ratio while the higher aspect 

ratio produces a nearly constant electric displacement (Dz) 

at the bottom half of the FGSMEE plate. Figs. 14(a) -14(j)  

 

 

present the effect of geometrical parameter thickness ratio 

on primary and secondary parameters of FGSMEE plate 

subjected to a static load. It can be seen from the plots that 

the a/h ratio has considerable influence on the static 

behavior of FGSMEE plate. The effect of thickness ratio on 

static behavior is assessed for the FGSMEE plate having 

dimension b/a = 1. The primary quantities i.e., 

displacements (u and v) and potentials (electric and 

magnetic), increases with the increase in thickness ratio. 

  

 

  
(a) (b) 

  
(c) (d) 

 
(e) 

Fig. 9 Through thickness variation of normal stress σxy for different skew angles at gradient index values (a) η = 0, (b) η = 

0.2, (c) η = 0.5, (d) η = 2 and (e) η = 5 
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(a) (b) 

  
(c) (d) 

 
(e) 

Fig. 10 Through thickness variation of shear stress τxz for different skew angles at gradient index values (a) η = 0, (b) η = 

0.2, (c) η = 0.5, (d) η = 2 and (e) η = 5 
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(a) (b) 

  
(c) (d) 

 
(e) 

Fig. 11 Through thickness variation of magnetic induction Bz for different skew angles at gradient index values (a) η = 0, 

(b) η = 0.2, (c) η = 0.5, (d) η = 2 and (e) η = 5 
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(a) (b) 

  
(c) (d) 

 
(e) 

Fig. 12 Through thickness variation of electric displacement Dz for different skew angles at gradient index values (a) η = 

0, (b) η = 0.2, (c) η = 0.5, (d) η = 2 and (e) η = 5 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

  
(j) (j) 

Fig. 13 Effect of aspect ratio (b/a) on (a) u, (b) v, (c) ϕz, (d) Ψz, (e) σxx, (f) σyy, (g) σxy , (h) τxz , (i) Bz and (j) Dz 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

  
(i) (j) 

Fig. 14 Effect of thickness ratio (a/h) on (a) u, (b) v, (c) ϕz, (d) Ψz, (e) σxx, (f) σyy, (g) σxy, (h) τxz, (i) Bz and (j) Dz 
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Free vibration and static analysis of functionally graded skew magneto-electro-elastic plate 

 

 

 

The effect of boundary condition on the static response of 

FGSMEE plate is presented in Figs. 15(a)-15(d). These 

figures suggest that a considerable influence on the plotted 

parameters, i.e., ϕz, Ψz, Bz, and Dz is observed as the 

boundary restraint changes from simply supported edges to 

clamped edges. The trend is due to the increase in local 

flexural rigidity of the plate with stiffening edge support. 

 

 

5. Conclusions 
 

In this article, a finite element formulation to analyze 

the free vibration and static behavior of FGSMEE plate is 

developed and implemented. To investigate the behavior of 

the FGSMEE plate, the transformation matrix between the 

global and local degrees of freedom for the nodes lying on 

the skew edges has been successfully incorporated. Graded 

material distribution along the thickness has been achieved 

using a simple power law and rule of mixture. The 

influence of skew angle on the natural frequencies of the 

FGSMEE plate has been effectively investigated. Further, 

the static behavior of FGSMEE plate is evaluated 

thoroughly in terms of primary and secondary structural 

parameters such as the displacements, electric potential, 

magnetic potential, stresses, electric displacement, and 

magnetic induction. In addition, the influence of material  

 

 

 

gradient index is also studied. Further, the effect of 

boundary conditions, thickness ratio, and aspect ratio on the 

structural behaviour of the FGSMEE plates is thoroughly 

investigated. Some of the key findings of the present studies 

are listed below:  

 The free vibration studies for FGSMEE plate 

unveiled that the natural frequency increases with 

the increase in the skew angle irrespective of the 

material gradient index values.  

 It is observed that the natural frequency decreases 

with the increase in gradient-index values.  

 The electric and magnetic potential decreases with 

the increase in the skew angle.  

 The gradient index η exhibits major influence on 

the electric potential while its influence on the 

magnetic potential is observed to be minimal.  

 The magnitude of electric displacement (Dz) and 

magnetic induction (Bz) decreases with the 

increase in the skew angle.  

 The free vibration and static response 

characteristics are significantly affected by the 

thickness ratio, aspect ratio, and the boundary 

conditions. 

 
 

 

  
(a) (b) 

  
(c) (d) 

Fig. 15 Effect of boundary condition on (a) ϕz, (b) Ψz, (c) Bz and (d) Dz 
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Appendix 

 

The shape functions  tN ,  rN , N
    and 

N
    appearing in Eq. (14) are given as follows: 

 
1 2 8

1 2 8

1 2 8

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

T

t

N N . . . N

N N N . . . N

N N . . . N

 
 


 
  

 

 

81 2

81 2

81 2

81 2

0 0 00 0 0 0 0 0

0 0 00 0 0 0 0 0

0 0 00 0 0 0 0 0

0 0 00 0 0 0 0 0

T

r

NN N . . . .

NN N . . . .
N

NN N . . . .

NN N . . . .

 
 
 
 
 
 

 

 1 2 3 4 5 6 7 8

T
N N N N N N N N N
   

 

 1 2 3 4 5 6 7 8

T
N N N N N N N N N
   

 

(A1) 

The nodal strain-displacement matrices [btb], [brb], [bts] 

and [brs] appearing in the Eq. (16) are given by 

   1 2 8. . .bt bt bt btb b b b , 

   1 2 8. . .br br br brb b b b ,

   1 2 8. . .st st st stb b b b  and 

   1 2 8. . .sr sr sr srb b b b  

(A2) 

The various sub-matrices [bbt], [bbr], [bst] and [bsr] (i = 1, 

2, 3, . . ., 8) are as follows 

   

0 0

0 0

0 0 ; ;

0 0
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i

i

i
bt st

i

i i
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N x
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y x
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     

 
  

 

   
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