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1. Introduction 
 

Regular inspection and maintenance of railway tracks is 

a major task for permanent way engineers. A possible cause 

of track deterioration is ballast fouling, which results in the 

poor drainage of tracks and reduces the overall strength and 

stiffness of the ballast layer in supporting the sleepers (Selig 

and Waters 1994). Highly fouled ballast will not only 

significantly affect its drainage ability, but will also lead to 

track settlement. In this study, ballast damage (or ballast 

deterioration) is defined as the stiffness reduction of ballast 

in supporting the sleeper. The detection of ballast damage is 

a challenging task in railway maintenance. 

In the last decade, smart structure health monitoring has 

obtained researchers‟ attention (Fujino et al. 2009, Jo et al. 

2012, Nagayama et al. 2007, Yuen and Lam 2006), 

especially, the automatic structural damage detection using  
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vibration data has become one of the major research areas 

in civil engineering due to the advancement in technologies 

of sensors (Ni et al. 2011, 2012, Meyer et al. 2010). 

Comprehensive reviews in vibration-based damage 

detection for civil engineering structures are available in 

references (Salawu 1997, Fan and Qiao 2011). However, the 

extension of this idea to the detection of damage for railway 

ballast is new and challenging. 

Lam and colleagues proposed to use the vibration data 

from the sleeper to detect the damage of the underlying 

ballast (Lam et al. 2010). Due to the reduction in ballast 

stiffness, it is possible to detect the deterioration of ballast 

by utilizing model updating technique via measured 

vibration of the sleeper (Lam et al. 2012). It must be 

pointed out that there are uncertainties associated with the 

measured quantities and so as the identified model 

parameters due to the problems of measurement noise and 

modelling error. The level of uncertainties depends on the 

amount of information that can be extracted from the 

available measurement and the complexity of the model 

class employed in the model updating process (this directly 

related to the number of uncertain model parameters to be 

identified). It must be pointed out that there is no 

theoretically rigorous deterministic method to deal with this 

uncertainty problem, and the probabilistic approach 

provides a feasible solution in handling it.  

Bayesian inference can update the uncertainties of the 

model parameters (Jeffreys 1961, Box and Tiao 1973) and 
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provide a feasible identification solution for the purpose of 

structural health monitoring and crack growth prediction 

(Yuen 2010, An et al. 2011, Kuok and Yuen 2012). The 

original formulation of the Bayesian statistical system 

identification framework is in the time domain (Beck and 

Katafygiotis 1998), and it was extended to modal domain 

by Vanik and colleagues (Vanik et al. 2000). In 2014, Lam 

and colleagues developed the Bayesian ballast damage 

detection method which utilized the measured natural 

frequencies and mode shapes of the rail-sleeper-ballast 

system. The new method was verified through experimental 

case studies in a full-scale in-door test panel (Lam et al., 

2014). However, it is well known that the minimization 

problem involved in the model updating process is 

extremely complicated. There may be many local minima in 

the parameter space of interest. Some of them may lead to 

models with the same outputs at the measured degrees-of-

freedom (non-uniqueness problem). As a result, an effective 

numerical method is in demand for identifying the 

important regions in the parameter space (i.e., the regions 

correspond to high probability). For developing a practical 

ballast damage detection method, it is very important to 

study the effects of the quantity (e.g., the number of 

measured modes to be considered in the model updating 

process) and quality (e.g., the level of measurement noise) 

of measured data on the results of ballast damage detection. 

This is one of the main purposes of this paper to study this 

effect through a series of comprehensive case studies.  

The long-term goal of this research is to develop a smart 

system for continuous monitoring of the “health” condition 

of railway ballast through measuring the train-induced 

vibration of a selected number of in-situ sleepers along the 

targeted ballasted track. This paper focuses on the ballast 

damage detection of a single in-situ sleeper, which is one of 

the key components of this smart system. 

The originalities of this paper are (1) to develop the 

modified evolutionary algorithm (and so as the hybrid 

optimization method) in addressing the optimization 

problem in model updating process; (2) to numerically and 

experimentally verify the proposed ballast damage detection 

method; and (3) to study the effects of the data quantity and 

quality on the results of ballast damage detection. 

 

 

2. Background theories and proposed methodology 
 

The class of rail-sleeper-ballast model for the purpose of 

ballast damage detection is first presented. The core part of 

the methodology is the Bayesian approach, which can be 

divided into Bayesian model class selection and Bayesian 

model updating. It follows by the development of the two-

stage hybrid optimization method with the modified 

evolutionary algorithm. The posterior PDF of ballast 

stiffness at different regions can then be calculated by the 

proposed ballast damage detection method. Details of each 

component of the proposed methodology are presented in 

the following sub-sections. 

 
2.1 Modelling of the rail-sleeper-ballast system 
 

The three main components of an in-situ sleeper are the 

two rails, the sleeper and the underlying ballast. The rails 

carry the vertical load from the train and distribute it to the 

sleepers. The sleepers are embedded into the ballast and the 

load is transferred through the ballast to the foundation. The 

ballast is tightly tamped around the sleepers to keep the 

track precisely levelled and aligned. Appropriate modelling 

of the ballasted track is the key component of a model-

based ballast damage detection method. 

From the literature, the two rails can be modelled as two 

springs (Kaewunruen and Remennikov 2009, Berggren, 

2009) or two masses (Lam et al. 2012) in the rail-sleeper-

ballast system. Recently, Lam and colleagues (Hu and Lam 

2012, Lam et al. 2014, Hu et al. 2015) experimentally 

verified that it is feasible to model the two rails as two 

individual masses. In this study, their values are calculated 

by mL=L×mr and mR=R×mr, where mr is the nominal value 

of rail mass and L and R are the scaling factors (to be 

considered as uncertain parameters in the model updating 

process) for the left and right mass, respectively. The 

sleeper on ballast are modelled as a Timoshenko beam on 

an elastic foundation based on the finite element method. 

The railway ballast is considered by the discrete modeling 

method (Lam et al. 2014) in this study, namely, the ballast 

is divided into several discrete regions (e.g., Nd regions for 

the given model class) and the ballast stiffness in each 

region is assumed to be a constant. For each region, a 

dimensionless scaling factor i, for i = 1, 2, …, Nd, is used 

to scale the nominal ballast stiffness kb. These Nd scaling 

factors are considered as uncertain model parameters (i.e., 

minimization variables) in model updating. Due to the 

aging effect, the Young‟s modulus of the sleeper may also 

vary, and another scaling factor E is used to scale its 

nominal value. As a result, there are Nd+3 uncertain model 

parameters, which are grouped into an uncertain model 

parameter vector  = [1, 2, …Nd, E, L, R] in the model 

updating process. 

The formulation of a Timoshenko beam on an elastic 

foundation in reference (Krenk 2001) was adopted in the 

proposed method. Furthermore, the consistent mass matrix 

(Przemieniecki 1985) was employed in the dynamic 

analysis. The element stiffness and mass matrices are used 

to assemble the system stiffness and mass matrices. The 

modal parameters, such as, natural frequencies and mode 

shapes of the system, can be calculated by solving the 

eigenvalue problem of the system stiffness and mass 

matrices (Lam et al. 2012, 2014). 

 
2.1 Bayesian model class selection and model 

updating for ballast damage detection 
 

The core of the proposed methodology is the Bayesian 

approach. In this sub-section, emphasis will be put on how 

the existing theories of Bayesian model class selection and 

Bayesian model updating be integrated to the proposed 

methodology for ballast damage detection.  

 

2.2.1 Bayesian model class selection for ballast 
damage detection 

To be self-contain, the Bayesian model class selection 

436



 

Bayesian ballast damage detection utilizing a modified evolutionary algorithm 

method is briefly reviewed here. Interested readers are 

redirected to references (Beck and Yuen 2004, Lam et al. 

2007, 2008, Lam and Yin 2010) for the complete 

formulations. 

The Bayesian model class selection method is used to 

select the most plausible model class among Nmax given 

model classes. This is done by calculating the probability of 

each model class conditional on the set of measurement D 

and the subjective judgement of the user u, p(Mj | D, u) for j 

= 1 to Nmax. The model class with the highest probability is 

the most plausible model class. In the proposed ballast 

damage detection method, j is considered as the number of 

regions under the sleeper. For example, M1 represents the 

model class of rail-sleeper-ballast system with only one 

ballast region (undamaged). M2 and M3 represent the model 

classes with two and three, respectively, equal ballast 

regions. The probability of a model class conditional on the 

set of measurement can be expressed as 

 
   

  max

,
, , for 1, ,

j j

j

p u P u
P u j N

p u
  

D M M
M D

D

 (1) 

where P(Mj| u) is the prior probability on the model classes 

Mj for j = 1, 2, …, Nmax. In general, it is assumed to be a 

constant equal to 1/Nmax. p(D| Mj, u) is the evidence, which 

is proportional to the total probability of the model class if a 

constant prior probability is assumed. The subjective 

judgement u is dropped out in later formulations to simplify 

the formulation. In locally identifiable cases (Beck and 

Katafygiotis, 1998), the posterior PDF for θj for a given set 

of measured data D can be approximated accurately by a 

Gaussian distribution, then the evidence p(D| Mj) can be 

asymptotically approximated by using Laplace‟s method 

(Papadimitriou et al. 1997) 

        
1

2
2

max
ˆ ˆ ˆ, 2 , for 1, ,θ θ θ  



 
jN
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 (2) 

where θ̂ j
 represents the most probable model in the model 

class Mj, the compositions of θ̂ j
 for ballast damage 

detection are 
1̂ , ̂

2
, …, ˆ

j , ˆ
E , ˆ

L , ˆ
R . Nj is the 

number of uncertain parameters in θ̂ j
, and is equal to j + 3 

in this study.  θ̂j j  is the Hessian matrix. The evidence 

in Eq. (2) consists of two factors, the likelihood factor, 

 ˆ ,j jp θD M , and the Ockham factor, 

 
1

2
2 ˆ ˆ(2 ) ( )

N

j j j j

j
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θ θM  . The balance between the 

likelihood and Ockham factors allow the selection of the 

most plausible model class (Beck and Yuen 2004, Muto and 

Beck 2008, Cao and Wang 2014, Worden and Hensman 

2012). 

To use the Bayesian model class selection formulation in 

ballast damage detection, a computationally efficient 

sequential algorithm was developed for identifying the most 

plausible model class Mj without defining Nmax (Lam et al. 

2014). Owing to the space limitation, the sequential 

algorithm, which consists of a series of iteration steps, is 

briefly reviewed here. Fig. 1 shows the schematic of the 

algorithm. The algorithm begins by testing the simplest 

class of model with 1j  , which stands for the one-region 

model class. In a general iteration step, the algorithm 

compares the evidence of the model class Mj with that of 

model class Mj+1. If the evidence of the model class Mj is 

larger than that of the model class Mj+1, then the algorithm 

stops and the model class Mj is selected. Otherwise, the 

algorithm will assign 1j j   and repeat the calculation 

of the evidence and comparison. Interested readers are 

redirect to reference (Lam et al. 2014) for details of the 

sequential algorithm. 

 

2.2.2 Integrating Bayesian model updating for ballast 
damage detection 

Bayesian model updating aims in calculating the 

posterior PDF of the uncertain model parameters j 

conditional on a given set of measured data, D, and a given 

class of models, Mj, which is selected by Bayesian model 

class selection. To simplify the expressions, the subscript j 

will be discarded in the following formulation, and the set 

of uncertain parameters and the selected model class are 

denoted as  and M, respectively. By following the Bayes‟ 

theorem, the posterior PDF of uncertain model parameters 

can be expressed as (Vanik et al. 2000, Lam et al. 2014) 

 

 

 

 

Fig. 1 The sequential algorithm for identifying the most 

probable model class for ballast damage detection (Hu 

2015) 
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1

, exp ( )
2

p c J
 

  
 

θ θD M  (3) 

Where c is a normalizing constant, and J(θ) is a positive 

definite measure-of-fit function shows the discrepancy 

between the measured and model-predicted modal 

parameters. In this paper, it is given by 
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where Nm, Ns and Nk are the number of modes, data sets, 

and impact locations to be considered in the model updating 

process; , ,
ˆ

r n k is the measured squared natural frequencies,  

 r θ is the calculated squared natural frequency of the r-th 

mode from a given model θ; 
, ,

ˆ
r n kψ is the measured mode 

shape,  φ θr
 is the r-th mode calculated mode shape. The 

selection matrix Γ  consists of only 1 and 0 that picks the 

observed DOFs from the model-predicted mode shapes to 

match the measured ones, 


 is the Euclidean norm. 
2

ˆr
  and 

2

ˆ r
ψ  are the posterior variance of the squared 

natural frequencies and mode shapes following the 

Bayesian framework. The first and second terms of the J 

function in Eq. (4) correspond to the discrepancy in natural 

frequencies and mode shapes, respectively, of different 

modes and different measurement sets. Under the 

identifiable model updating problem, the posterior PDF in 

Eq. (3) can be approximated by a weighted sum of 

multivariance Gaussian distributions which are centered at 

the optimal solutions of the J function in Eq. (4). Therefore, 

a computational efficient algorithm for locating all output-

equivalent optimal solutions of the J function is essential 

for the success of Bayesian model updating, and so as the 

ballast damage detection in the proposed methodology. 

 

2.3 Two-stage hybrid optimization method  
 

For the minimization problem in model updating, there 

may have multiple minima in the parameter space of 

interest (non-uniqueness problem). Furthermore, there may 

exist many local minima. It is well-known that most 

deterministic optimization algorithms may be easily trapped 

by local minima, and they are not suitable to be directly 

adopted for model updating. Most probabilistic 

optimization algorithms are not focusing on identifying one 

minimum but on generating points “near” the minima. 

Therefore, they are not easily trapped by local minima. 

However, it usually takes large computational power and 

long computational time for the “near” minima points to 

converge to the global minima. In this paper, a two-stage 

hybrid optimization method was developed to overcome 

this difficulty. The proposed hybrid optimization method 

consists of two stages. The evolutionary strategy (Back 

1996) was modified and used in the first stage to identify all 

important regions in the parameter space of interest (i.e., 

regions with high PDF values) in a relatively short time. In 

the second stage, deterministic numerical optimization 

algorithm is employed to accurately identify the “optimal” 

model in each important region (near each local minimum). 

These “optimal” models will be treated as the most 

probable models in the Bayesian model updating method 

for calculating the posterior PDF of uncertain parameters. 

The formulation of the modified evolutionary algorithm 

is presented in the following. To start with,  g
Θ  is defined 

to store all individuals in a general g-th generation 

          1 2 
p

T
g g g g g

iΘ θ θ θ θN  (5) 

where Np is the population size and g is the index for 

generation; 
 
θ

g

i  is the i-th individual in the g-th 

generation, which is defined as 

          1, 2, , ,

g g g g g

i i i j i N i   θ  (6) 

where N is the total number of uncertain model parameters. 

In the proposed method, N = Nd + 3, where Nd is the number 

of discrete ballast regions under the sleeper as defined in 

section 2.1. 

One of the key components of the modified evolutionary 

algorithm is the way to generate children from the parents. 

In each generation, a child is generated by following a 

multivariable Gaussian distribution with the parent as the 

mean and a covariance matrix given by 

 

       

       

       

       

1 1,2 1, 1,
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where the elements 
 

for , 1, ,
g

i i N  and 

 
, for 1, , ;,  1, , 
g

i j i N j N 　 are given by 

      ( )

1 2 ...
T

g g gg

N    (8) 

 

 

       

       

       

       

1,1 1,2 1, 1,

2,1 2,2 2, 2,

,1 ,2 , ,

,1 ,2 , ,
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j N

g g g g

j N

g

g g g g

i i i i i N

g g g g

N N N j N N

   

   

   

   

  
(9) 

The diagonal terms of 
 g

  are not used in the 
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calculation of the covariance matrix. The values of 
( )g  

and 
 g

  can be calculated based on their values in the 

previous generation (Back 1996) 

 ( ) ( 1)

1 ,1 2 1,1 ,1exp G G I
 g g

N N    (10) 

 
   1

,G


 
g g

N N   (11) 

where 
1 2,N NG  is a random matrix of dimension N1 by N2 

following a normal distribution with zero mean and unit 

variance; 1, 2, and  are algorithmic parameters, their 

values will be discussed later; and IN,1 = {1, 1, …, 1}
T
 is a 

vector of unity with dimension N by 1. The children in the 

g-th generation can be generated by 

   -1
( ) (0, ) for 1, , ;  1, ,,θ N C   

g g g

i i p cd j i N j N  (12) 

where N(a,b) is a multivariable normal distribution with 

mean defined by a and covariance defined by b. In the 

modified evolutionary algorithm, the j-th children for all the 

parents are stored in the variable 

      ( )

1 2( ) ( ) ( ) ... ( )
P

T
g g gg

Nj d j d j d jD  (13) 

In the g-th generation, all parents and children are 

grouped together and stored in the variable 

    1 ( ) ( ) ( )(1) (2) ... ( )
T

g g g g g

cN


P Θ D D D  (14) 

In 
 

P
g

, the best (with the smallest J values) Np 

individuals are used to form 
 

Θ
g

, which are the Np 

individuals in the g-th generation.  

To initialize, all algorithmic parameters must be defined 

as (Back 1996) 

1 2

1 1
,

22 NN
    

where N is the total number of uncertain parameters. In Eq. 

(11),  = 0.0873 (Back 1996) is used. In the first generation 

(g = 1), the covariance matrix in Eq. (7) with g = 1 is 

formed by 

 

0 ,1

(1)

1

0 ,

I

I





N

N N








 (15) 

where 0 = 3 and 0 = 0 (Back, 1996) are used in this study, 

and IN,N is an unity matrix (all N  N elements are unity). 

The stopping criterion is mathematically expressed as 

max min J J   (16) 

where 
   min maxmin ( ), max ( )

θ Θ θ Θ

θ θ
 

 
g g

J J J J , and 

610  is used in this study. 

Upon the completion of the modified evolutionary 

algorithm in the first stage, a set of individuals (points in the 

parameter space) can be obtained. When there are more 

than one local minimum with very similar objective 

function values, the samples will be concentrated in more 

than one important region (one important region for each 

local minimum). Since the J values for all points are 

available in all generations, the point with the smallest J 

value in each region can be identified. They will be 

considered as the initial trials in the series of deterministic 

numerical optimizations in the second stage.  

 

2.4 The proposed procedure of ballast damage 
detection  
 

After reviewing all background technologies, the 

procedure of the proposed ballast damage detection 

methodology is summarized as follows: 

1. The time-domain vibration data of the possibly 

damaged in-situ sleeper is measured through roving 

hammer tests (with one accelerometer and one impact 

hammer with load cell). The accelerometer is fixed at the 

pre-defined measured DOF of the in-situ sleeper, and the 

impulses are applied through the impact hammer at the 11 

pre-defined excitation DOFs (distributed along the center 

line of the in-situ sleeper) one by one (Lam et al. 2014). 

2. The MODE-ID method (Beck 1978) is used to 

identify the modal parameters from the measured 

acceleration responses of the in-situ sleeper. The set of 

measurements D can be used for model class selection and 

model updating by the Bayesian approach. Other modal 

identification methods, such as the fast Bayesian FFT 

modal identification method (Au 2011, Zhang et al. 2015, 

Ni et al. 2015), can also be used. 

3. By the Bayesian model class selection method and the 

sequential algorithm, the most plausible class of models can 

be identified conditional on the set of measurements D.  

4. By maximizing the posterior PDF of the uncertain 

model parameters conditional on the „most plausible‟ model 

class and the set of measurements, the „most probable‟ 

model can be identified by the two-stage hybrid 

optimization method. The posterior PDF of ballast stiffness 

can then be calculated. 

5. By plotting the identified ballast stiffness distribution 

along the target in-situ sleeper, the ballast damage location 

and the corresponding damage extent can be observed 

(detected) graphically.  

 

 

3. Numerical verification 
 

A typical rail-sleeper-ballast system (see section 2.1) is 

employed in this section as the basic finite element model 

(FEM) for generating vibration data of the undamaged and 

various damaged cases. The nominal values of Young‟s 

modulus and density of the concrete sleeper are 38 × 10
9
 

N/m
2 

and 2200 kg/m
3
, respectively. The effects of the two 

rails are represented by two different concentrated masses 

on the beam. The nominal value of the rail mass and the 

ballast stiffness are set to be 42 kg and 315 × 10
7
 N/m

2
, 

respectively (Hu 2015). 
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3.1 Numerical verification in undamaged case 
 

To make the computer simulation representative, the 

parameters of the undamaged model of this numerical case 

studies was obtained from the model updating of the model 

class with uniform stiffness distribution under the sleeper 

utilizing impact hammer test results from a full-scale indoor 

test panel. The undamaged model is given by 1 = [1, E, 

L, R] = [1.00, 1.05, 1.60, 1.56] (Hu 2015), where the  

 

 

subscript 1 shows that there is only one region under the 

sleeper implying that this is model class M1. Various 

damaged cases in the numerical case studies were simulated 

based on this undamaged model. 

Impulsive forces were applied to the pre-defined 

excitation degree of freedoms (DOFs) of this model one-by-

one and the time-domain responses at the sensor DOF were 

calculated by FEM with the assumption that the system is 

classically damped with a damping ratio of 2% (Hu 2015).  

 
(a) Time-domain responses at pre-defined measured DOF 

 
(b) Close up of the first impulse 

 
(c) Frequency domain response of the first impulse 

Fig. 2 Sample of measured time and frequency domain response of the undamaged case 
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To consider the effects of measurement noise, 1% of 

root mean square white noise was added to the calculated 

time-domain responses. It must be pointed out that a 

comprehensive case study on the effect of measurement 

noise level on the results of ballast damage detection is 

reported later in section 3.5. 

The simulated time-domain response at the pre-defined 

measured DOF is shown in Fig. 2(a). The vibration test 

consists of many impulses (at the same input DOF). The 

duration between two impulses is long enough for the 

response of the system to delay to zero. To show more 

clearly about the measured acceleration response, Fig. 2(b) 

shows the close up of the first impulse in Fig. 2(a). The 

simulated time-domain responses with impact force at other 

DOFs look very similar, and they are not shown here. Fast 

Fourier Transform (FFT) was employed to transform the 

time-domain response to the frequency domain (see Fig. 

2(c)). The peaks in Fig. 2(c) show the frequencies near the 

natural frequencies of the system, and they were employed 

as the initial trials for modal identification by MODE-ID. 

The natural frequencies and mode shapes of the first four 

modes were identified and used as the measured data for 

ballast damage detection.  

The Bayesian model updating of the undamaged rail-

sleeper-ballast system is employed as an example to 

illustrate the procedures of the proposed hybrid 

optimization method. In the first stage, 50 individuals were 

generated in the final generation as shown in Fig. 3. It is 

clear from the figure that there is only one important region 

in the parameter space of interest. Consider the distribution 

of samples along E (i.e., Young‟s modulus of the sleeper).  

 

 

The E value of samples is very close to unity, and the 

result is relatively certain (the range of scattering points is 

relatively small). When compared to E, the values for L 

and R (i.e., the left and right rail masses) are relatively 

uncertain. This is reflected by the relatively large range of 

scattering points. Finally, the value of 1 (i.e., the ballast 

stiffness) is also close to unity but the uncertainty should be 

lower than that of L and R but higher than that of E. The 

point with the lowest J function value was used as the initial 

trial in the second stage of the hybrid method. Finally, the 

optimal model of the undamaged case was identified by 

Bayesian model updating, and the most probable model is 

given in Table 1. As expected, the identified model is very 

similar to the model employed for generating the measured 

data. The effect of introducing 1% of measurement noise is 

only very minor. 

To generate different damaged cases, the ballast under 

the sleeper was divided into three regions with equal 

widths. They are denoted as Regions 1, 2 and 3 on the left, 

middle and right hand-sides of the sleeper, respectively. 

Ballast damage is simulated by a 50% reduction in ballast 

stiffness at the corresponding region. This is equal to 

multiply a factor of 0.5 to the ballast stiffness at the 

damaged region. In this numerical case study, two damaged 

cases were considered. The reductions in ballast stiffness of 

these two damaged cases were summarized in Table 2. 

Damaged case 1 considers the small damaged region case 

and the damage is simulated at Region 1, and damaged case 

2 considers the large damaged region case and the damage 

is at Regions 1 and 2. 

 

 

Fig. 3 The population of points generated by the modified evolutionary algorithm after 100 generations 
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Table 1 Identified model parameters in undamaged case 

Case 1 E L R 

Undamaged 1.01 1.04 1.59 1.55 

 

 

Table 2 Reductions in ballast stiffness in numerical 

damaged cases 

Damaged case Region 1 Region 2 Region 3 

1 50% --- --- 

2 50% 50% --- 

 

 

3.2 Numerical verification in damaged case 1 
 

The proposed Bayesian ballast damage detection 

method was conducted utilizing all four modes. As 

discussed previously, Bayesian model class selection was 

first employed to identify the most plausible class of models 

for a given set of measurement.  

The sequential algorithm (Lam et al. 2014) is illustrated 

here. The evidences for M1 and M2 were calculated using 

measurement from all four modes (see the “4 modes” part 

in Table 3) by Eq. (2). The values of the likelihood and 

Ockham factors (in logarithm) are also presented. The 

logarithms were used here because the numerical values of 

the evidence are too large that cause computational problem. 

Note that the logarithm of likelihood of M2 (1620.71) was 

much larger than that of likelihood of M1 (-129.97) showing 

that the model class M2 could fit the measurement better 

than M1 as expected. The logarithm of Ockham factor of M2 

(-27.93) was only a little bit smaller than that of Ockham 

factor of M1 (-23.18), and the logarithm of overall evidence 

for M2 (1592.78) was much larger than that of evidence of 

M1 (-153.15). Therefore, it could be concluded that M1 is 

not the most plausible model class and the system is  

 

 

 

damaged. Next, the evidence of M3 was calculated. Since  

the evidence for M3 was larger than that of M2, the evidence 

of M4 was needed to be calculated. The logarithm of 

evidence of M4 (1708.79) was slightly smaller than that of 

M3 (1714.03). According to the sequential algorithm, the 

model class M3 was selected as the most plausible model 

class, and the ballast under the sleeper should be divided 

into three regions for the purpose of ballast damage 

detection. This result agreed with the model class employed 

for generating the measurement.  

Next, the Bayesian model updating results using M3 (the 

most plausible model class) were reported and shown in the 

“4 modes” part of Table 4. It is clear that the values of 1̂ , 

2̂  and 3̂  were 0.53, 1.01 and 1.01, respectively, 

showing that there was a 47% reduction in ballast stiffness 

in Region 1, while there was no change in ballast stiffness 

in Regions 2 and 3. The damage detection result can be 

better interpreted by plotting the ballast stiffness 

distribution along the target sleeper as shown in Fig. 4. This 

result matched with the artificial simulated damage in this 

damaged case. It could be concluded that the proposed 

ballast damage detection method could successfully identify 

the ballast damage in damaged case 1 when all four 

measured modes were included in the analysis. Next, the 

identified values of other model parameters (also in the “4 

modes” part of Table 4) is considered. The identified values 

for ˆ
E , ˆ

L  and ˆ
R  (i.e., 1.04, 1.59 and 1.56) are almost 

the same to the values used in simulating the measurement 

(i.e., 1.04, 1.59 and 1.55). By using the most probable 

model, the natural frequencies and mode shapes of the rail-

sleeper-ballast system in damaged case 1 were calculated 

and summarized in the “4 modes” part of Table 5 and Fig. 5.  

 

Fig. 4 Damage detection result in numerical damaged case 1 
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It is clear that the maximum percentage difference between 

the model-predicted and measured natural frequencies was 

lower than 0.54%, and the matching between the model-

predicted and measured mode shapes was almost perfect. 

The damage detection results for damaged case 1 using 4 

modes with 1% measurement noise are very positive. 

 

 

Table 3 Evidences of different classes of models in 

numerical damaged case 1 using different amount of 

information in model updating 

Cases 
Class of 

models 

Logarithm 

of Evidence 

Logarithm of 

Likelihood 
factor 

Logarithm 

of Ockham 
factor 

4 modes 

M1 -153.15 -129.97 -23.18 

M2 1592.78 1620.71 -27.93 

M3 1714.03 1746.88 -32.85 

M4 1708.79 1746.22 -37.43 

3 modes 

M1 1681.88 1702.80 -20.92 

M2 1715.64 1740.80 -25.16 

M3 1741.58 1772.93 -31.35 

M4 1736.70 1772.42 -35.72 

2 modes 
M1 1749.98 1771.09 -21.11 

M2 1748.00 1772.85 -24.85 

1 mode 
M1 1798.71 1816.52 -17.81 

M2 1796.75 1816.64 -19.89 

 

Table 4 Optimal parameters in numerical damaged case 1 

using different amount of information in model updating 

Cases 
1̂  

2̂  
3̂  

Ê  
L̂  

R̂  

4 modes 

(M3) 
0.53 1.01 1.01 1.04 1.59 1.56 

3 modes 

(M3) 
0.48 1.04 1.02 1.02 1.25 1.64 

2 modes 

(M1) 
0.83 --- --- 0.72 3.00 0.72 

1 mode 

(M1) 
0.55 --- --- 0.36 1.18 0.01 

 

 

Table 5 Measured and model-predicted natural frequencies 

(Hz) in numerical damaged case 1 using different amount of 

information in model updating 

Cases  Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

4 modes 

Updated 69.94 92.92 173.23 376.30 638.22 

Measured 69.94 92.69 172.82 376.21 641.66 

Difference 

(%) 
0.00 -0.25 0.24 -0.02 0.54 

3 modes 

Updated 69.98 92.73 173.00 373.29 636.58 

Measured 69.94 92.69 172.82 376.21 641.66 

Difference 

(%) 
-0.06 -0.04 -0.10 0.78 0.79 

2 modes 

Updated 71.15 92.73 153.89 317.44 529.64 

Measured 69.94 92.69 172.82 376.21 641.66 

Difference 

(%) 
-1.73 -0.04 10.95 15.62 17.46 

1 mode 

Updated 70.03 84.56 119.23 233.07 408.00 

Measured 69.94 92.69 172.82 376.21 641.66 

Difference 

(%) 
-0.13 8.77 31.01 38.05 36.41 

 

 
3.3 Numerical verification in damaged case 2 
 

Bayesian model class selection by the sequential 

algorithm was conducted first, and the evidences of 

different classes of models in damaged case 2 are 

summarized in Table 6. Model class M3 had the largest 

evidence among the four model classes, M1, M2, M3 and M4. 

Therefore, M3 was selected as the most plausible model 

class in damaged case 2. The updated model parameters are 

presented in Table 7. The Bayesian model updating results 

show that the ballast stiffness factor for Regions 1, 2 and 3 

are 0.49, 0.50 and 1.00, respectively. Since the simulated 

damage is 50% reduction in ballast stiffness at Regions 1 

and 2, the damage detection result is very positive in 

damaged case 2 with about 3% error for ballast stiffness at 

Region 1, and less than 1% error for ballast stiffness at 

Regions 2 and 3. The Young‟s modulus and the two 

additional rail masses were identified with high accuracy. 

Using the “optimal” model (given in Table 7), the updated  

 

Fig. 5 Matching between measured and model-updated modal parameters using 4 modes 
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modal parameters were calculated. The differences between 

the measured and model-predicted natural frequencies are 

shown in Table, where the percentage error was very small 

in general with the largest error about 2% in mode 1.  

The ballast damage detection result is presented by 

plotting the updated ballast stiffness distribution in Fig. 6. 

The damage can be easily observed from the figure that the 

ballast on the left and at the middle of the sleeper with 2/3 

the length of the sleeper is damaged, and the percentage 

reduction in ballast stiffness is almost 50%, which is the 

same as the simulated damage in damaged case 2 (i.e., 50% 

reduction at Regions 1 and 2). 

 

3.4 Study the effect of data quantity 
 

The quantity of measured information refers to the 

number of modes to be considered in the model updating 

process. Damaged case 1 was employed in this study. The 

ballast damage detection results for using all four modes 

were presented in section 3.2. The same ballast damage 

detection process was repeated using natural frequencies 

and mode shapes of the first 3, 2 and 1 modes (i.e., less and 

less measured information). For fair comparisons, the 

measurement noise level was fixed to 1% in all cases in this 

study. 

Referring to the evidences shown in the “3 modes” part 

of Table 3, Bayesian model class selection results were 

similar with that of using the first 4 modes, and the model 

class M3 was selected as the most plausible model class. 

The Bayesian model updating results were given in the “3 

modes” part of Table 4. Bayesian model updating results 

showed that the ballast stiffness factor for Region 1 is 0.48, 

while the factor to the Region 2 is 1.04 and the factor to 

Region 3 is 1.02. It could be concluded that the proposed 

ballast damage detection method could detect the ballast  

 

 

damage in damaged case 1 even when only the first 3 

modes were included in the analysis. For the optimal values 

of other model parameters, they were identified with high 

accuracy except the left rail mass. The percentage error of 

the left rail mass was 21%. It is not difficult to observe that 

the accuracy of model updating results in using only 3 

modes are not as high as that of model updating results in 

using 4 modes. For easy comparison, the differences 

between the measured and model-predicted natural 

frequencies are shown in the “3 modes” part of Table 5. The 

largest error in natural frequency was 0.79% in mode 5. It 

could be concluded that the ballast damage detection results 

for damaged case 1 using the first 3 modes in the analysis is 

still very good. 

Next only the first 2 modes were considered in the 

model updating process. The evidences for M1 and M2 were 

calculated following Eq. (2) and summarized in the “2 

modes” part in Table 3. According to the sequential 

algorithm, the model class M1 was selected as the most 

plausible model class, and the result indicated that the 

system was undamaged. It is clear that this model class 

selection result is wrong when only the first two modes 

were employed. The Bayesian model updating results using 

model class M1 were calculated and listed in the “2 modes” 

part of Table 4. The value of 1̂  is 0.83. This result was 

different from the artificial simulated damage in damaged 

case 1. The optimal values of other model parameters were 

identified with relatively low accuracy. The updated 

Young‟s modulus was 31% less than the simulated value, 

the updated left rail mass was 89% higher than the 

simulated value, and the right rail mass was 54% less than 

the simulated value. The relatively poor performance when 

using only the first 2 modes could also be reflected from the 

differences between the measured and model-predicted 

natural frequencies as shown in “2 modes” part of Table 5.  

 

Fig. 6 Damage detection result in Numerical Damaged case 2 
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Table 6 Evidences of different classes of models in 

numerical damaged case 2 and experimental case 

Cases 
Class of 
models 

Logarithm 
of Evidence 

Logarithm 

of 
Likelihood 

factor 

Logarithm 

of 
Ockham 

factor 

Numerical case 

2 

M1 -1619.72 -1597.65 -22.07 

M2 1469.62 1496.72 -27.10 

M3 3043.70 3075.93 -32.23 

M4 3019.50 3057.22 -37.70 

Experimental 
case 

M1 -76.23 -53.94 -22.29 

M2 -73.66 -45.27 -28.39 

M3 97.22 124.47 -27.25 

M4 96.73 127.68 -30.95 

 

 

The differences in natural frequencies in mode 3, 4 and 5 

are relatively large and were 11%, 16% and 17%, 

respectively. The performance of the damage detection 

method was even worse when only the first mode was 

considered in the analysis. From the evidences shown in the 

“1 mode” part of Table 3, it is easy to find that the wrong 

model class M1 was selected. The Bayesian model updating 

results were calculated based on M1 and summarized in the 

“1 mode” part of Table 4. The value of 1̂  is 0.55. As 

expected, the proposed method failed in detecting the 

ballast damage in damaged case 1 when only the first mode 

is considered in the analysis. The identification of other 

model parameters was bad. The updated Young‟s modulus 

(0.36) was about 65% less than the simulated value (1.04, 

refer to Table 1), the updated right rail mass was almost 

zero while the left rail mass (1.18) is about 26% less than 

the simulated value (1.59, refer to Table 1). The poor 

performance could be reflected from the matching among 

the measured and model-predicted natural frequencies as 

shown in part 4 “1 mode” of Table 5. It is clear that the 

errors in all modes except for mode 1, which was the only 

one included in the model updating, were quite large 

especially for the modes 3, 4 and 5, where the errors were 

31%, 38% and 36%, respectively.  

In conclusion, the performance of ballast damage 

detection is sensitive to the amount of information to be 

considered in the Bayesian model updating process. 

According to the results in this numerical case study, at 

least the first three modes are required for obtaining 

acceptable damage detection results. This result is in fact 

reasonable. It is well known that the first two rigid body 

modes (i.e., modes 1 and 2) are sensitive to the properties of 

ballast and the two bending modes (i.e., modes 3 and 4) are 

sensitive to the properties of the sleeper. For the purpose of 

ballast damage detection, the first two modes are, of course, 

extremely important. It must be pointed out that the Young‟s 

modulus of sleeper and the two rail masses are also 

considered as uncertain model parameters in the model 

updating process. Therefore, using only the first two modes 

is not enough for identifying all uncertain parameters in 

high accuracy. By including mode 3, which is believed to be 

sensitive to properties of the sleeper, the model updating 

result can be improved significantly when compared to that 

using only the first two modes. 

 

3.5 Study the effect of data quality 
 

This section aims in studying the effects of 

measurement noise (simulated by introducing a given 

percentage of root-mean-square white noise to the model-

predicted acceleration time-domain responses) in the results 

of the ballast damage detection. The measurement noise 

levels of 1%, 5% and 10% were investigated.  

 

 

Table 7 Optimal parameters in numerical damaged case 2 

and experimental case 

Cases 
1̂  

2̂  
3̂  

Ê  
L̂  

R̂  

Numerical 

case 2 
0.49 0.50 1.00 1.06 1.59 1.56 

Experimental 

case 
1.07 0.11 0.99 1.25 0.56 0.01 

 

 

Table 8 Measured and model-predicted natural frequencies 

(after model updating) in numerical damaged case 2 and 

experimental case 

Cases Frequency(Hz) 
Mode 

1 

Mode 

2 

Mode 

3 

Mode 

4 

Mode 

5 

Numerical 

case 2 

Updated 64.83 87.62 157.06 375.40 639.90 

Measured 63.46 87.61 156.55 374.84 639.04 

Difference (%) -2.16 -0.01 -0.33 -0.15 -0.13 

Experimental 

case 

Updated 60.01 66.90 149.90 407.37  

Measured 59.84 66.84 153.92 406.09  

Difference (%) 0.28 0.09 -2.61 0.32  

 

 

By following the Bayesian model class selection method, 

the logarithms of the evidences for different classes of 

models in damaged case 1 under different noise levels were 

calculated shown in Table 9 (evidences for 1% noise were 

extracted from the “4 modes” part of Table 3 for easy 

comparison). It is clear that the model class M3 was selected 

in all noise levels. Therefore, the ballast under the sleeper 

was divided into three regions. By using M3, the Bayesian 

model updating results for damaged case 1 under different 

noise levels were calculated and presented in Table 10 

(results for 1% noise were extracted from the “4 modes” 

part of Table 4 for easy comparison). The identified model 

parameters in all three noise levels were very consistent 

showing that the effects of measurement noise were not 

very sensitive to the results of the ballast damage detection.  

The differences between the measured and model-

predicted natural frequencies under various noise levels 

were given in Table 11. The differences are very small with 

values less than 0.5%. Although it was clear that a higher 

noise level resulted in a relatively lower accuracy in ballast 

damage detection, the performance of the proposed ballast 

damage detection method was still very good even under 

the situation of 10% measurement noise, which indicates 

that the performance of the proposed ballast damage 

detection method is not sensitive to the noise level of 

measurements at the level of 10%.  
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4. Experimental verification 
 

In this section, the proposed ballast damage detection 

methodology was verified through experimental measured 

data from the indoor test panel as shown in references (Lam 

et al. 2012, 2014). Ballast damage was simulated under the 

middle of the sleeper by replacing normal size ballast (~50 

mm) by small size ballast (~15 mm). Natural frequencies 

and mode shapes of the first four modes were identified 

(using MODE-ID) from the measured responses in the 

roving hammer test.  

Bayesian model class selection and model updating 

were conducted using the identified modal parameters. The 

Bayesian model class selection results were summarized in 

Table 6. The model class M3 is selected as the most 

probable model because it has the largest logarithm of 

evidence (97.22) among all the considered model classes. 

The model updating results are summarized in Table 7. The 

ballast under the sleeper was divided into three regions with 

the corresponding ballast stiffness values 1, 2 and 3. The 

identified ballast stiffness factors for the left, middle and 

right regions are 1.07, 0.11 and 0.99, respectively. As the  

 

 

 

 

 

 

ballast stiffness at the middle region dropped significantly, 

the proposed method detected the ballast damage under the 

middle of the sleeper. The ballast damage detection result 

can be better presented by plotting the updated ballast 

stiffness distribution in Fig. 7. The damage can be easily 

found and it was located at the middle part of the sleeper, 

the percentage reduction in ballast stiffness was about 86%. 

The differences between the measured and updated natural 

frequencies are given in Table 8. the largest error is 2.61% 

in mode 3 and the matching is good. Therefore, the 

proposed ballast damage detection methodology 

successfully detected the damage in the experimental case. 

 

 

5. Conclusions 
 

This paper reports the development of a railway ballast 

damage detection method utilizing roving hammer test data 

following the Bayesian model class selection and model 

updating method. To handle the problem of local optima in 

model updating, the two-stage hybrid optimization method 

was developed with the modified evolutionary algorithm.  

Table 9 Evidences of different classes of models in numerical damaged case 1 under different noise levels 

Noise level Class of models 
Logarithm of 

Evidence 

Logarithm of 

Likelihood factor 

Logarithm of 

Ockham factor 

1% 

M1 -153.15 -129.97 -23.18 

M2 1592.78 1620.71 -27.93 

M3 1714.03 1746.88 -32.85 

M4 1708.79 1746.22 -37.43 

5% 

M1 616.11 639.28 -23.17 

M2 1402.20 1430.30 -28.10 

M3 1452.61 1486.06 -33.45 

M4 1446.29 1484.47 -38.18 

10% 

M1 1061.12 1082.80 -21.68 

M2 1290.77 1317.41 -26.64 

M3 1343.66 1375.58 -31.92 

M4 1340.97 1377.31 -36.34 

Table 10 Optimal parameters in numerical damaged case 1 under different noise levels 

Noise level 
1̂  

2̂  
3̂  

Ê  
L̂  

R̂  

1% 0.53 1.01 1.01 1.04 1.59 1.56 

5% 0.56 0.96 1.02 1.04 1.58 1.58 

10% 0.57 1.00 1.01 1.03 1.51 1.58 

Table 11Measured and model-predicted natural frequencies in numerical damaged case 1 under different noise levels 

Noise level Frequency(Hz) Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

1% 

Updated 69.94 92.92 173.23 376.30 638.22 

Measured 69.94 92.69 172.82 376.21 641.66 

Difference (%) 0.00 -0.25 0.24 -0.02 0.54 

5% 

Updated 71.20 92.68 171.93 376.30 638.04 

Measured 71.26 92.64 171.99 375.99 643.62 

Difference (%) 0.08 -0.04 0.03 -0.08 0.87 

10% 

Updated 72.34 92.69 172.97 375.11 636.51 

Measured 72.30 92.65 172.35 375.44 644.18 

Difference (%) -0.06 -0.04 -0.36 0.09 1.19 
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The proposed ballast damage detection method 

successfully identified the simulated ballast damage in both 

numerical and experimental cases. Based on a 

comprehensive numerical case studies, the effects of the 

quantity and quality of measurement on the results of 

ballast damage detection were studied. The results show 

that the amount of information (data quantity) to be 

considered in the model updating process plays an 

important role in ballast damage detection. At least the first 

three modes are required to obtain acceptable damage 

detection results. Furthermore, the performance of the 

proposed ballast damage detection method was not sensitive 

to the level of measurement noise (data quality). As shown 

in the study, the ballast damage detection results are very 

good even with 10% measurement noise. 

The proposed methodology requires only 1 

accelerometer and 1 impact hammer with load cell for 

collecting vibration data. Therefore, it is believed that the 

method is suitable for permanent way engineers or 

inspectors to get additional information about ballast 

situations under concrete sleepers during visual inspection. 

The next step of this research is to extend the proposed 

ballast damage detection method using train-induced 

vibration in-situ sleeper. This is one important step in the 

development of a smart system for long-term monitoring of 

railway ballast of a track by installing accelerometers on a 

number of selected sleepers. Several difficulties must be 

overcome before this extension can be implemented. The 

main difficulty is that the stress-strain behavior of ballast 

may become nonlinear under the action of train load (large 

amplitude vibration). This difficulty can be addressed by 

modifying the methodology from using modal-domain to 

time-domain data, and develop a nonlinear model to capture 

the dynamic behavior of railway ballast. Furthermore, an 

optimal sensor configuration method needs to be developed  

 

 

for selecting a set of appropriate sleepers for installing 

sensors in order to maximize the amount of information that 

can be extracted for the purpose of ballast damage 

detection. 

From the literature (e.g., Xia et al. 2006, 2012), it is 

believed that an increase in temperature in general will 

reduce the natural frequencies of a reinforced concrete 

structure. Therefore, it is believed that the modal parameters 

of the in-situ sleeper may be changed due to temperature 

changes. Before the proposed method can be put into real 

application, the effects of temperature on the performance 

of the proposed method must be studied. This can be done 

through comprehensive experimental case studies in the 

indoor test panel under various temperatures through the 

air-conditioning system.  
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