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1. Introduction 
 

Cables are very critical components in many structures, 

such as cable-supported bridges, off-shore platforms, etc. 

However, the cables are vulnerable to fatigue and corrosion 

damage. CFRP materials has very good mechanical 

properties and environmental corrosion resistance, so they 

are able to be used for fabrication of cables, i.e., the cables 

are fabricated by CFRP rods, replacing high strength steel 

wires. 

For the weak shear and radial compression of CFRP 

rods, comprehensive studies (Meier 2012, Noistering 2000, 

Rizzo and di Scalea 2001, Mei et al. 2015, Zhang et al. 

2014) have been done on the anchorage of CFRP cables. In 

these studies, the bonding anchorages are the most widely 

used anchoring configuration for the small generated radical 

compression that usually causes local fiber bending in 

CFRP rod. In bonding anchorages, the potting compound, 

playing the role of transferring the load from CFRP rods to 

socket, is very critical to cable performance. Meier and 

Farshad (1996) proposed a kind of resin-based potting 

compound with gradient stiffness to optimize the bonding  
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stress distribution within anchoring zone. Zhang et al. 

(2014) selected reactive powder concrete (RPC) grout as 

potting compound and developed a CFRP ground anchor 

applied in the Aizhai Bridge in China. Noistering (2000) 

and Mei et al. (2015) improved potting compound injection 

techniques for the better contact between CFRP rods and 

potting compound. 

In this paper, a novel bonding anchorage was proposed 

and the performances of CFPR cable using developed 

anchorage was tested. To understand the damages of CFRP 

2014) have been done on the anchorage of CFRP cables. In 

these studies, the bonding anchorages are the most widely 

used anchoring configuration for the small generated radical 

compression that usually causes local fiber bending in 

CFRP rod. In bonding anchorages, the potting compound, 

playing the role of transferring the load from CFRP rods to 

socket, is very critical to cable performance. Meier and 

Farshad (1996) proposed a kind of resin-based potting 

compound with gradient stiffness to optimize the bonding 

stress distribution within anchoring zone. Zhang et al. 

(2014) selected reactive powder concrete (RPC) grout as 

potting compound and developed a CFRP ground anchor 

applied in the Aizhai cable during the loading process, 

acoustic emission (AE) technology which is a kind of 

nondestructive testing (NDT) method for monitoring the 

damages in material and structure is employed to detect the 

damages near the anchoring zone where is also the damage 
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Abstract.  Carbon fiber reinforced polymer (CFRP) cable has good mechanical properties and corrosion resistance. However, 

the anchorage of CFRP cable is a big issue due to the anisotropic property of CFRP material. In this article, a high-efficient 

bonding anchorage with novel configuration is developed for CFRP cables. The acoustic emission (AE) technique is employed 

to evaluate the performance of anchorage in the fatigue test and post-fatigue ultimate bearing capacity test. The obtained AE 

signals are analyzed by using a combination of unsupervised K-means clustering and supervised K-nearest neighbor 

classification (K-NN) for quantifying the performance of the anchorage and damage evolutions. An AE feature vector (including 

both frequency and energy characteristics of AE signal) for clustering analysis is proposed and the under-sampling approaches 

are employed to regress the influence of the imbalanced classes distribution in AE dataset for improving clustering quality. The 

results indicate that four classes exist in AE dataset, which correspond to the shear deformation of potting compound, matrix 

cracking, fiber-matrix debonding and fiber fracture in CFRP bars. The AE intensity released by the deformation of potting 

compound is very slight during the whole loading process and no obvious premature damage observed in CFRP bars aroused by 

anchorage effect at relative low stress level, indicating the anchorage configuration in this study is reliable. 
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concentration of CFRP cable. In AE testing, the stress wave 

released by the material deformation or damage is captured 

by AE sensor (usually made by lead zirconate titanate, PZT) 

and stored in waveform (AE signal) by AE instrument. The 

AE signal contains information about damage pattern and 

intensity which means the discrete AE signals in time-

domain can be used to describe the damage evolution. Here, 

the damage evolution is referred to the variation of damage 

extent in a specific pattern during the loading process. In 

this article, the normalized accumulated AE energy release 

which is a comprehensive indicator of AE intensity and 

time-domain distribution is used to describe the damage 

evolution. 

In AE signals analysis methods for the description of 

damage evolution, the regular parameters of AE signal, such 

as amplitude, energy, duration, rising time and AE counts 

are used to describe the damage evolution with single 

damage mode (Nair and Cai 2010). While, in multi-mode 

damage monitoring, it is needed to mapping the relationship 

between the damage patterns and AE signals. As the stress 

wave released by component material contains frequency 

that has direct relationship with the fracture mechanism, AE 

frequency analysis plays an important role in the damage 

pattern recognition and receives widely applications, e.g., 

the peak frequency in the spectrum of AE signal is 

successfully employed to identify the failure modes of FRP 

materials in the works by Groot et al. (1995), Ramirez-

Jimenez et al. (2004), Godin et al. (2004), Gutkin et al. 

(2011). 

In our study, the damages inside anchorage are 

complicated, including the matrix cracking, matrix-fiber 

debonding, fiber breakage in CFRP bar (de Groot et al. 

1995) as well as the damage of potting compound resulted 

by shear-type deformation. The damage patterns of CFRP 

bar and potting compound may arouse AE signals with 

similar peak frequency, or the AE peak frequency released 

from different damage patterns may overlap for the similar 

component (epoxy resin) in CFPP bar and potting 

compound. Moreover, the acoustic attenuation effect on AE 

signal that both frequency and energy characteristics of 

obtained AE signal will be changed in acoustic propagation 

aggravate the difficulty of recognizing the damage pattern 

according to the pre-defined relationship between AE 

features and damage patterns which is established on the 

basis of the AE testing in a specific scale. Therefore, more 

advanced pattern recognition approach is needed. 

Recent years, several clustering algorithms (Ding et al. 

2004, Yang and Nagarajaiah 2013, Alrabea et al. 2013), e.g. 

centroid-based, density-based have been adopted to analyze 

AE signals. AE clustering analysis is a kind of unsupervised 

clustering analysis in pattern recognition field, which 

assumes that the AE signals released by the same type of 

AE source (damage pattern) have more similarity than from 

other pattern (Moevus et al. 2008). In AE clustering 

analysis, AE signal is described by an AE feature vector 

usually consisting of regular AE parameters and peak 

frequency (Gutkin et al. 2011, Li et al. 2016), etc. 

Clustering algorithms categorize AE dataset (the collection 

of AE feature vectors) into a few of clusters to make the AE 

feature vectors have high similarity or correlation within a 

cluster and low similarity or correlation between clusters. 

After that, these clusters have to be labeled with damage 

patterns according to the prior knowledge about the 

characteristics of expected damage patterns. 

K-means clustering is one kind of centroid-based 

clustering algorithms and has been comprehensively studied 

(Ding et al. 2004, Xiong et al. 2009, Hu et al. 2015, Alrabea 

et al. 2013). K-means is the most widely used clustering 

algorithm for the partitioning of AE dataset in several 

different applications. Godin et al. (2004) combined the K-

means and supervised classification learning algorithms 

including K-Nearest Neighbor (K-NN) and Self-Organizing 

Map (SOM) to improve the computational efficiency and it 

was founded the performance of K-means combined K-NN 

classifier and K-means combined SOM classifier were quite 

similar. Gutkin et al. (2011) compared the performances of 

three types of clustering-based pattern recognitions: K-

means, K-means and SOM, competitive neural network 

(CNN) and founded the K-means combined SOM classifier 

can get the better result. 

AE features selection in K-means is critical to clustering 

quality. It is required to reflect the difference among the AE 

signals in different damage pattern efficiently for the low 

accuracy of K-means in high-dimensional AE dataset. 

Therefore, the redundant AE features should be removed to 

keep the dimensionality of AE dataset as low as possible. 

Additionally, principal component analysis (PCA) (Abdi et 

al. 2010) is also used to process AE dataset for the 

dimensionality reduction, that is K-means clustering is 

performed in the principal component subspace (Ding et al. 

2004). PCA-guided K-means has been employed to 

improve the clustering quality in several different 

applications. Moevus et al. (2008) selected eight AE 

parameters which exhibits relatively large variance from 18 

AE parameters in AE signal by using agglomerative 

hierarchical clustering to form AE feature vector and then 

reduced the dimensionality of AE dataset further by 

transforming to its principal component subspace. Gutkin et 

al. (2011) selected five AE features: AE amplitude, peak 

frequency, energy, rising time and duration for clustering 

and performed clustering analysis in its principal 

component subspace for the pattern recognition of CFRP 

material. 

The further researches on K-means indicate the 

imbalanced classes distribution in dataset will affect 

clustering quality (Xiong et al. 2009, Wu 2012). The 

samples in the dataset can be categorized into majority 

classes (MA) and minority classes (MI) (Yen et al. 2009). 

The imbalanced dataset means that the number of samples 

in MA is much larger than the rest classes in MI. The 

influence of imbalanced dataset to K-means clustering 

quality is remarkable due to its uniformed size effect (Wu, 

2012). This problem can be solved through the improved 

algorithm for handling imbalanced dataset (Hu et al. 2009) 

or dataset pre-processing approaches (Drummond et al. 

2003 and Yen et al. 2009). 

In this article, fatigue and post-fatigue ultimate bearing 

capacity tests were conducted to evaluate the performances 

of CFRP cable using developed anchorage and AE testing 

was adopted to detect the damages of CFRP cable during 
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loading process. A clustering-based pattern recognition is 

used to recognize the damage patterns in the post-fatigue 

ultimate bearing capacity test based on similarities among 

the AE signals. 

 

 

2. The novel anchorage for CFRP cable 
 

In most researches on CFRP cable anchorage, the CFRP 

rods inside anchorage are parallel-arranged. This kind of 

configuration requires spacing among the CFRP bars for the 

contact requirement between CFRP bars and potting 

compound and it inevitably enlarges cable cross-section 

area. 

In this paper, a novel anchorage featured by the diverged 

arrangement of CFRP bars inside anchorage is developed as 

shown in Fig. 1. This configuration makes CFRP bars 

outside anchorage contact closely with each other and 

reduce cable cross-section area significantly. In the 

developed anchorage, the used potting compound is resin-

based with the high bonding property. Besides, the diverged 

arrangement of CFRP bars makes a better contact between 

CFRP bars and potting compound. 

These improvements in anchorage configuration is 

benefit to shorten the bonding length in anchorage. In this 

study, for achieving the minimalization of anchorage size, 

the bonding length in proposed anchorage is shortened as 

much as possible in anchorage design which means the 

reserved bonding capacity is limited. Therefore, the 

developed anchorage is much smaller than the current 

bonding anchorages for CFRP cables with the same or even 

less bearing capacity (Zhang et al. 2014, Mei et al. 2015).  

In this way, the shortened bonding length in anchorage 

will expose potting compound to suffer the most serious 

damage when CFRP cable is loaded. Therefore, if the 

performance of potting compound in developed anchorage 

ensures the anchoring requirements in experimental tests, it 

is no doubt this potting compound is also available in the 

anchorage with longer bonding length. 

 

 

3. Experiments 
 

3.1 Fabrication of CFRP bar and cable 
 

The CFRP bar with the nominal diameter of 4 mm was 

fabricated using pultruction technique. The pultruded CFRP 

bar is composed of 19 bunches of Toray T700SC-12K 

carbon fiber tows with fiber volume fraction approximate 

66%. The mechanical properties of Toray T700SC-12K 

carbon fibers and CFRP bar are listed in Table 1. 

 

 

Fig. 1 The novel anchorage for CFRP cables 

 

Table 1 Mechanical properties of Toray T700SC-12K 

carbon fiber and CFRP bar 

 carbon fiber CFRP bar 

Tensile Strength  (MPa) 4900 2587 

   E-Modulus   (GPa) 230 130 

  Elongation    (%) 1.8 1.6 

 

 

 

Fig. 2 EMI shielding of PZT patch 

 

 

In manufacture of CFRP cables, the surface of CFRP 

bars within anchoring zone should be treated by polishing 

the resin-enriched layer to avoid the weak interface between 

CFRP bar and potting compound. A total of two CFRP 

cables (Φ4-61) with an effective length of 4 m were 

manufactured using the developed anchorage in Fig. 1 for 

the fatigue and post-fatigue ultimate bearing capacity tests. 

 

3.2 AE monitoring system 
 

A DiSP-4/PCI system by Physical Acoustic Corporation 

was employed to receive and store AE signals. The digital 

passband filters in DiSP-4/PCI system was set from 10 kHz 

to 2 MHz that filter friction signals (<10 kHz) and covered 

the frequency band of all the damage patterns. The 

preamplifier is set at a gain of 40 dB and the threshold of 

acquisition trigger was set 50 dB which could filter all the 

electromagnetic interference (EMI) signals in zero-load 

state. The sampling rate of AE acquisition system was 5 

MHz. 

A circular PZT patch with a diameter of 6 mm and a 

thickness of 1 mm for monitoring the damages. All PZT 

patches were coated by copper film using magnetron 

sputtering vacuum coating machine to reduce EMI effect as 

shown in Fig. 2. 

 

3.3 Component-scale AE testing for damage pattern 
features  

 

The potting compound and CFPR bar are component 

materials in bonding anchorage. In this section, the damage 

pattern features of potting compound and CFRP bars were 

experimentally obtained.  

The potting compound in anchorage mainly suffers 

shear-type deformation, therefore, the potting compound 

coupon was loaded using double shear test. In double shear 

test, the potting compound cylinder (Φ30×90 mm) was 

loaded in a speed of 0.5 mm/min and a PZT patch was 

attached to the lateral surface of the specimen as shown in 

Fig. 3(a). The CFRP bars in cable are subjected to tensile 

loading, so tensile loading test of CFRP bars is performed.  
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(a) (b) 

Fig. 3 Double shear test of potting compound coupon (a) 

and tensile test of a CFRP bar (b) 

 

 

In the tensile test, the CFRP bar with a length of 150 

mm and a diameter of 4 mm was loaded in a speed of 3 

mm/min. The PZT patch was attached to the surface of the 

end of CFRP bar behind anchorage (no strain during tensile 

loading at this location), as shown in Fig. 3(b). 

 

3.4 Cable-scale AE testing for the recognition of da
mage pattern and evolution 

 

The fatigue test of CFRP cables was conducted 

following the PTI specification for the fatigue test of steel 

cable in cable-stayed bridge. The bending fatigue effect 

near the anchorage was considered by inserting shim plates 

between bearing plate and nut to create an angular deviation 

of 10
-2

 radian. The fatigue loads applied on the two CFRP 

cables were sinusoidal waveform with mean stress of 700 

MPa and constant fatigue stress amplitudes of 200 MPa 

(cable#1) and 300 MPa (cable#2) by a hydraulic fatigue 

testing machine for 2 million cycles. 

After the fatigue test, a post-fatigue ultimate bearing 

capacity test on cable#1 and #2 was performed. The two 

CFRP cables were tested using a horizontal reaction frame, 

as shown in Fig. 4. The cables were loaded stepwise with a 

loading interval of 400 MPa. Each loading step was divided 

into load-ascending stage and load-holding stage and the 

cable was loaded alternately until the broken, as shown in 

Fig. 5. In load-ascending stage, the hydraulic loading 

equipment was operated in load control mode with a speed 

of 2.5 kN/s, which made the duration of each load-

ascending stage last approximate 120 s. 

 

 

 

Fig. 4 Schematic of post-fatigue ultimate bearing capacity 

test and AE monitoring system 

 

 

Fig. 5 Stepwise loading scheme 

 

 

In load-holding stage, the static loading was held for 300 s 

in order that the damage evolutions at this stress level could 

be fully developed. 

During the fatigue test and ultimate bearing capacity test 

of CFRP cable, the PZT patch was attached on the out-

surface of anchorage as shown in Fig. 4. Therefore, the 

damages inside anchorage where is also the damage 

concentration of CFRP cable were detected and stored. 

 

 

4. Clustering-based damage pattern recognition 
 

Clustering-based pattern recognition is used to correlate 

AE signals with damage pattern. In this approach, AE 

feature extraction for clustering analysis, processing of 

imbalanced AE dataset, K-means combined K-NN for AE 

dataset partitioning and damage pattern labeling are the 

main sequential steps and they are elaborated in the 

following section. 

 

4.1 AE feature for clustering 
 

Wavelet packet transform (WPT) (Wang et al. 2006, 

Khamedi et al. 2010) is adopted to extract the frequencies 

and energy information from the nonstationary AE signal 

𝑓(𝑡), as shown in Fig. 6. 

Each wavelet packet component 𝑓 
 (𝑡) at decomposition 

level j is expressed as 







k

i

kj

i

kj

i

j ttctf )()( ,,   (1) 

where      
 is the wavelet packet coefficients,     

  is the 

wavelet packet by using Db4 mother wavelet. After j-th 

decomposition, the AE signal can be reconstructed by a 

summation of all the wavelet packet components as follows 

 

 

 

Fig. 6 Wavelet packet transform (WPT) binary tree 
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 
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j

i

i

j tftf
2

1
)()(  (2) 

The wavelet-based energy    
  with peak frequency 

ranging from fs∙2
-j-1
∙(i-1)   to fs∙2

-j-1
∙i, can be expressed as 

in logarithm form 

2log( ) log( ( ) )i i

j jE f t   (3) 

where fs is the sampling frequency of AE acquisition 

system. 

It is noted that the frequency bandwidth decreases with 

the decomposition level in WPT. In this paper, the 

decomposition level of AE signal is determined by the 

distribution of AE peak frequency because WPT may 

change the frequency characteristics near the cut-off 

frequencies of fs∙2
-j-1
∙i, which means that the cut-off 

frequencies at the j-th decomposition level should be far 

away from the AE peak frequency concentration ranges. 

 

4.2 Pre-processing of imbalanced AE dataset 
 

This imbalanced classes distribution in AE dataset is 

resulted by the inherent characteristics of multi-modes 

damage evolution in material as well as the acoustic 

attenuation. In this study, under-sampling approach in MA 

is used to deal with the imbalanced AE dataset for its less 

disturbance to the original dataset compared with over-

sampling (Drummond et al. 2003). In under-sampling 

approach, a subset of MA is extracted and then combined 

with MI to set up a training dataset. In training dataset, the 

size of MA subset plays an important role to the clustering 

quality which can be evaluated by MI’s F-measure as 

follows 

RP

RP
MP






2
 (4) 

where MP is MI’s F-measure for evaluating clustering 

quality, P is the precision rate and R is the recall rate 

defined as 

     P P

P P P N

T T
P R

T F T F
 

 
 (5) 

where TP is the size of MI samples which is correctly 

identified as MI sample in clustering result, FP is the size of 

MA samples in the training dataset that is falsely identified 

as MI sample in clustering result and FN is the size of MI 

samples that is falsely identified as MA sample in clustering 

result. In this paper, the size of MA subset in training 

dataset is parametric discussed to make MI’s F-measure 

reach maximum which means the clustering analysis can 

recognize the MI samples with high accuracy. 

Moreover, the MA subset selection approaches in 

training dataset also influence clustering quality to some 

extent. In this paper, random under-sampling and cluster-

based under-sampling (Yen et al. 2009) are adopted to 

select MA subset in training dataset. In random under-

sampling, the MA subset is randomly selected. In cluster-

based under-sampling, the original dataset is first divided 

into K clusters using regular clustering algorithm and the 

sizes of MA subset in each cluster are decided as follow 

1

/
( )

/

i i
i MA MI
MA MI K i i

MA MIi

S S
SS m S

S S


  


 (6) 

where     
  is the size of MA subset in cluster i, m is the 

size ratio of MA subset to MI in training dataset,    
  and 

    
 are the sizes of MA and MI in cluster i, and the     is 

the size of total MI. After the size of MA subset in each 

cluster is calculated by Eq. (6), the MA samples in each 

cluster in can be randomly or distance-based selected 

including cluster-based randomly selected approach, 

cluster-based most far and most near selected approaches 

which are decided according to the distance to MI samples 

in the same cluster (the details of the cluster-based 

approaches can be referred in the publication by Yen et al. 

2009). 

 

4.3 K-means combined K-NN for AE partationing 
 

K-means is used to partition the dataset by minimizing 

the objective function JK as follows 

2

1
( )

i k

K

K i kk
J

 
  x C

x m  (7) 

where Xi is the feature vector belonging to cluster Ck, mk is 

the mean feature vector of cluster Ck and K is the cluster 

number.  

The objective function JK is dependent on the cluster 

centroids initialization which is usually obtained through 

many iterations to converge a smaller JK. However, the 

searching for the initial cluster centroids is time consuming 

and may get a local optimal objective rather than the global 

optimal objective JK. Recently, an enhanced hierarchical K-

means approach which combines PCA and cluster centroids 

optimization is proposed (Alrabea et al. 2013) by 

calculating the partitioning position in principal component 

subspace as follows 

n

D
M

n

i

i

j j  


1 1  (8) 

where n is the total number of samples in dataset, Dj is the 

squared Euclidean distance between adjacent samples in 

principal component subspace, and M is the boundary of 

two clusters in the first principal component subspace. In 

this approach, K-means is carried out in a binary 

hierarchical framework and the optimal cluster number is 

determined by the empirical Davies-Bouldin criterion as 

follows 

 

 1
,

1
max

K i j

B i i j
i j

d d
D

K D 

  
  

  
  (9) 

where DB is Davies-Bouldin value with the cluster number 

K, di is the cluster radius of cluster Ci, Di,j are the Euclidean 

distance between the centroids of clusters Ci and Cj . 
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The clustering of dataset is performed by combing Eqs. 

(8) to (9). First, the dataset is categorized into two clusters 

by using Eq. (8), then the dataset in each cluster can be 

further categorized into two clusters (K=3, one of two 

clusters is further categorized or K=4, both clusters are 

further categorized). For each cluster number K, the DB is 

calculated. Therefore, the relationship between cluster 

number K and DB is established and the optimal cluster 

number will make DB reach minimum (Wang et al. 2006 

and Li et al. 2016). 

The clustering results with the optimal cluster number 

are further used as the classifier for the pattern 

identification of the samples by using supervised K-nearest 

neighbor classification (K-NN) (Godin et al. 2004), that is 

we randomly select a sample in AE dataset, and then 

determine to which cluster this sample belongs according to 

the distance of this sample to the nearest K samples in 

pattern classifiers. 

 

4.4 Partition-based pattern labeling 
 

After AE dataset partitioning, it is needed to label these 

partitioned classes of AE signals with the expected damage 

patterns (Moevus et al. 2008) based on the priori-

knowledge about the potential damage patterns. In this 

study, the damage pattern labeling is based on the frequency 

and time sequence characteristics of the AE signals 

obtained from component-scale AE testing in section 3.3. 

The procedure of clustering-based damage pattern 

recognition is shown in Fig. 7. The frequency and energy of 

wavelet components of AE signal are brought in AE feature 

vector by using WPT to form AE dataset. In AE dataset, the 

MA and MI are defined and under-sampling is adopted in 

MA to obtain the MA subset in training dataset. The size of 

MA subset in training dataset on clustering quality is 

parameter for discussion and the optimal training dataset 

that make the MI’s F-measure reach maximum is 

determined. PCA-guided hierarchical K-means combined 

with Davies-Bouldin criterion partitions the optimal training 

dataset and the clustering results are treated as the pattern 

classifiers for the classification of MA samples by using 

supervised K-NN algorithm.  

 

 

Fig. 7 Clustering-based damage patter recognition 

Finally, the partitioned AE signals are labeled with the 

expected damage patterns according to the prior knowledge 

about the AE peak frequencies and time sequence 

characteristics of the damage pattern. 

 

 

5. Results and discussion  
 

5.1 Damage pattern features of potting compound 
and CFRP bar 

 

The failure mode of potting compound and CFRP bars 

are obtained through the double shear loading test and 

tensile loading test are shown in Figs. 8(a) and 8(b). It can 

be seen the potting compound fails in typical shear-type, 

while CFRP bar fails in tensile-type. 

The peak frequency and energy of AE signals from 

potting compound coupon in double-shear test and CFRP 

bar in tensile test are shown in Figs. 9(a) and 9(b), 

respectively. It can be seen from Fig. 9(a) that the AE peak 

frequency distribution of potting compound is in the range 

of [50 150] kHz. The number of AE hits increases with 

loading and there exists a sudden high AE energy releases 

at the occurrence of brittle shear-type failure. Therefore, 

this damage process can be divided into the shear 

deformation of potting component (with low AE energy 

release) and the cracking coalescence along the interface 

between epoxy matrix and quartz granule inside potting 

compound (with high AE energy release). Thus, the damage 

status of potting compound can be measured by the 

accumulated AE energy release. For CFRP bars, Fig. 9(b) 

indicates that the frequency mainly is in the ranges of 

[70,150] kHz (blue points), [180, 300] kHz (red points), and 

[350, 500] kHz (black points), respectively, which 

correspond to the damage patterns of matrix cracking, 

matrix-fiber debonding and fiber breakage based on the 

conclusions from de Groot et al. (1995), Ramirez-Jimenez 

et al. (2004), Gutkin et al. (2011) and Li et al. (2016). 

From the perspective of loading history, it can be seen 

from Fig. 9(a) that there is no correlationship between AE 

peak frequency and loading history, which means that the 

shear deformation of potting compound occurs in the entire 

loading process. For CFRP bars, the AE peak frequency 

within the range of [70,150] kHz appears in whole loading 

process, implying that the matrix cracking also exists during 

the whole loading stage; while the fiber-matrix debonding 

 

  
(a) Potting compound (b) CFRP bar 

Fig . 8 Shear-type failure of potting compound coupon 

(a) and tensile-type failure of CFRP bar (b) 
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(a) Potting compound 

 
(b) CFRP bar 

Fig. 9 Peak frequency and energy of AE signals 

 

 

([180, 300] kHz) mainly occurs at the mid and later loading 

stages; and fiber failure ([350, 500] kHz) occurs at the last 

loading stage. 

Statistics on the peak frequency of AE signals is 

conducted to obtain the kernel probability density 

estimation of the AE peak frequency distributions of potting 

compound and CFRP bar, as shown in Fig. 10. It is clearly 

seen that there exists overlap in peak frequencies caused by 

shear deformation in potting compound (including cracking 

coalescence) and matrix cracking in CFRP bar. Statistics on 

the peak frequency of AE signals is conducted to obtain the 

kernel probability density estimation of the AE peak 

frequency distributions of potting compound and CFRP bar, 

as shown in Fig. 10. It is clearly seen that there exists 

overlap in peak frequencies caused by shear deformation in 

potting compound (including cracking coalescence) and 

matrix cracking in CFRP bar. 

 

 

Fig. 10 Kernel probability density of the AE peak 

frequency of potting compound and CFRP bar 

5.2 AE signal analysis during the fatigue loading test 

 
Fig. 11 is the peak frequency and energy distribution of 

AE signals during fatigue tests. Most of AE signals’ peak 

frequency are under 150 kHz, indicating that the damages 

of fiber-matrix debonding and fiber fracture in CFPR bars is 

quite small. In addition, it is worth noted that the 

distribution of AE hits and energy along time domain (with 

the peak frequency under 150 kHz) is homogeneously 

during the whole fatigue loading process, indicates these 

AE signals are released by the deformation of materials 

rather than damage. 

 

5.3 Damage pattern recognition using AE signal 
 

In the post-fatigue ultimate bearing capacity test of 

CFRP cables, there is no sudden load drop before cable 

fracture. The relationship between cable elongations at 

different load-holding stages and tensile loading is shown in 

Fig. 12(a). As shown that CFRP cable behaves at linear 

stage. The nominal stress causing first CFRP bar breakage 

in cable#1 and #2 are 2362 MPa and 2283 MPa, 

respectively, which are little lower than the mean fracture 

strength of CFRP bar in Table 1 due to the non-uniform 

strength distribution in various CFRP bars. The breakage of 

CFRP bars locates at approximate 15~20 cm to the mouth 

of socket, as shown in Fig. 12(b), indicating the anchorage 

in this study is reliable. 

The relationship between AE peak frequency and 

loading history of cables are shown in Fig. 13, which 

provides an overview on the evolution of multiple damage 

patterns inside the anchorage and the CFRP bars. 

 

 

 
(a) cable#1 

 
(b) cable#2 

Fig. 11 Peak frequency and energy of AE signals vs. 

fatigue loading cycles 
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(a) CFRP cable’s elongation 

 
(b) Fracture mode 

Fig. 12 CFRP cable’s elongations at load-holding stages 

vs. loading forces (a) and fracture mode of CFRP cable 

(b) 

 

 

As shown in Fig. 13, most of AE signals are released at 

the load-ascending stages due to the growth of strain. 

Comparison with the experimental results of damage 

pattern features of potting compound and CFRP bar as 

shown in Fig. 8, the AE signals in Fig. 13 with the peak 

frequency range of [170 300] kHz and above 300 kHz are 

released by fiber-matrix debonding and fiber fracture in 

CFRP bar. For the AE signals with peak frequency below 

170 kHz, the peak frequency denotes matrix cracking in 

CFRP bar and shear deformation of potting compound, 

which implies that the two damage patterns release the 

same peak frequency and the overlap of peak frequency 

makes it be impossible to classify these AE signals based on 

its peak frequency distribution only. 

To further recognize the damage pattern by using the 

AE signals, the AE signal is decomposed by WPT to extract 

both frequency and frequency-related energy 

characteristics. It can be seen from Fig. 13 that there are 

almost no AE signals with peak frequency ranging from 

270 to 330 kHz. Therefore, the AE signal is decomposed 

three levels with 8 wavelet packet components and the first 

and second cut-off frequencies are 312 kHz and 624 kHz, 

respectively. Fig. 14(a) is a representative AE signal. The 

wavelet packet components and their energy are calculated 

by using Eqs. (1) and (3) and shown in Figs. 14(b) and 

14(c). The frequency spectrum of 𝑓 
  which contains the 

highest energy and 𝑓(𝑡) are calculated by FFT and shown 

in Fig. 14(d). 

It can be seen from Fig. 14(d) that the peak frequency of 

𝑓 
  (defined as primary peak frequency in this study and 

calculated by Fast Fourier Transform) is very close to the 

peak frequency of entire AE signal 𝑓(𝑡), which means that 

the primary peak frequency contains the same damage 

information as the peak frequency in 𝑓(𝑡). Therefore, the 

primary peak frequency and corresponding logarithmic 

energy are brought in AE features for clustering analysis. In 

addition, the logarithmic energies of 𝑓 
 ,  𝑓 

 ,  𝑓 
 for 

describing energy distribution in frequency domain are also 

included in AE feature vector for clustering analysis. Thus, 

the feature vector of the i-th AE signal in time sequence is 

written as follows 

1 2 3

( ) 3 3 3[ , log( ), log( ), log( ), log( )]i prim primP E E E EAE  (10) 

Therefore, the AE dataset, which is a collection of AE 

feature vectors, is a n×5 matrix. Before performing PCA, 

the elements of each variable have to be pre-processed to 

make the variables centered (mean value equal to 0) and 

standardized to unit norm as below 

 

 

 

 
(a) cable#1 

 
(b) cable#2 

Fig. 13 AE peak frequency distribution vs. loading 

history of cables 
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where 𝑥  
 is the value of variable j in   ( ), μ is the mean of 

variable j, n is the number of AE signals.  

 

 
(a) Time-history of a representative AE signal 

 
(b) Wavelet components 𝑓 

 , 𝑓 
 , 𝑓 

  with frequencies of 

[0, 312] kHz, [312, 624] kHz, and [624, 936] kHz 

 
(c) Wavelet component energy distribution 

 
(d) Comparison of primary peak frequency and peak 

frequency 

Fig. 14 Wavelet packet-based feature of a representative 

AE signal 

Table 2 The number of AE signal in various primary peak 

frequency ranges 

Primary peak 

frequency (kHz) 

G1 

<170 

G2  

[170 300] 

G2 

>300 

cable#1 51664 447 325 

cable#2 56479 463 359 

 

 

The principal components of the pro-processed AE 

feature dataset matrix are obtained by singular value 

decomposition (SVD) as follows 

T  ,    AE USV F US  (12) 

where   ̅̅ ̅̅  is pre-processed AE feature dataset, U is the left 

singular vector, V is right singular vector, S is diagonal 

matrix of singular values, F is the principal components. 

The numbers of AE signals according to the primary 

peak frequency during entire loading process of cable#1 and 

#2 are listed in Table 2. It is observed that the amount of 

AE signals with primary peak frequency above 170 kHz 

only accounts for approximate 1.5% of total AE signals 

number, which indicates that there exist severe imbalanced-

classes distributions in AE datasets and it will result in 

serious deviation between clustering results and true classes 

due to the uniformed size effect of K-means. Therefore, the 

AE datasets must be pre-processed to reduce the 

imbalanced-classes degree to ensure the clustering quality. 

the uniformed size effect of K-means. Therefore, the AE 

datasets must be pre-processed to reduce the imbalanced-

classes degree to ensure the clustering quality. 

In Table 2, G1 is categorized into MA samples, while 

G2 and G3 are grouped into MI samples. After performance 

PCA on   ̅̅ ̅̅ , the first two principal components are plotted 

in Fig. 15. As shown, that the boundaries between G2 and 

G3 are distinct, while there exist slight overlaps near the 

boundaries between G1 and G2. The inherent structures of 

G1 are not clear and needed to be further investigated.  

On the other hands, it is worth noting that the number of 

kept principal components for K-means clustering may 

affect clustering results to some extent. In this study, the 

number of kept principal components is determined 

according to the clustering quality measured by the MI’s F-

measure. It is founded that the clustering quality improves 

with the increase of kept principal components. But the 

clustering results are almost unchanged when the number of 

kept principal components is no less than 3. Therefore, the 

first four principal components which contains more than 

90% of total variation in   ̅̅ ̅̅  are kept for clustering 

analysis. 

Fig. 16 show the influences of the size and selection 

approach of MA subset on clustering quality. From Fig. 16, 

the variation tendency of MI’s F-measure with the size of 

MA subset for cable#1 and cable#2 are quite different. This 

is attributed to the different overlap degree near the 

boundary between G1 and G2 as shown in Fig. 15. The 

overlap degree in cable#1 is lower than cable#2. The 

relatively clear boundary in cable#1 increases the robust 

against the influence of imbalanced-classes distribution, i.e. 

keeps K-means clustering with a relatively high accuracy in 

a wider range of the ratio of MA subset to MI than cable#2. 
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(a) cable#1 

 
(b) cable#2 

Fig. 15 The first two principal components of AE 

features 

 

 
(a) cable#1 

 
(b) cable#2 

Fig. 16 The influences of the size and selection approach 

of MA subset on MI’s F-measure 

Once the optimal ratio m is determined, the MA subset 

samples by random and cluster-based selections (including 

cluster-based random, cluster-based most near and most far 

selections) are respectively combined with MI samples to 

form the optimal training datasets. Then, the hierarchal K-

means is carried out in the principal component subspace of 

these optimal training datasets by using Eq. (8) and the 

optimal cluster number K is determined by the Davies-

Bouldin criterion in Eq. (9).  

The Davies-Bouldin values on the clustering results in 

different optimal training dataset with cluster number is 

shown in Fig. 17. The Davies-Bouldin values by random 

and SBC-random selections in Fig. 17 are the average that 

the process of setting up of optimal training dataset and 

clustering analysis are repeated for 10 times. The optimal 

cluster numbers in all optimal training datasets are 4. The 

cluster results are used as pattern classifiers for the pattern 

identification of the rest MA samples (the MA samples not 

in the optimal training dataset) by using the supervised K-

NN classification, here K=3 in this study. After the further 

supervised classification of the rest MA samples, there are 

no any rest MA samples falling into MI. 

The classification results of the rest MA dataset based 

on the pattern classifiers (the number of pattern is 2 

according to clustering results in Fig. 17) are also evaluated 

by Davies-Bouldin criterion and shown in Fig. 18. It is 

concluded from Fig. 18 that the random selection approach 

achieves the best separation in MA dataset and the 

corresponding classifications of MA samples are shown in 

Fig. 19. 

 

 
(a) cable#1 

 
(b) cable#2 

Fig. 17 Cluster number vs. Davies-Bouldin value in 

training datasets 
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Fig. 18 Davies-Bouldin criterion on the classifications of 

the rest MA samples 

 

 

 
(a) cable#1 

 
(b) cable#2 

Fig. 19 Classification of MA samples based on the 

pattern classifiers formed by random selection 

 

 

The multi-mode damage evolution inside anchorage can 

be measured by the normalized accumulated AE energy 

releases as shown in Fig. 20. According to the obtained 

frequency and time sequence characteristics of the damage 

pattern in section 5.1, the Class-1 is regarded to be released 

by the shear deformation in potting compound for its linear 

distribution in all load-ascending stages. Class-2 is release 

by matrix cracking in CFRP bars. Class-3 and Class-4 are 

release by the AE signals with primary peak frequency in 

the ranges of [170 300] kHz and above 300 kHz, 

respectively. Therefore, they are labeled as matrix-fiber 

debonding and fiber fracture in CFRP bar. 

 
(a) cable#1 

 
(b) cable#2 

Fig. 20 Multi-mode normalized accumulated energy 

release vs. tensile loading 

 

 

From Fig. 20, the normalized AE energy releases by 

damage patterns of fiber-matrix debonding and fiber 

fracture in CFRP bars which are closely related with 

material failure are only 0.145 and 0.026 in cable#1, 0.125 

and 0.028 in cable#2 at the stress level of 1200 MPa. There 

is almost no damage at the load-holding stages of 1200 

MPa. Thus, it is reasonable to make the conclusion that 

CFRP bar is reliable under 1200 MPa. For the potting 

compound, the AE energy release is almost linear 

distribution and energy release in all the load-holding stages 

are quite small which means the damage status in potting 

compound is far from failure in the whole loading process. 

 

 

6. Conclusions 
 

A novel anchorage for CFRP cable was developed and 

its performances was investigated through fatigue and post-

fatigue ultimate bearing tests. Acoustic emission (AE) 

technique is employed to monitor the damages inside 

anchorage. Following conclusions are obtained: 

• The double-shear test of potting compound and tensile 

loading test of CFRP bar for obtaining the frequency feature 

in AE signals show the existence of peak frequency 

overlapping which make it difficult to discriminate AE 

signals only through frequency features with peak 

frequency in the frequency overlapping range. Therefore, 
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the primary peak frequency and the energies of different 

wavelet components are extracted by WPT as AE feature 

vector in unsupervised K-means clustering analysis to build 

up damage pattern classifiers for the pattern identification 

of the AE signals. 

• In fatigue test, the frequency and energy distribution of 

AE signals during the loading process is homogeneous and 

only a small amount of AE signals are released by fiber-

matrix debonding and fiber fracture. Thus, it is concluded 

that the fatigue damage inside anchorage is quite small. 

• The PCA-guided hierarchical K-means clustering 

combined with K-NN is employed to partition the AE 

signals during the post-fatigue ultimate bearing capacity 

test. The partitioning results indicate that there are four 

classes in AE dataset. And they are labeled with the 

expected damage patterns according to the peak frequency 

and time sequence characteristics of the damage pattern 

features of potting compound and CFPR bar. 

• The AE testing of the damages inside anchorage during 

the post-fatigue ultimate bearing capacity test reveals: the 

multi-mode damage evolution in CFRP bars is in 

accordance with the mature failure process of CFRP 

composite, which indicates that the anchorage damage to 

CFRP bars is small to avoid premature damage at relatively 

low stress level; For potting compound, there is no obvious 

damage occurs in potting compound during the whole 

loading process for the linear increase of the cumulated AE 

energy released by potting compound which means the 

potting compound is reliable in this novel anchorage. 

 

 

Acknowledgments 
 

This study is financially supported by the NSFC (Grant 

No. 51478039) and the Beijing Nova Program (Grant No. 

Z151100000315053). 

 

 

References 
 

Abdi, H. and Williams, L.J. (2010), “Principal component 

analysis”, Wiley Interdisciplinary Reviews: Computational 

Statistics, 2(4), 433-459. 

Alrabea, A., Senthilkumar, A.V., Al-Shalabi, H. and Bader, A. 

(2013), “Enhancing K-means algorithm with initial cluster 

centers derived from data partitioning along the data axis with 

PCA”, J. Adv. Comput. Netw., 1(2), 137-142. 

de Groot, P.J., Wijnen, P.A.M. and Jansen, R.B.F. (1995), “Real-

time frequency determination of acoustic emission for different 

fracture mechanisms in carbon/epoxy composites”, Compos. 

Sci. Technol., 55(4), 405-412. 

Ding, C. and He, X.F. (2004), “K-means clustering via principal 

component analysis”, Proceedings of the International 

Conference on Machine Learning, Banff, Alberta, Canada.  

Drummond, C. and Holte, R.C. (2003), “C4.5, class imbalance, 

and cost sensitivity: Why under-sampling beats over-sampling”, 

Workshop on learning from imbalanced datasets. Washington 

DC: Citeseer. 

Godin, N., Huguet, S., Gaertner, R. and Salmon, L. (2004), 

“Clustering of acoustic emission signals collected during tensile 

tests on unidirectional glass/polyester composite using 

supervised and unsupervised classifiers”, Ndt & E Int., 37(4), 

253-264. 

Gutkin, R., Green, C.J., Vangrattanachai, S., Pinho, S.T., 

Robinson, P. and Curtis, P.T. (2011), “On acoustic emission for 

failure investigation in CFRP: Pattern recognition and peak 

frequency analyses”, Mech. Syst. Signal. Pr., 25(4), 1393-1407. 

Hu, Y, Guo, D.F., Fan, Z.W., Dong, C., Huang, Q.H., Xie, S.K., 

Liu, G.F., Tan, J., Li, B.P. and Xie, Q.W. (2015), “An improved 

algorithm for imbalanced data and small sample size 

classification”, J. Data Anal. Inform. Process., 3(3), 27-33. 

Khamedi, R., Fallahi, A. and Oskouei, A.R. (2010), “Effect of 

martensite phase volume fraction on acoustic emission signals 

using wavelet packet analysis during tensile loading of dual 

phase steels”, Mater. Design, 31(6), 2752-2759. 

Li, D.S., Hu, Q., Ou, J.P. and Li, H. (2011), “Fatigue damage 

characterization of carbon fiber reinforced polymer bridge 

cables: Wavelet transform analysis for clustering acoustic 

emission data”, Sci. China. Technol. Sci., 54(2), 379-387. 

Li, L., Swolfs, Y., Straumit, L., Xiong, Y. and Lomov, S.V. (2016), 

“Cluster analysis of acoustic emission signals for 2D and 3D 

woven carbon fiber/epoxy composites”, J. Compos. Mater., 

50(14), 1921-1935. 

Mei, K.H., Li, Y.J. and Lu, Z.T. (2015), “Application study on the 

first cable-stayed bridge with CFRP cables in China”, J. Traffic 

Transportation Eng., 2(4), 242-248. 

Meier, U. (2012), “Carbon fiber reinforced polymer cables: Why? 

Why Not? What If?”, Arab. J. Sci. Eng., 37(2), 399-411. 

Meier, U. and Farshad, M. (1996), “Connecting high-performance 

carbon-fiber-reinforced polymer cables of suspension and 

cable-stayed bridges through the use of gradient materials”, J. 

Comput-Aided. Mater. Design., 3(1-3), 379-384. 

Moevus, M., Godin, N., R’Mili, M., Rouby, D., Reynaud, P., 

Fantozzi, G. and Farizy, G. (2008), “Analysis of damage 

mechanisms and associated acoustic emission in two SiCf/[Si-

B-C] composites exhibiting different tensile behaviours. Part II: 

Unsupervised acoustic emission data clustering”, Compos. Sci. 

Technol., 68(6), 1258-1265. 

Nair, A. and Cai, C.S. (2010), “Acoustic emission monitoring of 

bridges: Review and case studies”, Eng. Struct., 32(6), 1704-

1714. 

Noistering, J.F. (2000), “Carbon fibre composites as stay cables 

for bridges”, Appl. Compos. Mater., 7(2-3), 139-150. 

Ramirez-Jimenez, C.R., Papadakis, N., Reynolds, N., Gan, T.H., 

Purnell, P. and Pharaoh, M. (2004), “Identification of failure 

modes in glass/polypropylene composites by means of the 

primary frequency content of the acoustic emission event”, 

Compos. Sci. Technol., 64(12), 1819-1827. 

Rizzo, P. and di Scalea, L.F. (2001), “Acoustic emission 

monitoring of CFRP cables for cable-stayed bridges, 6th Annual 

International Symposium on NDE for Health Monitoring and 

Diagnostics”, International Society for Optics and Photonics. 

129-138. 

Wang, G., Wang, Z.Z., Chen, W.T. and Zhuang, J. (2006), 

“Classification of surface EMG signals using optimal wavelet 

packet method based on Davies-Bouldin criterion”, Med. Biol. 

Eng. Comput., 44(10), 865-872. 

Wu, J. (2012), Advances in K-means Clustering A Data Mining 

Thinking, Springer Berlin Heidelberg, Germany. 

Xiong, H., Wu, J. and Chen, J. (2009), “K-means clustering versus 

validation measures: A data-distribution perspective”, IEEE. T. 

Syst. Man. CY. B., 39(2), 318-331. 

Yang, Y.C. and Nagarajaiah, S. (2013), “Output-only modal 

identification with limited sensors using sparse component 

analysis”, J. Sound Vib., 332(19), 4741-4765. 

Yen, S.J. and Lee, Y.S. (2009), “Cluster-based under-sampling 

approaches for imbalanced data distributions”, Expert. Syst. 

Appl., 36(3), 5718-5727. 

Zhang, K.Y., Fang, Z., Nanni, A. and Chen, G.P. (2014), 

“Experimental study of a large-scale ground anchor system with 

432



 

Recognition of damage pattern and evolution in CFRP cable with a novel bonding anchorage by acoustic emission 

FRP tendon and RPC grout medium”, J. Compos. Constr., 

19(4), 04014073. 

  

 
BS 

433




