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1. Introduction 
 

Nowadays, nanostructures such as nanorods, nanobeams 

and nanoplates are being more and more used in micro/nano 

devices and systems such as biosensor, atomic force 

microscope, CNT-reinforced structures, micro-electro-

mechanical systems (MEMS), and nano-electro-mechanical 

systems (NEMS), due to their high mechanical, thermal, 

chemical, and electronic characteristics (Ekinci and Roukes 

2005, Zemri et al. 2015, Kolahchi et al. 2016a, Bilouei et 

al. 2016, Madani et al. 2016, Kolahchi 2017, Zamanian et 

al. 2017, Kolahchi et al. 2017a,b, Rahmani et al. 2017, 

Kolahchi and Cheraghbak 2017, Hajmohammad et al. 2017, 

Zarei et al. 2017, Shokravi 2017a,b,c, Bakhadda et al. 

2018). Conducting experiments with nanoscale specimens 

is not only very complicated and difficult, but very 

expensive, because of the limitations in the mechanical 

analyses of nanostructures. Hence, theoretical modeling and 

numerical simulation becomes an important issue 

concerning i t s  nanoengineer ing appl ica t ions o f  
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nanostructures. In these applications, size effects often 

become very significant, the cause of which needs to be 

explicitly addressed with an important interest. It should be 

noted that conventional plate models based on classical 

continuum elasticity theories was widely used in a very 

long time and does not suitable for nanoplates due to 

neglecting size influence in nanostructures. This incited 

many researchers to establish plate models based on size-

dependent continuum theories which account for the small 

scale effects. The nonlocal elasticity theory assumes that the 

stress at a reference point accounts for not only the strain at 

the reference point, but also on all other points in the 

domain (Eringen 1972, 1983). Thus, the small scale effects 

are included through the use of constitutive equations. The 

nonlocal elasticity theory has been widely used in small 

scale structures. In this context, a large number of studies 

have been performed to analyze the static bending 

(Aghababaei and Reddy 2007, Duan and Wang 2007, 

Reddy 2010, Zidi et al. 2014, Kolahchi et al. 2015, Yan et 

al. 2015, Liu et al. 2016, Mouffoki et al. 2017), dynamic 

(Pradhan and Phadikar 2009, Murmu and Pradhan 2009, 

Pradhan and Murmu 2011, Wang et al. 2011, Bessaim et al. 

2015, Belkorissat et al. 2015, Larbi Chaht et al. 2015, 

Bounouara et al. 2016, Arani et al. 2016, Ahouel et al. 

2016, Akbas 2016, Besseghier et al. 2017, Shen et al. 2017, 
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Abstract.  In this paper, a novel simple shear deformation theory for buckling analysis of single layer graphene sheet is 

formulated using the nonlocal differential constitutive relations of Eringen. The present theory involves only three unknown and 

three governing equation as in the classical plate theory, but it is capable of accurately capturing shear deformation effects, 

instead of five as in the well-known first shear deformation theory (FSDT) and higher-order shear deformation theory (HSDT). 

A shear correction factor is, therefore, not required. Nonlocal elasticity theory is employed to investigate effects of small scale on 

buckling of the rectangular nano-plate. The equations of motion of the nonlocal theories are derived and solved via Navier's 

procedure for all edges simply supported boundary conditions. The results are verified with the known results in the literature. 

The influences played by Effects of nonlocal parameter, length, thickness of the graphene sheets and shear deformation effect on 

the critical buckling load are studied. Verification studies show that the proposed theory is not only accurate and simple in 

solving the buckling nanoplates, but also comparable with the other higher-order shear deformation theories which contain more 

number of unknowns. 
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Bouafia et al. 2017, Shokravi 2017d) and stability (Pradhan 

2009, Pradhan and Phadikar 2010, Narendar 2011, Kolahchi 

and Bidgoli 2016, Shokrani et al. 2016, Kolahchi et al. 

2016b, Khetir et al. 2017, Kolahchi et al. 2017c, Bellifa et 

al. 2017a, Yazid et al. 2018) responses of nanostructures. A 

critical review of more recent works on the development of 

nanobeams and plates models can be found in (Thai et al. 

2017). All of these models were based on classical plate 

theory (CPT), first-order shear deformation plate theory 

(FSDT) and higher-order plate theory (HSDT). The CPT is 

only applicable for thin plates, ignores shear deformation 

effects and provides reasonable results for thin plates and 

gives acceptable results for thin structures (plates) only 

(Darilmaz 2015). However, it underestimates deflection and 

overestimates buckling load and frequency of moderately 

thick or thick plates (Ghugal and Shimpi 2002). The FSDT 

accounts for the transverse shear deformation effect and 

gives acceptable results for moderately thick and thin 

plates, but needs a shear correction to compensate for the 

difference between the actual stress state and the constant 

stress state due to a constant shear strain assumption 

through the thickness (Castellazzi et al. 2013, Al-Basyouni 

et al. 2015, Bellifa et al. 2016, Bouderba et al. 2016, Youcef 

et al. 2018). The HSDTs account for shear deformation 

effects by higher-order variations of in-plane displacements 

or both in-plane and transverse displacements through the 

thickness, provides a better prediction of response of thick 

plate and do not required any shear correction factor and 

satisfy zero shear stress conditions at top and bottom 

surfaces of plates (Bouderba et al. 2013, Tounsi et al. 2015, 

Bousahla et al. 2014, 2016, Fekrar et al. 2014, Ait Amar 

Meziane et al. 2014, Belabed et al. 2014, Hebali et al. 2014, 

Ait Atmane et al. 2015, Bourada et al. 2015, Ait Yahia et al. 

2015, Mahi et al. 2015, Meradjah et al. 2015, Hamidi et al. 

2015, Kar and Panda 2015, Taibi et al. 2015, Attia et al. 

2015, 2018, Mehar and Panda 2016, Bennoun et al. 2016, 

Boukhari et al. 2016, Draiche et al. 2016, Kar et al. 2016, 

Beldjelili et al. 2016, Bellifa et al. 2017b, Chikh et al. 2017, 

Benadouda et al. 2017, Abdelaziz et al. 2017, El-Haina et 

al. 2017, Menasria et al. 2017, Sekkal et al. 2017a, b, 

Klouche et al. 2017, Zidi et al. 2017, Fahsi et al. 2017, 

Meksi et al. 2018, Benchohra et al. 2018, Abualnour et al. 

2018, Zine et al. 2018, Kaci et al. 2018, Bouhadra et al. 

2018). Recently, Tounsi and his co-workers (Houari et al. 

2016, Tounsi et al. 2016, Hachemi et al. 2017, Belabed et 

al. 2018) developed a new simple shear deformation plate 

theory for bending response, buckling and vibration of 

simply supported FG plate with only three unknown 

functions. 

The aim of this paper is to extend the new simple shear 

deformation theory of Houari et al. (2016), Tounsi et al. 

(2016), Hachemi et al. (2017) and Belabed et al. (2018) to 

the micro/nanoscale plates. The most interesting feature of 

this theory is that it accounts for a parabolic variation of the 

transverse shear strains across the thickness and satisfies the 

zero traction boundary conditions on the top and bottom 

surfaces of the plate without using shear correction factors. 

The proposed theory contains fewer unknowns and 

equations of motion than the first-order shear deformation 

theory. Indeed, unlike the previous mentioned theories, the 

number of variables in the present theory is same as that in 

the CPT. Equations of motion are derived from Hamilton’s 

principle based on the nonlocal constitutive relations of 

Eringen. Analytical solutions for buckling load are 

presented for simply supported plates, and the obtained 

results are verified by comparing the obtained results with 

those reported in the literature to verify the accuracy of the 

present theory. 

 

 

2. Theoretical formulation 
 

Consider a SLGS of length al , width bl  and 

thickness h  as indicated in Fig. 1. The origin of the 

coordinate system is considered at the center of the middle 

surface of the graphene sheet. Unlike the previous 

mentioned theories, the number of unknown functions 

involved in the present theory is only three as in CPT. 

 
2.1 Kinematics of the present plate model 
 

The displacement field satisfying the conditions of 

transverse shear stresses (and hence strains) vanishing at a 

point ( x , y , 2/h ) on the outer (top) and inner (bottom) 

surfaces of the plate, is given as follows 
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(1) 

where 0u , 0v , and 0w  are three unknown displacement 

functions of midplane of the plate. )(zf  is a shape 

function representing the distribution of the transverse shear 

strains and shear stresses through the thickness of the plate 

and is given as 
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In this work, the shape function in Eq. (2) is expressed 

by a hyperbolic function and assures an accurate 

distribution of shear deformation through the nanoplate 

thickness and allows to transverse shear stresses vary as 

parabolic across the thickness as satisfying shear stress free 

surface conditions without using shear correction factors. 

Indeed, it should be mentioned that contrary to the first 

shear deformation theory (FSDT), the proposed theory does 

not require shear correction factors. 

The non-linear von Karman strain–displacement 

equations are as follows 
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where 








































































































y

w

x

w

x

v

y

u

y

w

x

v

x

w

x

u

xy

y

x

0000

2

00

2

00

0

0

0

2

1

2

1






, 





























































yx

w

y

w

x

w

k

k

k

xy

y

x

0
2

2
0

2

2
0

2

2

 (4a) 

 





























































yx

w

y

w

x

w

xy

y

x

)( 0
22

4
0

4

4
0

4







, 
















































3
0

3

3
0

3

0

0

 

x

w

y

w

xz

yz




 (4b) 

and 

 zfzg )( , 
2

0
2

2

0
2

0
2

y

w

x

w
w









  (5) 

 

2.2 Stability equations 
 
The governing differential equations of motion of the 

new plate theory in case of local form is as follows (Tounsi 

et al. 2016) 
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with 
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0
xN and 

0
yN  the in-plane loads perpendicular to the 

edges 0x and 0y , respectively,
0
xyN the distributed 

shear forces parallel to the edges 0x and 0y , 

respectively. 

The stress resultants N , M  and S  are defined by 
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2.3 Constitutive relations 
 

The nonlocal theory considers that the stress at a point is 

related not only on the strain at that point but also on strains 

at all other points of the body. Such dependencies are 

related to the inter-atomic bonds between an atom and its 

neighboring atoms (Kiani 2013). According to the nonlocal 

continuum theory (Eringen 1983), the nonlocal stress tensor 

    21  (9) 

where 
2 is the Laplacian operator in two-dimensional 

Cartesian coordinate system;  is the classical stress tensor 

at a point related to the strain by the Hooke’s law; and 

 20ae is the nonlocal parameter which includes the 

small scale effect, a  is the internal characteristic length 

and 0e  is a constant appropriate to each material. 

For an isotropic micro/nanoscale plate, the nonlocal 

constitutive relation in Eq. (9) takes the following forms 
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where ( x , y , yz , xz , xy ) and ( x , y , yz , xz

, xy ) are the stress and strain components, respectively. 

The stiffness coefficients, ijC , can be expressed as 

,
1 22211
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E  and  are the elastic modulus and Poisson’s ratio, 

respectively. By utilizing Eqs. (3), (8) and (11), the stress 

resultants can be written in terms of displacements as 
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where 
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2.4 Equations of motion in terms of displacements 
 

The nonlocal equations of motion of the present 

formulation can be written in terms of generalized 

displacements ( 0u , 0v and w ) by using the linear 

differential operator  21    on Eq. (6) 

 

    ,02
5

0
5

114

0
5

661223

0
5

662

0
3

6612

3

0
3

11
0

2

66122

0
2

662

0
2

11























































x

w
B

yx

w
BB

yx

w
B

yx

w
BB

x

w
B

yx

v
AA

y

u
A

x

u
A

ssss

 
(14a) 

 

   

  ,0                

2

5

0
5

224

0
5

661232

0
5

66

2

0
3

66123

0
3

22
0

2

66122

0
2

662

0
2

22























































y

w
B

yx

w
BB

yx

w
B

yx

w
BB

y

w
B

yx

u
AA

x

v
A

y

v
A

ssss

 
(14b) 

 

   

 

   

 

 

 

0

2

222

22

2 

22

22

2

6

0
6

556

0
6

448

0
8

2262

0
8

6626

0
8

66

44

0
8

66128

0
8

11

6

0
6

2224

0
6

6612

42

0
6

6612

6

0
6

1132

0
5

6623

0
5

665

0
5

22

4

0
5

66124

0
5

66125

0
5

11

4

0
4

2222

0
4

66124

0
4

11

3

0
3

222

0
3

66122

0
3

66123

0
3

11






















































































































































NN

y

w
A

x

w
A

y

w
H

yx

w
H

yx

w
H

yx

w
HH

x

w
H

y

w
D

yx

w
DD

yx

w
DD

x

w
D

yx

v
B

yx

v
B

y

v
B

yx

v
BB

yx

u
BB

x

u
B

y

w
D

yx

w
DD

x

w
D

y

v
B

yx

v
BB

yx

u
BB

x

u
B

sssss

sss

sss

ss

ssss

sssss



 
(14c) 

 

3. Analytical solution of simply supported nanoplate 
 

Consider a simply supported rectangular plate with 

length al  and width bl  under in-plane load in two    

directions  0,, 0
2

0
1

0  xycrycrx NNNNN  . We are concerned 

with the exact solutions of Eq. (14) for a simply supported 

nanoplate. Based on Navier solution procedure, the 

displacements are assumed as follows 
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where mnU , mnV  and mnW  are arbitrary parameters to 

be determined, alm /   and bln /  . 

Substituting Eq. (15) into Eq. (14), the analytical 

solutions can be obtained from 
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where 
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4. Validation and comparison of results  
 

In this section, the accuracy of the presented new plate 

theory for the buckling of single-layered graphene sheet 

(SLGS) is demonstrated by comparing the analytical 

solution with those of other available results in the 

literature. In addition, the influences of the nonlocal 

parameter and shear deformation on the mechanical 

buckling behaviors of the micro/nanoscale plates are 

investigated. The governing differential equations of motion 

of the nonlocal present new three variable plate theory are 

written in Eq. (14). By setting ( 00 ae ) in Eq. (14) 

classical plate equations are obtained. In addition, by 

putting IED  and b in Eq. (15), nonlocal solutions 

for buckling of beam of the present theory are obtained. A 

beam with the following material properties and 

geometrical dimensions are considered for comparison: 

elastic modulus GPaEb 30 , length nmlbeam 10 , 

height beamh  varied, critical buckling loads are non-

dimensionalised as IElNN acr
2 . 
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Table 1 Non-dimensional critical buckling load 

hlbeam

 

 2nm

 

CPT 

Pradhan  

and  Murmu

  

(2009) 

FSDT 

Hosseini

Hashemi

 and  

Samaei  

(2010) 

HSDT 

Pradhan  

(2009) 

Present 

100 

0 9.8791 9.8671 9.8671 9.8669 

0.5 9.4156 9.4029 9.4031 9.4029 

1 8.9947 8.9803 8.9807 8.9806 

1.5 8.6073 8.5939 8.5947 8.5945 

2 8.2537 8.2393 8.2405 8.2403 

20 

0 9.8177 9.8067 9.8067 9.8027 

0.5 9.3570 9.3455 9.3455 9.3417 

1 8.9652 8.9527 8.9528 8.9222 

1.5 8.5546 8.5420 8.5421 8.5386 

2 8.2114 8.1898 8.1900 8.1867 

 

 

In Table 1, a comparison of the first non-dimensional 

critical buckling loads N   is carried out for the above 

mentioned beam, with the Euler-Bernoulli theory (EBT) 

obtained Pradhan and Murmu (2009), the first order shear 

deformation theory (FSDT) reported by Hosseini Hashemi 

and Samaei (2010) and also the higher order shear 

deformation theory (HSDT) obtained by Pradhan (2009). 

For the FSDT solutions the shear correction factor 65sk  

is adopted. A good agreement is demonstrated between the 

present results for the beam and those of Pradhan (2009) 

and Hosseini Hashemi and Samaei (2010) and this whatever 

the value of the nonlocal parameter   and various values 

of thickness ratio hlbeam . 

In this section, a simply supported square nanoplate 

made of single-layered graphene sheet (SLGS) is 

considered to illustrate the effects of size (length or breadth) 

of the graphene sheet, mode of buckling, nonlocal 

parameter, and thickness of the graphene sheet on the 

mechanical buckling respone of nanoplates. The geometric 

and mechanical properties of the SLGS are: TPaE 02.1 ,

3.0 , nm34.0h . We define buckling load ratio as 

follows 

Buckling Load Ratio: 

 

 theorylocal using calculated load Buckling

 theorynonlocal using calculated load Buckling
  

 

(18) 

Fig. 1 shows the variation of critical load ratio for the 

first few modes of buckling with respect to the length l  of 

the graphene sheet and for different small scale coefficients. 

The length of the plate is varied from 5 to 30 nm. It can be 

seen that the buckling load ratio decreases with increase in 

nonlocal parameter and increases with increase in length of 

graphene sheet. This is more prominent in higher modes of 

buckling. 

 

 

 

Fig. 1 Variation of buckling load ratio with the length of 

a square nanoplate for various nonlocal parameters 

 

 

 

Fig. 2 Variation of buckling load ratio with the length of 

a square grapheme sheet for various modes of buckling 

for m = n 

 

 

 

Fig. 3 Variation of buckling load ratio with the length of 

a square grapheme sheet for various modes of buckling 

for m n 
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Fig. 4 Comparison of buckling load ratio of simply 

supported square nanoplate 

 

 

To illustrate the influence of the high mode number on 

the buckling load of SLGS, variation of buckling load ratio 

with side length of SLGS and various mode of buckling are 

plotted in Figs. 2 and 3. 

The SLGS is assumed to be a square plate and the length 

of the plate is varied from 5 to 30 nm and the value of 

nonlocal parameter ( ae0 ) is assumed to be 
2nm2 . It can 

be seen that the buckling load ratios decrease with increase 

in buckling modes. 

Fig. 4 shown the effect of the size of the square 

nanoplate. As the size of the square nanoplate increases 

from nm 5 x nm 5  to nm 25 x nm 25 the buckling load 

ratio decreases drastically. The difference in buckling load 

ratio increases at higher values of the nonlocal scaling 

parameter. 

 

 

5. Conclusions 
 

A novel simple shear deformation theory of single layer 

graphene sheet is developed for buckling analysis of 

nanoplates. The present theory has only three unknown and 

three governing equation as in the classical plate theory. 

The present theory is capable of capturing small scale and 

shear deformation of nanoplates, and satisfies the zero 

traction boundary conditions on the top and bottom surfaces 

of the nanoplates without considering the shear correction 

factor, instead of five as in the well-known higher-order 

shear deformation theory (HSDT). Based on the nonlocal 

differential constitutive relation of Eringen, the nonlocal 

equations of motion of the proposed theory are derived 

from Hamilton's principle. However, it is observed that the 

buckling load ratio decreases with increase in nonlocal 

small scale parameter and this variation is more prominent 

in higher modes of buckling. It can be concluded that the 

present theory, which does not require shear correction 

factor, is not only simple but also comparable to the first-

order and higher order shear deformable theory. 
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