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1. Introduction 
 

Beams are versatile structural members with application 

in engineering. Therefore, many articles deal with analysis 

of such structures (Giunta et al. 2014, Hozhabrossadati et 

al. 2015, Ebrahimi and Shafiei 2016). Beams can be used to 

form a rather new structure called double-beam system. 

These systems are a type of vibration absorber. In these 

systems, an auxiliary beam is attached to the main beam to 

suppress excessive vibrations of the primary beam. 

Moreover, double-beam systems are used for modelling of 

flouting- slab tracks, which are widely used to control 

vibration from underground trains (Hussein and Hunt 

2006). Therefore, it has been under consideration of 

numerous researchers (Kukla 1994, Vu et al. 2000, Inceoglu 

and Gurgoze 2001, Oniszczuk 2003, Abu-Hilal 2006, Li 

and Hua 2007, Lee 2009, Simsek and Cansiz 2012). 

Gurgoze et al. (2001) studied the lateral vibration problem 

of a double-beam system consisting of two cantilever Euler-

Bernoulli beams coupled by a double mass-spring system 

attached to them in-span. Gurgoze and Erol (2004) dealt 

with the eigencharacteristics of a laterally vibrating system 

made up of two clamped-free Euler-Bernoulli beams 

carrying tip masses to which several double mass-spring 

systems were attached across the span. De Rosa and 

Lippiello (2007) used the differential quadrature method for 

free vibration analysis of a double-beam system embedded 

in soil of Winkler-type. The system of governing 

differential equations was discretized by means of the 

differential quadrature method. Zhang et al. (2008)  
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investigated the properties of free transverse vibration and 

buckling of a double-beam system under compressive axial 

loading on the basis of Euler-Bernoulli beam theory. The 

two beams of the system were simply supported and 

continuously joined by a Winkler elastic layer. Later, Zhang 

et al. (2008) dealt with the forced vibration of an elastically 

connected simply-supported double-beam system under 

compressive axial loading. The dynamic response of the 

system caused by arbitrarily distributed continuous loads 

was obtained. It was concluded that the steady-state 

vibration amplitudes of the two beams are dependent on the 

axial compression. Jun and Hongxing (2008) analyzed a 

three-beam system by dynamic stiffness method. Stojanovic 

et al. (2011) considered the free transverse vibration and 

buckling of a double-beam continuously joined by a 

Winkler elastic layer under compressive axial loading with 

influence of rotary inertia and shear. The governing 

problem was analytically solved and natural frequencies as 

well as critical buckling load were found. Ariaei et al. 

(2011) investigated the dynamic response of an elastically 

connected multiple-beam system due to a moving load 

based on the Timoshenko beam theory. The solution method 

involved a change of variables and modal analysis to 

decouple and solve the governing differential equations. 

Stojanovic and Kozic (2012) studied the forced vibration 

and buckling of a double-beam system continuously joined 

by a Winkler elastic layer under compressive axial loading 

based on both Rayleigh and Timoshenko beam theories. 

The influence of rotary inertia, shear deformation and 

compressive load very thoroughly investigated. Lin and 

Yang (2013) considered the free vibration of a double-beam 

system consisting of two beams which were connected by a 

double mass-spring system. The free vibration response of 

the system for different boundary conditions of the beams 

was obtained, considering the compatibility of deformation 
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of the springs of the mass-spring system. Mao and 

Wattanasakulpong (2015) employed the Adomian modified 

decomposition method to investigate the free vibration and 

stability of a cantilever double-beam system, which was 

continuously joined by a Winkler-type elastic layer. The 

free end of each beam was restrained by a translational 

spring and subjected to a combination of compressive axial 

and follower loads. Rezaiee-Pajand and Hozhabrossadati 

(2016) dealt with the free vibration of double-beam made 

up of axially functionally graded materials.  

It is interesting to mention that though dynamic analysis 

of beams coupled with single-degree-of-freedom mass-

spring system has been extensively treated by researchers 

(Laura et al. 1977, Magrab 2007, Cha and Zhou 2008, Yang 

et al. 2012, Rajabi et al. 2013, Hozhabrossadati et al. 2014, 

Hozhabrossadati et al. 2015), dynamic analysis of beams 

carrying two-degree-of-freedom mass-spring systems has 

been studied by a few researchers (Jen and Magrab 1993, 

Wu 2002, Wu 2005, El-Sayed and Farghaly 2016). Chang 

and Chang (1998) determined the natural frequencies and 

mode shapes of an Euler-Bernoulli beam with a two-degree-

of-freedom mass-spring system. They used the well-known 

Laplace transform with respect to the spatial variable for the 

analysis of the mechanical system. Banerjee (2003) used the 

dynamic stiffness method for free vibration analysis of 

beams and frameworks carrying a two-degree-of-freedom 

mass-spring system. The effect of the mass-spring system 

was represented by replacing it with equivalent stiffness 

coefficients which were added to the appropriate stiffness 

coefficients of the bare beam. Chen (2006) studied the 

problem of free vibration of a uniform beam carrying 

multiple two-degree-of-freedom mass-spring system using 

the numerical assembly method. Combining the coefficient 

matrices for all two-degree-of-freedom mass-spring systems 

attached to the beam and the coefficient matrices for the 

boundary conditions of the beam, he obtained the overall 

coefficient matrix of the restrained beam. Cha and Chan 

(2009) employed one or more two-degree-of-freedom mass-

spring systems to mitigate vibration of structures. They 

enforced nodes at specified locations along an arbitrary 

supported elastic structure subject to an external harmonic 

excitation. 

The above-mentioned references show that there is no 

available study on the free vibration analysis of a double-

beam system connected by a two-degree-of-freedom mass-

spring system. Furthermore, in problems treated by 

researchers regarding free vibration of beams coupled with 

two-degree-of-freedom mass-spring systems, the two-

degree-of-freedom mass-spring system is connected to the 

main beam by means of only translational springs. In this 

paper, we present a free vibration formulation for double-

beam system connected by a two-degree-of-freedom mass-

spring system. The two-degree-of-freedom mass-spring 

system is connected to each beam by means of a 

translational and a rotational spring. It is shown that the 

inclusion of the rotational springs tremendously increase the 

complexity of the problem. 

 

 

 

2. Problem description 
 

In this study, the mechanical system shown in Fig. 1 is 

investigated. The system consists of two elastically 

restrained cantilever beams which are connected by a two-

degree-of-freedom mass-spring system. The length of each 

beam is L. The first ends of beams at x=0 are elastically 

restrained against rotation and translation. The other ends 

are assumed free. The two-degree-of-freedom mass-spring 

system is connected to the left beam at Lx 1  and to the 

right beam at Lx 2 . The connection of the mass-spring 

system to each beam is made by means of a translational 

spring and a rotational spring.  

As shown in Fig. 1, the double-beam system is divided 

into four segments. Therefore, four differential equations 

may be used to express the vibratory motion of the 

mechanical system. Besides, since the attached mass-spring 

system is assumed to be two-degree-of-freedom, two 

differential equations should be specified in order to 

describe the behavior of the mass-spring system. 

In the next section, the eigenvalue problem governing 

the free vibration of the mechanical system under study is 

formulated. First, four differential equations of motion of 

the beams are introduced. Second, two differential 

equations which govern the dynamic behavior of the two-

degree-of-freedom mass-spring system are derived. Third, 

the pertinent boundary and compatibility conditions of the 

problem are prescribed. 

 

 

3. Formulation of eigenvalue problem 
 

This section is concerned with the formulation of the 

governing eigenvalue problem. The differential equations of 

motion of the beams and the mass-spring system along with 

the pertinent boundary and compatibility conditions of the 

problem form the eigenvalue problem. 

 

3.1 Equations of motion of beams 
 

As mentioned previously, each beam is divided into two 

segments and therefore four differential equations should be 

written for stating the transverse vibrations of beams. These 

four equations of motion can be written as: 

4 2

4 2

4 2

4 2

0

0

i i

i i

u u
EI A

x t

v v
EI A

x t





 
 

 

 
 

 

 (1) 

with 1,2i  . In Eq. (1) ( , )iu x t  and ( , )iv x t  are the 

deformation functions of the left and right beam, 

respectively. Furthermore, EI  denotes the flexural rigidity, 

  shows the mass density and A  indicates the cross-

sectional area of the beams. 

 

3.2 Equations of motion of mass-spring system 
 

To derive the differential equations of the two-degree-

of-freedom mass-spring system, the Newton's second law of  
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motion is utilized. Consider the mass-spring system. The 

system has a translational degree of freedom which is 

denoted by ( )z t  and an angular degree of freedom 

indicated by ( )t . Furthermore, two translational springs 

and two rotational springs apply four forces and moments to 

the rigid mass as shown in Fig. 2. The following equations 

are considered 

y G

G G

F m a

M I 








 (2) 

in which m  and GI  are the suspended mass and the mass 

moment of inertia of the mass with the axis of rotation at 

the center of the mass, respectively. Besides, Ga  and   

indicate the translational and angular acceleration of the 

mass at the mass center. Herein, it is assumed that the 

suspended mass is a rigid bar of length L  . Therefore, GI  

for the rigid bar can be written as 

2

12
G

m L
I


  (3) 

where m AL  and   is a constant which denotes the 

ratio of the suspended mass to the mass of each beam. 

After substituting the needed values into Eq. (2), it takes the 

next form 

2

2 2

R L

L R R L G

L
F F m z

L L
M M F F I





 
   

 

 
   

 (4) 

 

 

 

 

 

where LF  and RF  are the forces of the translational 

springs and LM  and RM  are the moments of the 

rotational springs. Besides, an overdot shows a derivative 

with respect to time t. The values of these forces and 

moments will be found in the subsequent sections. The 

differential equations expressed in Eq. (4) are the governing 

equations of the behavior of the two-degree-of-freedom 

mass-spring system which are to be solved in the next 

sections. 

 

3.3 Boundary conditions 
 

In this subsection, the pertinent boundary and 

compatibility conditions of the problem are found. Two 

boundary conditions at each end support, two boundary 

conditions at each free end and four compatibility 

conditions at each connection point should be specified. 

The boundary conditions of the end with elastic supports 

are of the form 

1 1 1

2 1 1

3 1 1

4 1 1

(0, ) (0, ) 0

(0, ) (0, ) 0

(0, ) (0, ) 0

(0, ) (0, ) 0

K u t EIu t

K u t EIu t

K v t EIv t

K v t EIv t

 

  

 

  

 (5) 

in which 1K  to 4K  are the stiffnesses of the end springs. 

Boundary conditions of the free ends are 

 

 

 

 

2 1

2 1

2 2

2 2

(1 ) , 0

(1 ) , 0

(1 ) , 0

(1 ) , 0

EIu L t

EIu L t

EIv L t

EIv L t









  

  

  

  

 (6) 

 

Fig. 1 The double-beam under study 

 

Fig. 2 The forces and moments acting on the mass-spring system 
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At the location of the connected springs, the deflection 

and slope of the beam are continuous. Therefore 

   

   

   

   

1 1 2

1 1 2

1 2 2

1 2 2

, 0,

, 0,

, 0,

, 0,

u L t u t

u L t u t

v L t v t

v L t v t











 



 

 (7) 

The shearing forces of the segments of the beam at the 

connection must be in equilibrium with the force of the 

translational spring. Therefore 

   

   
1 1 2

2 2 2

, 0, 0

, 0, 0

L

R

EIu L t EIu t F

EIv L t EIv t F





   

   
 (8) 

in which 

 

 

2

2

(0, ) ( )

(0, ) ( ) ( )

T

L L

T

R R

F K u t z t

F K v t z t L t

 

  
 (9) 

where T

LK  and T

RK  indicate the stiffness of the 

translational springs of the mass-spring system. Likewise, 

the equilibrium of the bending moments of the beam and 

the moments of the rotational spring gives 

   

   
1 1 2

2 2 2

, 0, 0

, 0, 0

L

R

EIu L t M EIu t

EIv L t M EIv t





   

   
 (10) 

where 

2

2

(0, ) ( )

(0, ) ( )

R

L L

R

R R

M K u t t

M K v t t





    

  
  

 (11) 

in which R

LK  and R

RK  demonstrate the stiffness of the 

rotational springs of the mass-spring system. Sixteen 

relations given by Eqs. (5)-(8) and (10) are the boundary 

and compatibility conditions of the problem. In the next 

section, the solution of the studied eigenvalue problem is 

presented. 

 

 

4. Solution of problem by fourier transform 
 

In the previous section, the governing eigenvalue 

problem was formulated. To solve the problem, the well-

known Fourier transform with respect to the time is utilized. 

The Fourier transform and inverse Fourier transform have 

the following definitions 

( ) ( )

1
( ) ( )

2

i t

i t

F f t e dt

f t F e dt


























 (12) 

The first equality in Eq. (12) is the Fourier transform of 

function ( )f t  while the second one in Eq. (12(b)) is the 

inverse Fourier transform that converts a Fourier transform 

back to ( )f t . Taking the Fourier transform of both sides of 

Eq. (1) gives 

 

 

4 2

4 2

4 2

4 2

0

0

i i

i i

u u
F EI A F

x t

v v
F EI A F

x t





  
  

  

  
  

  

 (13) 

Using the next properties of the Fourier transform 

 

 

( , ) ( )

( , ) ( , ) ( ) ( )

( )

n n

n n

n
n

n

F u x t U x

F u x t v x t U x V x

u d U
F

x dx

u
F i U

t

   





  

 
 

 

 
 

 

 (14) 

results in 

4
4

4

4
4

4

0

0

i
i

i
i

d U
U

dx

d V
V

dx





 

 

 (15) 

wherein ( )U x  and ( )V x  are the Fourier transformed of 

( , )u x t  and ( , )v x t . These equations are the governing 

differential of beams in the frequency domain. Besides,   

is the frequency parameter and has the next shape 

2
4 A

EI

 
   (16) 

Similarly, applying the Fourier transform on the 

governing equations of the rigid bar leads to 

2

2

2

2 2

R L

L R R L G

L
F F m Z

L L
M M F F I





 
     

 

 
     

 (17) 

in which Z  and   are the Fourier transformed of z  

and  . Finally, the transformed boundary and 

compatibility conditions take the succeeding form 

 

 

 

 

1 1 1

2 1 1

3 1 1

4 1 1

2 1

2 1

2 2

2 2

1 1 2

1 1 2

1 2 2

1 2 2

(0) (0) 0

(0) (0) 0

(0) (0) 0

(0) (0) 0

(1 ) 0

(1 ) 0

(1 ) 0

(1 ) 0

( ) (0)

( ) (0)

( ) (0)

( ) (0)

K U EIU

K U EIU

K V EIV

K V EIV

EIU L

EIU L

EIV L

EIV L

U L U

U L U

V L V

V L V

EI

















 

  

 

  

  

  

  

  



 



 

1 1 2

2 2 2

1 1 2

2 2 2

( ) (0) 0

( ) (0) 0

( ) (0) 0

( ) (0) 0

L

R

L

R

U L EIU F

EIV L EIV F

EIU L M EIU

EIV L M EIV









   

   

   

   

 

(18) 
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LF , RF , LM  and RM  can be written as 

 

 

2

2

(0)

(0)

T

L L

T

R R

F K U Z

F K V Z L

 

   
 (19) 

 

2

2

(0)

(0, )

R

L L

R

R R

M K U

M K V t

  
  

  
  

 (20) 

The solutions of Eq. (15) can be expressed as 

1 1 2 3 4

2 5 6 7 8

1 9 10 11 12

2 13 14 15 16

( ) sin cos sinh cosh

( ) sin cos sinh cosh

( ) sin cos sinh cosh

( ) sin cos sinh cosh

U x C x C x C x C x

U x C x C x C x C x

V x C x C x C x C x

V x C x C x C x C x

   

   

   

   

   

   

   

   

 (21) 

where 1C  and 16C  are constants which can be determined 

utilizing the pertinent boundary and compatibility 

conditions of the problem.  

Considering Eqs. (19) and (20), one needs the values of 

Z  and   to use LF , RF , LM  and RM . Thus, these 

two parameters are to be found. Substituting Eqs. (19) and 

(20) into Eqs. (17) results in 

    2

2 2(0) (0)
2

T T

L R

L
K U Z K V Z L m Z

 
         

 
 (22a) 

 

 

 

2 2 2

2

2

(0) (0, ) (0)
2

(0)
2

R R T

L R R

T

L G

L
K U K V t K V Z L

L
K U Z I 

                 


    

 (22b) 

These two equations can be rewritten as 

 2 2

2 2

2

(0) (0)

T T T

L R R

T T

L R

L
m K K Z m L K

K U K V

 
 

     
 

  

 (23a) 

 

2
2

2 2 2 2

2 2 2

(0) (0) (0) (0)
2 2

T T R R T

L R G L R R

R R T T

R L L R

L L L
K K Z I K K K

L L
K V K U K U K V


    

       
   

 
    

 (23b) 

Eqs. (23(a)) and (23(b)) can be solved for Z  and  , 

but herein, for sake of brevity , we do not present the long 

result. Then, the obtained values for Z  and   are 

substitute in Eqs. (19) and (20) and the values of LF , RF , 

LM  and RM  are in hand. Finally, substitution of LF , 

RF , LM  and RM  into Eq. (18) gives the pertinent 

boundary and compatibility conditions of the problem. 

Applying these conditions on functions 1U  to 2V  given 

by Eq. (21) leads to a set of algebraic equations in 1C  to 

16C  as unknowns. For a nontrivial solution, the 

determinant of the coefficient matrix is set to zero, giving 

the frequency equation of the problem. The frequency 

equation is numerically solved and the frequency 

parameters or the eigenvalues of the problem, i.e.,   are 

obtained. 

 

 

5. Finite element solution 
 

As another way, the studied problem is solved using the 

well-known finite element method. To do so, each beam is 

discretized into NE two-node Euler-Bernoulli beam 

elements. Fig. 3 shows the discretized beams. Using the 

Hermite shapes functions, the stiffness and mass matrices of 

each element are of the next form 

2 2

3

2 2

2 2

2 2

12 6 12 6

6 6 6 2

12 6 12 6

6 2 6 4

156 22 54 13

22 4 13 3

420 54 13 156 22

13 3 22 4

e e

e e e e

e

e ee

e e e e

e e

e e e ee
e

e e

e e e e

l l

l l l lEI

l ll

l l l l

l l

l l l lml

l l

l l l l

 
 

 
         

  

 
 

 
       

    

K

M

 (24) 

where el  is the length of each element. It is worth 

mentioning that the inclusion of the attached two-degree-of-

freedom in the finite element analysis gives rise to some 

changes in the some elements of the global stiffness matrix. 

Furthermore, two rows and columns are added to the global 

stiffness and mass matrices. Therefore, the stiffness and 

mass matrices become ( 2) ( 2)ndof ndof    matrices, 

where ndof demonstrates the number of degrees of freedom 

of the beams. 

To find the changes in the stiffness and mass matrices, 

we act as follows. The degrees of freedoms of the 

connection points of the beam are renamed as (see Fig. 3) 

1 1 1 2

2 3 2 4

2 1 ; 2 2

2 1 ; 2 2

NE d NE d

NE d NE d

   

   
 (25) 

Moreover, the two degrees of freedom of the rigid bar are 

5

6

4 5

4 6

d NE

d NE

 

 
 (26) 

Then, the forces and moments of the suspended mass-

spring system is found based on theses degrees of freedoms 

1 5 1 5

2 6 3 6

6 5
1 7 2

6 5
2 8 4

( )

( )

( )

( )

F K d d

F K d d

d d
M K d

L

d d
M K d

L

 

 


 




 



 (27) 

where 
1F , 

2F , 
1M  and 

2M  are the forces and moments 

of the right and left spring, respectively. 
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Fig. 3 The discretized system 

 

 

Expanding the corresponding rows of 
1d  and 

2d  in 

the stiffness matrix gives the following relations 

1 1

2 2

,1 1 ,2 2 1

,1 1 ,2 2 1

d d

d d

k d k d F

k d k d M

    

    
 (28) 

or 

1 1

2 2

,1 1 ,2 2 5 1 5

6 5
,1 1 ,2 2 7 2

( )

( )

d d

d d

k d k d K d d

d d
k d k d K d

L

     


     



 (29) 

from which the modified elements of the stiffness matrix 

are found 

1 1 1 1

1 5

2 2 2 2

2 5

2 6

, , 5

, 5

, , 7

7
,

7
,

ˆ

ˆ

ˆ

ˆ

ˆ

d d d d

d d

d d d d

d d

d d

k k K

k K

k k K

K
k

L

K
k

L

 

 

 




 


 
(30) 

Likewise, expanding the corresponding rows of 
3d  and 

4d  in the stiffness matrix yields 

3 3 3 3

3 6

4 4 4 4

4 5

4 6

, , 6

, 6

, , 8

8
,

8
,

ˆ

ˆ

ˆ

ˆ

ˆ

d d d d

d d

d d d d

d d

d d

k k K

k K

k k K

K
k

L

K
k

L

 

 

 




 


 
(31) 

In order to find the new elements of the stiffness matrix, 

the Newton's second law of motion 
y GF ma  for the 

rigid bar is written 

1 2 GF F ma   (32) 

or 

2 5 6
5 1 5 6 3 6( ) ( ) ( )

2

d d
K d d K d d m


      (33) 

This equation can be rearranged as 

2

5 1 6 3 5 5 6 6 5 6( ) 0
2 2

m m
K d K d K d K d d d        (34) 

Therefore, the elements of the new first row in the stiffness 

and mass matrices are found as 

 

5 1

5 3

5 5

5 6

, 5

, 6

, 5

, 6

ˆ

ˆ

ˆ

ˆ

d d

d d

d d

d d

k K

k K

k K

k K

 

 





 (35) 

 

5 5

5 6

,

,

ˆ
2

ˆ
2

d d

d d

m
m

m
m





 (36) 

Similarly, writing the equation 
G GM I   for the 

suspended mass-spring results in 

6 1

6 2

6 3

6 4

6 5

6 6

6 6

5 6

5
,

7
,

6
,

8
,

5 7 8
, 2

6 7 8
, 2

,

,

ˆ
2

ˆ

ˆ
2

ˆ

ˆ
2

ˆ
2

ˆ
12

ˆ
12

d d

d d

d d

d d

d d

d d

d d

d d

K
k

K
k

L

K
k

K
k

L

K K K
k

L

K K K
k

L

mL
m

mL
m



 


 

 



  




 







 

 
(37) 

Therefore, the modified stiffness and mass matrices are at 

hand. Finally, the natural frequencies of the mechanical 

system under study are obtained from the following relation 

2 0 K M  (38) 

Fortunately, the obtained results by both exact and FE 

method are in an excellent agreement which indicates the 

accuracy of both solutions (coincide up to four decimal 

digits). However, herein the FE results for the sake of 

brevity are not presented. 

 
 
6. Special case 
 

In this section, it is assumed that the two-degree-of-

freedom system is attached to the beams via two 

translational springs. In other words, the rotational springs 

are not considered in the analysis. In this case, the moments 

of rotational springs, i.e., LM  and RM , are omitted in 

the last two relations in Eq. (18). Moreover, Eq. (2) may be 

written as following 

2

2 2

R L

R L G

L
F F m z

L L
F F I





 
   

 

 
 

 (39) 
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Substituting the values of translational springs forces 

given by Eq. (19) into Eq. (39) results in the following 

relations 

 2 2

2 2

2
2

2 2

2

(0) (0)

2 2 2

(0) (0)
2 2

T T T

L R R

T T

L R

T T T

L R G R

T T

L R

L
m K K Z m L K

K U K V

L L L
K K Z I K

L L
K U K V

 



 
     

 

  

    
     

   

 
 

 (40) 

or in matrix form 

2 2

2
2

2 2

2 2

2

2 2 2

(0) (0)

(0) (0)
2 2

T T T

L R R

T T T

L R G R

T T

L R

T T

L R

L
Zm K K m L K

L L L
K K I K

K U K V

L L
K U K V

 



 
    
 

 
         

 

  
     
 

 (41) 

The solution of this inhomogeneous system of equations 

for Z  and   is of the following form 

   

2 2 2 2

2 2

2 2 2 4

2 2

2 2 2 2

2

2

42 2

4 (4 ) (0) ( 4 ) (0)

4 ( )(4 ) 4

2 (0) (0) 2 (0) (0)

4 ( )(4 ) 4

T T T

L R G R G

T T T T

L R L R G G

T T T

R L R

T T T T

L R L R G G

K K L I L K I L
Z

K K L K K I L I

L K K

m u m v

m m

m v m u u v

m m

K

K K L K K I L I

 

 

 

 

    

   

    



      
 








 


 

 
(42) 

Substituting the obtained values for Z  and  , one 

can find the amounts of 
RF  and 

LF . 

 
 
7. Numerical examples 
 

In this section, frequency parameters and mode shapes 

of the mechanical system under study are presented. Due to 

the generality of the model, numerous cases can be 

investigated, but for sake of brevity, only a few cases are 

under consideration. First case is devoted to the double-

beam system which consists of two cantilever beams 

coupled with the two-degree-of-freedom system with 

properties 10T T

L RK K  , 1R R

L RK K  , 1 2 0.5    and 

1  . To simulate two cantilever beams, the values of the 

stiffness of the end springs are assumed infinity, i.e., 

1 2 3 4, , ,K K K K  . The first six mode shapes and 

dimensionless frequency parameters of the system are given 

in Fig. 4. The first dimensionless frequency parameter is

1 1.827982L   and the sixth one is 6 4.752937L  . In 

order to study the influence of the suspended mass, the first 

case is examined, but when 0.5  . Fig. 5 shows the first 

six mode shapes and dimensionless frequency parameters of 

the double-beam. From the result it is evident that 

decreasing the suspended mass results in an increase in the 

values of L . For example, the value of first L  

increases form 1.827982 to 1.956881 when value of   

decreases from 1 to 0.5. 

As a third case, the effect of translational springs of the 

mass-spring system is investigated. In this case, a system 

with parameters 1 2 3 4, , ,K K K K  , 1T T

L RK K  , 

1R R

L RK K  , 1 2 0.5    and 0.5   is considered. The 

first six mode shapes and dimensionless frequency 

parameters of the mechanical system is shown in Fig. 6. It 

can be easily seen that the values of L  have decreased 

owing to decreasing the stiffness of the translational springs. 

Fourth case studies the influence of the rotational 

springs of the mass-spring system on the response of the 

double-beam. The previous system but when the values of 
R

LK  and 
R

RK  decreased to 0.1 is considered. Therefore, 

the properties of the system are: 1 2 3 4, , ,K K K K  , 

1T T

L RK K  , 0.1R R

L RK K  , 1 2 0.5    and 0.5  . 

Fig. 7 depicts the first six modes as well as the 

corresponding values of the dimensionless frequency 

parameters. As expected, decreasing the stiffness of the 

rotational springs results in decreasing the values of L . It 

is interesting to note that the translational springs have 

greater effects on the dynamic behavior of the system, 

comparing the values of L  of the third and fourth case. 

 

 

 

  

1λ L 1.827982  2λ L 2.152622  

  

3λ L 2.338430  
4λ L 2.984850  

  

5λ L 4.746554  6λ L 4.752937  

Fig. 4 The first six eigenfrequencies and eigenfunctions of 

case #1 for the following symmetric inputs 

6 6 6 6

1 2 3 43 3

T T R R

L R L R3 3

1 2

EI EI EI EI
K 10 ;K 10 ;K 10 ;K 10 ;

L L L L

EI EI EI EI
K 10 ;K 10 ;K 1 ;K 1 ;

L L L L

0.5; 0.5;L  L; 1;γ 


   




   


   


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1λ L 1.956881  2λ L 2.154478  

  

3λ L 2.596531  
4λ L 3.537450  

  

5λ L 4.748691  6λ L 4.764906  

Fig. 5 The first six eigenfrequencies and eigenfunctions of 

case #2 for the following symmetric inputs 

6 6 6 6

1 2 3 43 3

T T R R

L R L R3 3

1 2

EI EI EI EI
K 10 ;K 10 ;K 10 ;K 10 ;

L L L L

EI EI EI EI
K 10 ;K 10 ;K 1 ;K 1 ;

L L L L

1
0.5; 0.5;L  L; ;

2
γ 


   




   



   


 

 

 

Last example of systems with symmetric spring 

conditions concerns the influence of the length of the rigid 

rod on the system. The chosen parameters are 

1 2 3 4, , ,K K K K  , 1T T

L RK K  , 0.1R R

L RK K  , 

1 0.3  , 2 0.5   and 1.2  . The first six mode shapes 

and frequency parameters of the problem are presented in 

Fig. 8. Apparently, no general conclusion can be drawn 

from the results, since the position of the connections the 

mass-spring system to beams are not symmetric.  

Next, a fully non-symmetric case is investigated. The 

properties of the system are assumed: 1 10K  , 2 1K  , 

3 0.1K  , 4 100K  , 1T

LK  , 0.1T

RK  , 0.01R

LK  , 

10R

RK  , 1 0.3  , 2 0.6   and 2  . Fig. 9 presents the 

first six mode shapes and dimensionless frequency 

parameters of the system. It is evident that due to the non-

symmetry of the model, no symmetric mode exists. 

Finally, the special case studied in section 6 is examined. In 

this case, two beams are coupled with two-degree-of-

freedom system via only translational springs, i.e., 

0R R

L RK K  . The convergence of the finite element 

solution is studied for this example. Table 1 gives the values 

of the first six frequency parameters for 

1 2 3 4, , ,K K K K  , 10T T

L RK K  , 1 2 0.5    and 

1  . The excellent agreement between outcomes of both 

exact and finite element methods can be observed. It can be 

concluded from Table 1 that the exact results can be caught 

by lower number of elements for lower modes while for 

higher modes more elements is needed to reach exact 

solution. 

 

 

  

1λ L 1.400786  2λ L 1.937547  

  

3λ L 2.061325  
4λ L 2.792141  

  

5λ L 4.700908  6λ L 4.701526  

Fig. 6 The first six eigenfrequencies and eigenfunctions of 

case #3 for the following symmetric inputs 

6 6 6 6

1 2 3 43 3

T T R R

L R L R3 3

1 2

EI EI EI EI
K 10 ;K 10 ;K 10 ;K 10 ;

L L L L

EI EI EI EI
K 1 ;K 1 ;K 1 ;K 1 ;

L L L L

1
0.5; 0.5;L  L; ;

2
γ 


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


   



   


 

 
 

  

1λ L 1.395372  2λ L 1.906201  

  

3λ L 1.918652  4λ L 2.026336  
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5λ L 4.699247  6λ L 4.699365  

Fig. 7 The first six eigenfrequencies and eigenfunctions of 

case #4 for the following symmetric inputs 

6 6 6 6

1 2 3 43 3

T T R R

L R L R3 3

1 2

EI EI EI EI
K 10 ;K 10 ;K 10 ;K 10 ;

L L L L

EI EI EI EI
K 1 ;K 1 ;K 0.1 ;K 0.1 ;

L L L L

1
0.5; 0.5;L  L; ;

2
γ 


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


   



   


 

 

  

1λ L 1.833097  2λ L 2.011085  

  

3λ L 2.246625  
4λ L 2.805851  

  

5λ L 4.748627  6λ L 4.759079  

Fig. 8 The first six eigenfrequencies and eigenfunctions of 

case #5 for the following symmetric inputs 

6 6 6 6

1 2 3 43 3

T T R R

L R L R3 3

1 2

EI EI EI EI
K 10 ;K 10 ;K 10 ;K 10 ;

L L L L

EI EI EI EI
K 10 ;K 10 ;K 1 ;K 1 ;

L L L L

0.3; 0.5;L  1.2L; 1.2;γ 
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   




   


   



 

 
 
8. Conclusions 

 

This paper addresses the exact solution for the free 

vibration of a double-beam system coupled with a two-

degree-of-freedom mass-spring system. The mass-spring 

system is connected to the main beams via two translational 

and two rotational springs. The governing eigenvalue 

problem is formulated and solved. Solution of the problem 

results in the frequency parameters and mode shapes of the 

mechanical system. Furthermore, developing a finite 

element solution, the accuracy of both exact and FE 

solutions is concluded. The effects of the mechanical 

parameters of the system are investigated. It can be 

concluded that increasing the stiffness of each spring results 

in increasing the values of the frequency parameters of the 

system. On the contrary, increasing the mass of the attached 

mass leads to decreasing the frequency parameters of the 

system. Some mode shapes are also presented. 

 
 

  

1λ L 0.646399  2λ L 1.240878  

  

3λ L 1.651433  
4λ L 2.527467  

  

5λ L 3.589095  6λ L 4.976330  

Fig. 9 The first six eigenfrequencies and eigenfunctions of 

case #6 for the following symmetric inputs 
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T T R R

L R L R3 3

1 2

EI EI EI EI
K 10 ;K 1 ;K 0.1 ;K 100 ;

L L L L

EI EI EI EI
K 1 ;K 0.1 ;K 0.01 ;K 10 ;

L L L L

0.3; 0.6;L  1.1L; 2;γ 


   




   


   



 

 
 
 
Table 1 Comparison of finite element results and exact 

solution for 1 2 3 4, , ,K K K K  , 10T T

L RK K  , 

1 2 0.5    and 1   

Mode 

# 

Number of finite elements 
Exact 

4 8 16 32 

1 1.71722 1.71706 1.71706 1.71706 1.71706 

2 1.83313 1.83279 1.83277 1.83277 1.83277 

3 2.28418 2.28370 2.28367 2.28367 2.28367 

4 2.81340 2.81309 2.81306 2.81306 2.81306 

5 4.76624 4.74771 4.74502 4.74483 4.74493 

6 4.77076 4.75219 4.74950 4.74931 4.74941 
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