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1. Introduction 
 

Many structural systems may experience some local 

damage during their lifetime. Moreover, neglecting the local 

damage may cause to reduce the age of structural systems 

or even an overall failure of the structures. Thus local 

damage should be detected in an early stage before 

developing. As a result, structural health monitoring and 

damage identification is a vital topic in industry and 

engineering that has drawn wide attention from various 

engineering fields such as civil, mechanical, and aerospace 

engineering. The fundamental law is that damage will 

change the stiffness, mass, and damping properties of a 

structure. Such a change would lead to changes in the static 

and dynamic responses of the structure. This rule enables us 

to identify the damage by comparing the response data of 

the structure before and after damage. During the last 

decades, many methods have been introduced to detect 

eventual damage in the structural systems. One type of 

methods utilizes optimization algorithms for solving the 

damage detection problem. 

Many successful applications of damage detection using 

optimization algorithms have been reported in the literature. 

Mares and Surace (1996) used the genetic algorithm (GA) 

to maximize an objective function in order to identify 

macroscopic structural damage in elastic structures from 

measured natural frequencies and mode shapes. A procedure 

for detecting the damage in beam-type structures based on a 

micro genetic algorithm using incomplete and noisy modal 

test data was proposed by Au et al. (2003). A Vibration- 
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based damage detection method in experimental beams 

using genetic algorithm from measured natural frequencies, 

mode shape and modal strain energy has been presented by 

Kim et al. (2007). Experimental results revealed that the 

damage detection is the most accurate when frequency 

changes combined with modal strain-energy changes are 

used as the modal features for the proposed method. An 

application of GA for determining the damage site and 

extent of flexible bridges maximizing a correlation 

coefficient, named the multiple damage location assurance 

criterion (MDLAC) has been proposed by Koh and Dyke 

(2007). A crack detection method in beam-like structures 

based on binary and continuous genetic algorithms and a 

model of the damaged structure has been proposed by 

Vakil-Baghmisheh et al. (2008). Structural damage 

detection in continuum structures using successive zooming 

genetic algorithm (SZGA) from natural frequencies has 

been presented by Kwon et al. (2008). It was concluded that 

the proposed method can find out the exact structural 

damage of the monitored structure and reduce the time and 

amount of computation. A two-stage damage detection 

approach based on subset selection and genetic algorithms 

has been proposed by Yun et al. (2009). In the first stage, 

the subset selection method was applied for the 

identification of the multiple damage locations. In the 

second stage, the damage severities of the identified 

damaged elements were determined applying SSGA to 

solve the optimization problem. A two-stage method of 

determining the location and severity of multiple-beam-type 

structure damage by using the information fusion technique 

and micro-search genetic algorithm (MSGA) has been 

presented by Guo and Li (2009). A hybrid particle swarm 

optimization–simplex algorithm (HPSOS) for damage 

identification in truss-type structures using frequency 

domain data has been proposed by Begambre and Laier 
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(2009). The damage detection in plate structures based on 

pattern search and genetic algorithms from the modal data 

has been presented by Ghodrati et al. (2011). Structural 

damage detection using an efficient correlation-based index 

(ECBI) and a modified genetic algorithm (MGA) has been 

introduced by Nobahari and Seyedpoor (2011). An 

application of the bee algorithm (BA) to the problem of 

crack detection in beams was introduced by Moradi et al. 

(2011). In order to find the location and extent of structural 

damage, a multi-stage particle swarm optimization 

(MSPSO) assuming a discrete nature for damage variables 

has been introduced by Seyedpoor (2011). Vakil-

Baghmisheh et al. (2012) used the hybrid particle swarm–

Nelder–Mead (PS–NM) algorithm to minimize an objective 

function in order to identify crack in cantilever beams from 

measured natural frequencies. A self-adaptive multi-

chromosome genetic algorithm (SAMGA) for localizing 

and quantifying the damage of truss structures was 

presented by Villalba and Laier (2012). Nouri Shirazi et al. 

(2014) used the modified particle swarm optimization 

(MPSO) to minimize an objective function (ECBI) in order 

to identify structural damage from changes of natural 

frequencies. A mixed particle swarm-ray optimization 

together with harmony search (HRPSO) for localizing and 

quantifying the structural damage was proposed by Kaveh 

et al. (2014). A method for structural damage identification 

based on chaotic artificial bee colony (CABC) algorithm 

has been presented by Xu et al. (2015). In their study, 

residuals of natural frequencies and modal assurance 

criteria (MAC) were used to establish the objective 

function, then ABC and CABC were utilized to solve the 

optimization problem. The simulation results indicated that 

the CABC algorithm can identify the local damage better in 

comparison with ABC and other evolutionary algorithms, 

even with noise corruption. A procedure for detecting the 

crack in cantilever beams based on a modified particle 

swarm optimization (MPSO) using measured natural 

frequencies was proposed by Jena and Parhi (2015). The ant 

colony optimization (ACO) for structural damage 

identification has been used by Braun et al. (2015). In their 

study, the inverse problem of identification of structural 

stiffness coefficients of a damped spring-mass system was 

presented. An application of modified cuckoo optimization 

algorithm (MCOA) for determining the crack site and 

extent of cantilever Euler–Bernoulli beam has been 

presented by Moezi et al. (2015). In their study, the 

determination of a crack location and depth in experimental 

cantilever beams was formulated as an optimization 

problem and the location and depth of crack were found by 

minimizing an objective function which is based on the 

weighted squares difference of the measured and calculated 

natural frequencies. It was concluded that the MCOA yields 

better results than cuckoo, and GA-Nelder-Mead 

algorithms. The differential evolution algorithm (DEA) for 

structural damage identification using natural frequencies 

has been used by Seyedpoor et al. (2015). Li and Lu (2015) 

used the multi-swarm fruit fly optimization algorithm 

(MFOA) to minimize an objective function in order to 

identify structural damage from the first several natural 

frequencies and mode shapes. A two-stage damage 

detection method for truss structures using a modal residual 

vector based indicator and differential evolution algorithm 

has been presented by Seyedpoor and Montazer (2016). In 

the first stage, a modal residual vector based indicator 

(MRVBI) was introduced to locate the potentially damaged 

elements and reduce the damage variables of a truss 

structure. Then, in the second stage, a differential evolution 

(DE) based optimization method was implemented to find 

the actual site and extent of damage in the structure. 

Simulation results showed the high performance of the 

method for accurately identifying the damage location and 

severity of trusses with considering the measurement noise. 

Eroglu and Tufekci (2016) used the GA to minimize an 

error function in order to identify the crack location and 

depth in experimental beams from measured natural 

frequencies. A new finite element formulation was 

presented for straight beams with an edge crack, including 

the effects of shear deformation, and rotatory inertia. An 

improved hybrid Pincus-Nelder-Mead optimization 

algorithm (IP-NMA) for structural damage identification 

using natural frequencies has been proposed by Nhamage et 

al. (2016). It was concluded that the IP-NMA yields better 

results than Pincus-Nelder-Mead optimization algorithm (P-

NMA), and meta-heuristic harmony search (HS) algorithm, 

emphasizing its capacity in damage diagnosis and 

assessment. A hybrid self-adaptive firefly-nelder-mead 

algorithm (SA-FNM) for structural damage detection has 

been presented by Pan et al.(2016). A particle swarm 

optimization (PSO) for crack identification in beams using 

measured natural frequencies has been proposed by Zhang 

et al. (2016). The structure with crack was first modeled by 

multi-variable wavelet finite element method (MWFEM) so 

that the vibration parameters of the first three natural 

frequencies in arbitrary crack conditions can be obtained, 

which was named as the forward problem. Second, the 

structure with crack was tested to obtain the vibration 

parameters of first three natural frequencies by modal 

testing and advanced vibration signal processing method. 

Then, the analyzed and measured first three natural 

frequencies were combined together to obtain the location 

and size of the crack by using PSO. An application of GA to 

the problem of crack detection in experimental beams was 

presented by Ravanfar et al. (2016). In their study, a 

vibration-based damage detection algorithm using a damage 

indicator called Relative Wavelet Packet Entropy (RWPE) 

was applied to determine the location and severity of 

damage. A damage detection method for truss structures 

using simplified dolphin echolocation algorithm based on 

modal data has been proposed by Kaveh et al. (2016). Wang 

and Jing (2017) used an improved bacterial optimization 

algorithm (IBOA) in order to identify fault in complex 

structures. In their study, a novel method for the damage 

identification of complex structures based on an optimized 

virtual beam-like structure approach was proposed. A 

complex structure can be regarded as a combination of 

numerous virtual beam-like structures considering the 

vibration transmission path from vibration sources to each 

sensor. 

In this study, a multi-stage improved differential 

evolution algorithm (MSIDEA) is introduced to identify 
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multiple-structural damage. For this, the problem of 

structural damage detection is first transformed into the 

standard form of an optimization problem dealing with 

continuous damage variables. The MSIDEA is utilized as an 

optimization solver for finding the site and severity of 

damaged elements. An experimental test and two numerical 

examples with considering measurement noise are 

considered to show the performance of the proposed 

method. The results show that the MSIDEA can provide a 

robust tool for determining the site and extent of multiple-

damage accurately and quickly. 

 

 

2. Optimization based damage detection method 

Structural damage detection using non-destructive 

methods has received a significant attention during the last 

years. The fundamental law is that damage will change the 

stiffness properties of a structure. Such a change would lead 

to change in the dynamic response of the structure. This 

rule enables us to identify the damage by comparing the 

dynamic response of the structure before and after damage. 

The damage detection problem can be interpreted to find a 

set of damage variables minimizing or maximizing a 

correlation index between response data of a structure 

before and after damage (Mares and Surace 1996, Au et al. 

2003, Koh and Dyke 2007, Vakil-Baghmisheh et al. 2008, 

Guo and Li 2009, Begambre and Laier 2009, Xu et al. 

2015, Li and Lu 2015, Seyedpoor and Montazer 2016). 

Therefore, the problem can be transformed into an 

optimization problem (Gholizadeh 2015, Gholizadeh and 

Shahrezaei 2015, Gholizadeh and Poorhoseini 2016) as 

   Find:  X
T
 = {x1, x2, . . ., xn} 

Minimize: Obj (X)                  

Subject to:  X
1
 ≤ X ≤X

u
 

(1) 

where X
T
 = {x1, x2, . . . , xn} is a damage variable vector 

containing the location and size of n unknown damages of 

structure elements; X
l
 and X

u 
are the lower and upper 

bounds of the damage vector and Obj(X) is an objective 

function that need to be minimized. 

In many researches, various correlation indices were 

chosen as the objective function. In this study, an efficient 

correlation-based index (ECBI) introduced by Nobahari and 

Seyedpoor (2011) is used as the objective function for the 

optimization given by 

𝐸𝐶𝐵𝐼 (𝑋) = −
1

2
[

|Δ𝐹T .  δ𝐹(𝑋)|
2

(Δ𝐹T.  Δ𝐹)(δ𝐹T(𝑋). δ𝐹(𝑋))

+
1

𝑛𝑓
∑

min(𝑓𝑖(𝑋), 𝑓𝑑𝑖)

max(𝑓𝑖(𝑋), 𝑓𝑑𝑖)

𝑛𝑓

𝑖=1

] 

(2) 

In the objective function, ΔF is the change of frequency 

vector of damaged structure with respect to the frequency 

vector of healthy structure. The ΔF can be defined as 

Δ𝐹 = {Δ𝑓𝑖 =
𝑓ℎ𝑖 − 𝑓𝑑𝑖

𝑓ℎ𝑖

},   𝑖 = 1, 2, . . . , 𝑛𝑓 (3) 

where fhi and fdi are the ith component of healthy frequency 

vector (Fh) and damaged frequency vector (Fd) of the 

structure, respectively. The number of total frequencies 

considered for damage detection is denoted by nf. 

Also, δF(X) is the change of frequency vector of an 

analytical model with respect to the frequency vector of 

healthy structure. The δF(X) can be defined as 

δ𝐹(𝑋) = {Δ𝑓𝑖(𝑋) =
𝑓ℎ𝑖 − 𝑓𝑖(𝑋)

𝑓ℎ𝑖
}    ,  𝑖 = 1, 2, . . . , 𝑛𝑓 (4) 

where fi(X) is the ith component of an analytical frequency 

vector (F(X)) of the structure. 

The ECBI varies from a minimum value −1 to a 

maximum value 0. It will be minimal when the vector of 

analytical frequencies becomes identical to the frequency 

vector of the damaged structure, that is, F(X)=Fd. 

 

 

3. The proposed optimization algorithm 
 
The selection of an efficient algorithm for solving the 

damage optimization problem is a critical issue, because the 

damage identification problem has many local solutions. In 

this study, a multi-stage improved differential evolution 

algorithm (MSIDEA) is proposed to properly solve the 

damage detection problem. In the remaining part of this 

section, the original differential evolution algorithm (DEA) 

is briefly described at first and then the proposed MSIDEA 

is discussed. 

 
3.1 Differential Evolution Algorithm (DEA) 
 
In 1997, a new algorithm, DEA, was proposed by Storn 

and Price (1997) to solve optimization problems. The 

ability to finding the global solution and solving the 

nonlinear problems with a non-differentiable objective 

function is the main advantages of the algorithm. The 

framework of DEA is similar to a standard GA, however, 

the classical crossover and mutation operators in GA have 

been replaced by alternative operators and consequently 

came up to a suitable differential operator. DEA can be 

implemented very easily and requires two parameters 

tuning. The main steps of original DEA can be summarized 

as follows (Storn and Price 1997, Das et al. 2008): 

 

Step 1) Initialization 
In this step, the initial parameters, constants and initial 

population are set. Like other algorithms, DEA begins to 

search from an initial population. The positions of the 𝑛𝑝 

number of particles (initial population) are initialized 

randomly. 

𝑋𝑖 = (𝑥𝑖
1, … , 𝑥𝑖

𝑑 , … , 𝑥𝑖
𝑛) 

𝑋𝑙 ≤ 𝑋𝑖 ≤ 𝑋𝑢 

𝑖 = 1, 2, … , 𝑛𝑝 

(5) 

where 𝑥𝑖
𝑑 represents the position of the ith particle in the 

dth dimension, while n is the dimension of the problem; X
l
 

and X
u
 are the lower and upper vectors of a damage variable 

vector, respectively and np is the number of initial 

population that must be at least 4. 
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Step 2) Mutation 
For a given vector Xi (i= 1, 2, . . ., np), a mutant vector is 

defined by a particular combination of three different 

current solutions as 

𝑀𝑖 = 𝑋𝑟1 + 𝐹 . (𝑋𝑟2 − 𝑋𝑟3) 

𝑟1 ≠ 𝑟2 ≠ 𝑟3 ≠ 𝑖 
(6) 

where the three different indices r1, r2 and r3 ∈ {1, 2, . . . , 

np} are randomly chosen to be different from index i. Also, 

F∈ [0, 1] is a real and constant factor which controls the 

amplification of the differential variation (Xr2−Xr3). 

 

Step 3) Crossover 
In order to increase the diversity of the perturbed 

parameter vector, crossover is introduced by producing the 

trial vectors Ui (i= 1, 2, . . . , np) as 

𝑈𝑗𝑖 = {
𝑀𝑗𝑖      if (rand𝑗𝑖 ≤ 𝐶𝐶   or   𝑗 = irnd𝑖)

𝑋𝑗𝑖      if(rand𝑗𝑖 > 𝐶𝐶   and   𝑗 ≠ irnd𝑖)
 

𝑗 = 1, 2, … , 𝑛 

(7) 

where randji is a uniformly random number ∈ [0, 1], CC is 

the crossover constant ∈ [0, 1] and irndi is a random integer 

∈ {1, 2, . . ., n}. 

 

Step 4) Selection 
For final selection, the trial vector Ui and target vector 

Xi are compared. If the vector Ui yields a smaller objective 

function value than Xi, then Xi is set to Ui; otherwise, the old 

value Xi is retained. 

 

Step 5) Check convergence (Repeat steps 2 to 5) 
In this step, solution convergence is controlled. If the 

solution is converged, then the optimization is stopped 

otherwise return to step 2. The best fitness value at the final 

iteration is considered as the global fitness while the 

position of the corresponding particle at specified 

dimensions is taken as the global solution of the problem. 

The flowchart of DEA can be simply shown in Fig. 1. 

 

3.2 The multi-stage improved differential evolution 
algorithm (MSIDEA) 

 
In this study to improve and speed up the optimization 

process of DEA, two schemes are used. Firstly, instead of 

the basic mutation scheme for DEA, the mutation is 

performed as (Das et al. 2008) 

𝑀𝑖 = 𝑋𝑏𝑒𝑠𝑡 + 𝐹 . (𝑋𝑟1 + 𝑋𝑟2 − 𝑋𝑟3 − 𝑋𝑟4) (8) 

where Xbest is the best vector of the current population and 

the four different indices r1, r2, r3 and r4∈ {1, 2, . . ., np} 

are randomly chosen to be different from index i. 

Secondly, a random variation scheme is used to change 

the mutation constant, F of DEA as (Chien et al. 2009) 

𝐹 = 𝑠. √𝑟2. 𝑑𝑑 − 𝑏 (9) 

 

 

Fig. 1 The flowchart of DEA 

 

 

where r is a uniformly random number ∈ [0, 1]. Value of the 

coefficients s, b and dd in the expression for F, was set to 

1.5, 0.2 and 0.5, respectively by the authors based on 

empirical observations. 

Also, a multi-stage technique is introduced here to 

accurately detect the multiple structural damages by 

improved differential evolution algorithm (IDEA). Based 

on this algorithm, the location of damaged elements of a 

structure identified in each optimization stage is imposed on 

the next optimization stage while the effects of healthy 

elements on the succeeding stage are neglected. By this 

approach, all healthy elements are successively eliminated 

during some stages and the algorithm converges to the 

correct location and extent of damaged elements. During 

the optimization stages, the dimensions of optimization 

problem are decreased gradually and this makes the time 

and total computational cost of the optimization reduce. The 

step by step summary of the multi-stage improved 

differential evolution algorithm (MSIDEA) is as follows: 

 

Step 1) Set the initial number of damage variables, n to 

the total number of structural elements. Randomly generate 

the initial position vectors of particles distributed 

throughout the design space bounded by the specific limits: 

X
l
≤ Xi≤ X

u
, i = 1, 2,..., np. 

 

Initialazation  

Mutation 

Crossover 

Selection 

Meeting 

convergence

? 

Save final solution and stop the process 

Yes 

No 
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Step 2) Employ the IDEA to find the optimal solution, 

𝑋IDEA
T = *𝑥1, 𝑥2, . . . , 𝑥𝑛+. 

   
Step 3) Find the locations of healthy elements, that is, 

for all components of damage vector 𝑋IDEA find i:𝑥𝑖= 0, 

and also determine the total number of healthy elements, h. 

 

Step 4) Eliminate the healthy elements from the set of 

damage variables and reduce the dimension of optimization 

problem from n to n-h. 

 

Step 5) Employ a new IDEA stage to find the optimal 

solution of current stage, i.e. 𝑋𝐼𝐷𝐸𝐴
𝑇 = *𝑥1, 𝑥2, … , 𝑥𝑛−ℎ+. 

 

Step 6) Check the convergence by comparing the 

optimal solutions of two successive optimization stages. If 

two vectors are identical go to step 7, otherwise go to step 3. 

 

Step 7) Save the best (final) optimal solution and stop 

the optimization process. 

 

According to steps 1to 7, the flowchart of the MSIDEA 

can be simply shown in Fig. 2. 

 

 

 

Fig. 2 The flowchart of the MSIDEA 

 

4. Experimental test and numerical examples 
 
In order to show the capabilities of the proposed method 

for identifying the damage, an experimental test and two 

numerical examples with considering measurement noise 

selected from the literature are considered. The 

experimental example is a 10-element cantilevered beam, 

the first numerical example is a 47-bar planar truss and the 

second numerical example is a 63-element space frame. In 

47-bar planar truss and 63-element space frame, the effect 

of measurement noise on the efficiency of the method is 

considered. 

 

4.1 Experimental test 
 
To validate the proposed method, a modal test is 

performed on the 10-element steel cantilevered beam, as 

shown in Fig. 3. The details of the geometric and material 

properties of the beam are given in Table 1. 

The crack (damage) in the beam similar to a 

phenomenal cut is generated using an angle grinder. Two 

cracks are simply shown in Fig. 4. 

The cantilevered beam is excited by a hammer (Dytran 

Impact Hammer 5800B5) at the distance of 900 mm from 

the fixed end and the dynamic response of the beam is 

measured using one 2.5 gr miniature accelerometer (Dytran 

Uniaxial Accelerometer 3035BG) placed at 800 mm from 

the fixed end. The response measurements are acquired 

using a signal analyzer (AVANT Lite Dynamic Signal 

Analyzer Frond End MI-6004). 

 

 

Table 1The properties of experimental steel beam 

Boundary conditions Cantilever 

Material Steel (CK 45) 

Young's modulus (E) 186.55 GPa 

Mass density (ρ) 7598.04 kg m2⁄  

Beam length (L) 1000 mm 

Beam width (w) 20 mm 

Beam depth (d) 10 mm 

 

 

 

Fig. 3 Experimental set up 
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Fig. 4 Close–up of two cracks in the beam 

 

 

The frequency response function (FRF) of the beam is 

acquired using the Data Acquisition and Analysis software. 

To extract natural frequencies of the cantilever beam from 

FRF, Modal Genius-330 software are utilized. 

The finite element model of the experimental beam 

having 10 elements and 20 degrees of freedom, are also 

shown schematically in Fig. 5. The finite element model of 

the beam is build using Euler-Bernoulli beam elements. The 

crack in the finite element model is simulated as a relative 

reduction in the depth of beam section (Sinha et al. 2002). 

The modal test is conducted on the beam without crack, 

with a single crack at 350 mm from the fixed end (element 

4 in the finite element model) having the crack depth 3 mm 

(damage extent 0.3) and also with double cracks including 

previous crack as well as a crack at 650 mm from the fixed 

end (element 7 in the finite element model) having the crack 

depth 3 mm (damage extent 0.3). The first four acquired 

experimental natural frequencies are given in Table 2. 

Considering Table 2, two damage scenarios of 

experimental test, listed in Table 3, are considered and the 

first four natural frequencies are used for damage detection 

by the method. 

 

 

Table 2 The natural frequencies of the beam without crack, 

with one crack and two cracks 

 

No crack 
dc1=3 mm 

x1=350 mm 

dc1=3 mm 

x1=350 mm 

and 

dc2=3 mm 

x2=650 mm 

Mode 

Experimental 

natural 

frequencies (Hz) 

Experimental 

natural 

frequencies (Hz) 

Experimental 

natural 

frequencies 

(Hz) 

1 8.31 7.92 7.91 

2 50.67 49.91 49.53 

3 140.38 139.18 137.27 

4 278.63 276.29 275.9 

 

 

Fig. 5 The finite element model for the experimental 

beam 

 

 

Table 3 Two different experimental damage scenarios 

induced in the 10-element beam 

Scenario 1 Scenario 2 

Element 

number 

Damage 

extent 

Element 

number 

Damage 

extent 

4 0.3 4 0.3 

- - 7 0.3 

 

Table 4 The specifications of DEA and MSIDEA 

Algorithm Parameter Description Value 

DEA 

np The number of particles 50 

maxiter 
The maximum number of 

iterations 
1500 

F The mutation factor 1 

cc The crossover constant 0.5 

MSIDEA 

np The number of IDEA 

particles 
15 

maxiter 
The maximum iterations 

performing by IDEA 
150 

max_stage 
The maximum number of 

optimization stages 
2 

cc The crossover constant 0.3 

 

The specifications of DEA and the proposed MSIDEA 

for applying to the damage detection problem are also given 

in Table 4. 

The convergence of the DEA is met when the maximum 

number of iterations is attained. Also, the convergence of 

the MSIDEA is met when all optimization stages are 

attained. In order to consider the stochastic nature of the 

optimization process using two algorithms, 10 independent 

sample runs are made for each damage scenario. The 

damage identification results of damage scenario 1 using 

two algorithms are given in Tables 5(a) and 5(b), 

respectively.  

The average damage ratios for scenario 1 using two 

algorithms are also shown in Figs. 6(a) and 6(b), 

respectively. The damage identification results of damage 

scenario 2 are given in Tables 6(a) and 6(b), respectively. 

The average damage ratios for scenario 2 are also shown in 

Figs. 7(a) and 7(b), respectively. 

All of the results shown in the tables and figures 

demonstrate that both DEA and MSIDEA can obtain a good 

solution, however, the best solution in term of the total 

number of finite element analyses (FEAs) required are 

obtained by the MSIDEA. The average number of FEAs 

requiring for scenarios 1 and 2 by MSIDEA are 4530, while 

the average number of FEAs needing for scenarios 1 and 2 

by DEA is 75050. It is revealed that the MSIDEA has a 

better performance when compared to the DEA. 
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Table 5a The damage detection results of 10-element beam 

for scenario 1 via DEA 

Element numbers 

Run 

number 
1 2 3 4 5 ... 9 10 

Required 

modal 

analyses 

ECBI 

1 0 0.058 0 0.413 0  0 0 75050 -0.997 

2 0 0.059 0 0.413 0  0 0 75050 -0.997 

3 0 0.058 0 0.413 0  0 0 75050 -0.997 

4 0 0.058 0 0.413 0  0 0 75050 -0.997 

5 0 0.058 0 0.413 0  0 0 75050 -0.997 

6 0 0.058 0 0.413 0  0 0 75050 -0.997 

7 0 0.058 0 0.413 0  0 0 75050 -0.997 

8 0 0.058 0 0.413 0  0 0 75050 -0.997 

9 0 0.058 0 0.413 0  0 0 75050 -0.997 

10 0 0.058 0 0.413 0  0 0 75050 -0.997 

Average 0 0.058 0 0.413 0  0 0 75050 -0.997 

Actual 

damage 
0 0 0 0.3 0  0 0 - -1 

 

 

 

Table 5b The damage detection results of 10-element beam 

for scenario 1 via MSIDEA 

Element numbers 

Run 

number 
1 2 3 4 5 ... 9 10 

Required 

modal 

analyses 

ECBI 

1 0 0.059 0 0.413 0  0 0 4530 -0.997 

2 0 0.059 0 0.412 0  0 0 4530 -0.997 

3 0 0.058 0 0.413 0  0 0 4530 -0.997 

4 0 0.058 0 0.413 0  0 0 4530 -0.997 

5 0 0.058 0 0.413 0  0 0 4530 -0.997 

6 0 0.058 0 0.413 0  0 0 4530 -0.997 

7 0 0.059 0 0.413 0  0 0 4530 -0.997 

8 0 0.058 0 0.413 0  0 0 4530 -0.996 

9 0 0.058 0 0.413 0  0 0 4530 -0.997 

10 0 0.058 0 0.413 0  0 0 4530 -0.997 

Average 0 0.058 0 0.413 0  0 0 4530 -0.997 

Actual 

damage 
0 0 0 0.3 0  0 0 - -1 

 

 

 

 
(a) 

Continued- 

 

 

 
(b) 

Fig. 6 (a) Final damage ratios of the 10-element beam for 

scenario 1 via DEA and (b) Final damage ratios of the 

10-element beam for scenario 1 via MSIDEA 

 

 

 
(a) 

 
(b) 

Fig. 7 (a) Final damage ratios of the 10-element beam for 

scenario 2 via DEA and (b) Final damage ratios of the 10-

element beam for scenario 2 via MSIDEA 
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Table 6a The damage detection results of 10-element beam 

for scenario 2 via DEA 

Element numbers 

Run 

number 
1 2 3 4 ... 7 ... 10 

Required 

modal 

analyses 

ECBI 

1 0 0.032 0.028 0.5  0.343  0 75050 
-

0.997 

2 0 0.032 0.028 0.5  0.343  0 75050 
-

0.997 

3 0 0.032 0.028 0.5  0.343  0 75050 
-

0.997 

4 0 0.032 0.028 0.5  0.343  0 75050 
-

0.997 

5 0 0.032 0.028 0.5  0.343  0 75050 
-

0.997 

6 0 0.032 0.028 0.5  0.343  0 75050 
-

0.997 

7 0 0.032 0.028 0.5  0.343  0 75050 
-

0.997 

8 0 0.032 0.028 0.5  0.343  0 75050 
-

0.997 

9 0 0.032 0.028 0.5  0.343  0 75050 
-

0.997 

10 0 0.032 0.028 0.5  0.343  0 75050 
-

0.997 

Average 0 0.032 0.028 0.5  0.343  0 75050 
-

0.997 

Actual 

damage 
0 0 0 0.3  0.3  0 - -1 

 

Table 6b The damage detection results of 10-element beam 

for scenario 2 via MSIDEA 

Element numbers 

Run 

number 
1 2 3 4 ... 7 ... 10 

Required 

modal 

analyses 

ECBI 

1 0 0.032 0.028 0.5  0.342  0 4530 
-

0.997 

2 0 0.032 0.028 0.5  0.343  0 4530 
-

0.997 

3 0 0.032 0.028 0.5  0.342  0 4530 
-

0.997 

4 0 0.032 0.028 0.5  0.343  0 4530 
-

0.997 

5 0 0.032 0.028 0.5  0.343  0 4530 
-

0.997 

6 0 0.032 0.028 0.5  0.343  0 4530 
-

0.997 

7 0 0.036 0.022 0.5  0.349  0 4530 
-

0.997 

8 0 0.032 0.028 0.5  0.343  0 4530 
-

0.997 

9 0 0.032 0.028 0.5  0.343  0 4530 
-

0.997 

10 0 0.032 0.028 0.5  0.343  0 4530 
-

0.997 

Average 0 0.032 0.027 0.5  0.343  0 4530 
-

0.997 

Actual 

damage 
0 0 0 0.3  0.3  0 - -1 

 

 

4.2 Forty seven-bar planar truss 
 
The 47-bar planar power line tower (Nouri Shirazi et al. 

2014, Seyedpoor and Montazer 2016), shown in Fig. 8, is 

considered to show the robustness of the proposed method. 

The structure has 47 members and 22 nodes. The truss is 

modeled using the conventional finite element method 

without internal nodes, leading to 41 degrees of freedom. 

All members are made of steel, and the material density, 

modulus of elasticity and area of each element are 0.3 lb/in
3
, 

30000 ksi and 2 in
2
, respectively. Damage in the structure is 

simulated as a relative reduction in the elasticity modulus of 

individual elements. Therefore, the optimization problem of 

damage identification has 47 damage variables. 

 

Fig. 8 The finite element model for 47-bar planar truss 

 

 

Four different damage scenarios, given in Table 7, are 

induced in the structure, and the MSIDEA and the DEA are 

tested for each scenario. For identifying the damage 

scenarios 1 and 2, the first 10 natural frequencies and for 

identifying the damage scenarios 3 and 4, the first 15 

natural frequencies of the structure are considered. In order 

to investigate the noise effect on the performance of the 

proposed method, measurement noise is considered here by 

polluting the natural frequencies using a standard error of 

±0.15% (Guo and Li 2009, Nobahari and Seyedpoor 2011, 

Seyedpoor 2011, Nouri Shirazi et al. 2014, Seyedpoor et al. 

2015). In a real dynamic test, it is impossible to avoid the 

noise, therefore it is simulated here as the perturbation of 

the frequency vector of damaged structure (Fd) given by 

𝐹𝑑,𝑛𝑜𝑖𝑠𝑦 = 𝐹𝑑. ,1 + (2 random(0,1) − 1)). 𝑛𝑜𝑖𝑠𝑒- (10) 

where noise denotes the level of  noise considered. 

For identifying the damage scenarios by DEA, particle 

numbers and the maximum numbers of iterations are set to 

80 and 2500, respectively. Also, F and cc are set to 0.5 and 

0.3, respectively. For identifying the damage scenarios by 

MSIDEA, particle numbers, the maximum numbers of 

iterations and optimization stages are set to 15, 300 and 5, 

respectively. Also, for identifying the damage scenarios 

using MSIDEA, cc is set to 0.3. 
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Table 7 Four different damage scenarios induced in 47-bar 

planar truss 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Element 

number 

Damage 

extent 

Element 

number 

Damage 

extent 

Element 

number 

Damage 

extent 

Element 

number 

Damage 

extent 

10 0.3 30 0.3 10 0.3 40 0.3 

- - - - 30 0.3 41 0.2 

 

 

Table 8 The damage detection results of 47-bar planar truss 

for scenario 1 via DEA 

Element numbers 

Run 

number 
1 ... 10 ... 47 

Required 

modal 
analyses 

ECBI 

1 0  0.18  0 41360 -0.9794 

2 0  0.226  0 51440 -0.9823 
3 0  0.243  0 46000 -0.986 

4 0  0.307  0 54880 -0.9864 

5 0  0.187  0 41520 -0.9727 
6 0  0.293  0 42480 -0.9719 

7 0.02  0.267  0 53440 -0.9957 

8 0  0.231  0 44400 -0.9806 
9 0  0.339  0 42320 -0.9716 

10 0  0.269  0 55280 -0.9867 

Average 0.002  0.244  0 47312 -0.9813 

Actual 

damage 
0  0.3  0 - -1 

 

 

Table 9 The damage detection results of 47-bar planar truss 

for scenario 1 via MSIDEA 

Element numbers 

Run 

number 
1 ... 10 ... 47 

Required 

modal 
analyses 

ECBI 

1 0  0.441  0 22575 -0.9922 

2 0  0.585  0 22575 -0.9853 

3 0  0.281  0 22575 -0.9931 
4 0  0.72  0 22575 -0.9851 

5 0  0.27  0 22575 -0.9869 

6 0  0.609  0.02 22575 -0.976 
7 0  0.443  0 22575 -0.9858 

8 0  0.277  0 22575 -0.9942 

9 0  0.347  0 22575 -0.9732 
10 0  0.326  0 22575 -0.9963 

Average 0  0.43  0.002 22575 -0.9868 

Actual 

damage 
0  0.3  0 - -1 

 

 

 

The convergence of the DEA is met when the objective 

function reaches -0.9973 or the objective function does not 

considerably change after 100 successive iterations. The 

convergence of the MSIDEA is met when the objective 

function reaches -0.9973 or the all optimization stages are 

attained. In order to consider the stochastic nature of the 

optimization process using DEA and MSIDEA, 10 

independent sample runs are made for each damage 

scenario. The solutions of DEA and MSIDEA for damage 

scenarios 1 to 4 are given in Tables 8–15 and Figs. 9-16, 

respectively. 

 

 

 

Table 10 The damage detection results of 47-bar planar 

truss for scenario 2 via DEA 

Element numbers 

Run 
number 

1 ... 30 ... 47 Required 
modal 

analyses 

ECBI 

1 0  0.263  0 37440 -0.9955 

2 0  0.268  0 42800 -0.9962 
3 0.04  0.356  0 17600 -0.9975 

4 0  0.294  0 35680 -0.9967 

5 0  0.27  0 47280 -0.9956 
6 0.01  0.396  0 18320 -0.9973 

7 0  0.267  0 31440 -0.9973 
8 0.078  0.35  0 16160 -0.9973 

9 0  0.303  0 19520 -0.9973 

10 0  0.371  0 19360 -0.9974 

Average 0.014  0.314  0 28560 -0.9968 

Actual 

damage 0  0.3  0 - -1 

 

 

 

Fig. 9 Final damage ratios of the 47-bar planar truss for 

scenario 1 via DEA 

 

 

Fig. 10 Final damage ratios of the 47-bar planar truss for 

scenario 1 via MSIDEA 
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Table11 The damage detection results of 47-bar planar truss 

for scenario 2 via MSIDEA 

Element numbers 

Run 

numbers 

1 ... 30 ... 47 Required 

modal 
analyses 

ECBI 

1 0  0.262  0 4515 -0.9983 

2 0  0.238  0 4515 -0.999 
3 0  0.274  0 22575 -0.9965 

4 0  0.263  0 4515 -0.9996 

5 0  0.263  0 22575 -0.9955 
6 0  0.271  0 4515 -0.9994 

7 0  0.265  0 22575 -0.9939 

8 0.03  0.263  0 13545 -0.9975 
9 0  0.303  0 22575 -0.9958 

10 0  0.28  0 22575 -0.9934 

Average 0.003  0.268  0 14448 -0.9969 

Actual 
damage 0  0.300  0 - -1 

 

 

Table 12The damage detection results of 47-bar planar truss 

for scenario 3 via DEA 

Element numbers 

Run 

number 
1 ... 10 ... 30 ... 47 

Required 

modal 

analyses 

ECBI 

1 0  0.309  0.308  0 40960 -0.9969 

2 0  0.293  0.29  0 27200 -0.9975 

3 0  0.315  0.291  0 30640 -0.9973 

4 0  0.281  0.299  0 40000 -0.9973 

5 0  0.259  0.295  0 29360 -0.9976 

6 0  0.308  0.264  0 32480 -0.9974 

7 0  0.299  0.253  0 50320 -0.9972 

8 0  0.29  0.304  0 28960 -0.9974 

9 0.02  0.249  0.342  0 26800 -0.9974 

10 0  0.325  0.321  0 27600 -0.9973 

Average 0.002  0.293  0.297  0 33432 -0.9973 

Actual 

damage 
0  0.3  0.3  0 - -1 

 

 

 

Fig. 11 Final damage ratios of the 47-bar planar truss for 

scenario 2 via DEA 

Table13 The damage detection results of 47-bar planar truss 

for scenario 3 via MSIDEA 

Element numbers 

Run 

number 
1 ... 10 ... 30 ... 47 

Required 

modal 

analyses 

ECBI 

1 0  0.303  0.301  0 4515 -0.9979 

2 0  0.288  0.296  0 9030 -0.9978 

3 0  0.312  0.29  0 9030 -0.9978 

4 0  0.293  0.28  0 9030 -0.9988 

5 0  0.28  0.286  0 13545 -0.9977 

6 0  0.293  0.298  0 9030 -0.9986 

7 0  0.284  0.28  0 4515 -0.9988 

8 0  0.307  0.285  0 9030 -0.9988 

9 0  0.305  0.271  0 9030 -0.9974 

10 0  0.287  0.315  0 9030 -0.9983 

Average 0  0.295  0.29  0 8579 -0.9982 

Actual 

damage 
0  0.3  0.3  0 - -1 

 

 

 

Fig. 12 Final damage ratios of the 47-bar planar truss for 

scenario 2 via MSIDEA 

 

 

 

Fig. 13 Final damage ratios of the 47-bar planar truss for 

scenario 3 via DEA 
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Table 14 The damage detection results of 47-bar planar 

truss for scenario 4 via DEA 

Element numbers 

Run 

number 
1 ... 40 41 ... 47 

Required 

modal 

analyses 

ECBI 

1 0  0.49 0  0 41200 -0.9689 

2 0.01  0.297 0.97  0 59520 -0.9971 

3 0  0.359 0.26  0 20880 -0.9973 

4 0  0.317 0.196  0 25840 -0.998 

5 0  0.3 0.195  0 22320 -0.9977 

6 0  0.309 0.21  0 22400 -0.9977 

7 0  0.308 0.21  0 30480 -0.9973 

8 0  0.284 0.178  0 43600 -0.9971 

9 0  0.352 0.25  0 23680 -0.9975 

10 0  0.343 0.232  0 24240 -0.9975 

Average 0.001  0.336 0.193  0 31416 -0.9946 

Actual 

damage 
0  0.3 0.2  0 - -1 

 

 

 

Table15 The damage detection results of 47-bar planar truss 

for scenario 4 via MSIDEA 

Element numbers 

Run 

number 
1 ... 40 41 ... 47 

Required 

modal 

analyses 

ECBI 

1 0  0.275 0.237  0 22575 
-

0.9966 

2 0.01  0.279 0.203  0 9030 -0.998 

3 0  0.289 0.216  0 9030 
-

0.9986 

4 0  0.29 0.192  0 9030 -0.998 

5 0  0.303 0.196  0 22575 
-

0.9964 

6 0  0.307 0.198  0 9030 
-

0.9977 

7 0  0.3 0.198  0 9030 
-

0.9984 

8 0  0.287 0.185  0 4515 
-

0.9978 

9 0  0.249 0  0 22575 -0.99 

10 0  0.298 0.196  0 22575 
-

0.9979 

Average 0.001  0.288 0.182  0 13997 
-

0.9969 

Actual 

damage 
0  0.3 0.2  0 - -1 

 

 

All of the results shown in the tables and figures 

demonstrate that the best solutions in terms of actual 

damage identification and the total number of FEAs 

required are obtained by means of the MSIDEA. The 

average number of FEAs requiring for scenarios 1, 2, 3 and 

4 of MSIDEA are 22575, 14448, 8579 and 13997, 

respectively, while the average number of FEAs needing for 

DEA are 47312, 28560, 33432 and 31416, respectively. It is 

revealed that the MSIDEA has a better performance when 

compared to the DEA and a great number of FEAs are 

saved. 

 

 
 

 

Fig. 14 Final damage ratios of the 47-bar planar truss for 

scenario 3 via MSIDEA 

 
 
 

 

Fig. 15 Final damage ratios of the 47-bar planar truss for 

scenario 4 via DEA 

 
 
 

 

Fig. 16 Final damage ratios of the 47-bar planar truss for 

scenario 4 via MSIDEA 
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4.3 Sixty three-element space frame 
 
A six-story space frame (Seyedpoor 2011, Seyedpoor et 

al. 2015) as depicted in Fig. 17 is considered as the second 

numerical example. The structure has 63 elements and 36 

nodes. The frame is modeled using the finite element 

method, leading to 180 degrees of freedom. The sections 

used for the beams and columns are W-shape. The area, 

inertia moments, Iz, Iy and Io of each element are 0.02 m
2
, 

0.02 m
4
, 0.01 m

4
 and 0.01 m

4
, respectively. The modulus of 

elasticity is 200 GPa and the material density is 7850 kg/m
3
.  

The beams and columns have length L1=7.32m and 

L2=3.66 m, respectively. Damage in the structure is also 

simulated as a relative reduction in the elasticity modulus of 

individual elements. Three different damage scenarios are 

considered as listed in Table 16. For identifying the damage 

scenario 1, the first 11 natural frequencies and for 

identifying the damage scenarios 2 and 3, the first 15 

natural frequencies of the structure are considered. The 

measurement noise is considered here by polluting the 

natural frequencies using a standard error of ±0.15 %. 

 

 

 

Fig. 17 The finite element model for the 63-element 

space frame 

 
 
Table 16 Three different damage scenarios induced in 63-

element space frame 

Scenario 1 Scenario 2 Scenario 3 

Element 

number 

Damage 

extent 

Element 

number 

Damage 

extent 

Element 

number 

Damage 

extent 

10 0.3 3 0.4 9 0.1 

- - 6 0.4 10 0.2 

- - - - 11 0.3 

 

In this example, the DEA could not converge to an 

appropriate solution, accordingly only the results of 

MSIDEA have been reported here. For identifying all the 

damage scenarios using MSIDEA, particle numbers, the 

maximum number of iterations and the maximum number 

of optimization stages are set to 30, 150 and 4, respectively. 

Also, for identifying the damage scenarios, cc is set to 0.3.  

The convergence of the MSIDEA is met when all 

optimization stages are attained. In order to consider the 

stochastic nature of the optimization process, 10 

independent sample runs are made for each damage 

scenario. The damage identification results for damage 

scenarios 1, 2 and 3 using MSIDEA are given in Tables 17, 

18 and 19, respectively. The average damage ratios for 

scenarios 1, 2 and 3 are also shown in Figs. 18, 19 and 20, 

respectively. 

 
 

Table 17 The damage detection results of 63-elementframe 

for scenario 1 via MSIDEA 

Element numbers 

Run 

number 
1 ... 5 ... 10 ... 31 ... 63 

Required 

modal 

analyses 

ECBI 

1 0  0  0.06  0  0 18120 -0.953 

2 0  0  0.278  0  0 18120 -0.972 

3 0  0  0.197  0  0 18120 -0.978 

4 0  0  0.259  0  0 18120 -0.95 

5 0  0  0.313  0  0 18120 -0.984 

6 0  0  0.018  0  0 18120 -0.963 

7 0  0  0.201  0  0 18120 -0.968 

8 0  0  0.263  0  0 18120 -0.972 

9 0  0  0.131  0  0 18120 -0.971 

10 0  0  0.253  0  0 18120 -0.953 

Average 0  0  0.197  0  0 18120 -0.966 

Actual 

damage 
0  0  0.3  0  0 - -1 

 
Table 18 The damage detection results of 63-elementframe 

for scenario 2 via MSIDEA 

Element numbers 

Run number 1 ... 3 ... 6 ... 31 ... 63 

Required 

modal 

analyses 

ECBI 

1 0  0.398  0.381  0  0 18120 -0.9994 

2 0  0.399  0.397  0  0 18120 -0.9995 

3 0  0.386  0.396  0  0 18120 -0.9995 

4 0  0.39  0.406  0  0 18120 -0.9997 

5 0  0.437  0.306  0  0 18120 -0.9995 

6 0  0.355  0.41  0  0 18120 -0.9994 

7 0  0.342  0.387  0  0 18120 -0.9995 

8 0  0.399  0.404  0  0.03 18120 -0.9992 

9 0  0.4  0.394  0  0 18120 -0.9996 

10 0  0.399  0.392  0  0 18120 -0.999 

Average 0  0.39  0.387  0  0.003 18120 -0.9994 

Actual 

damage 
0  0.4  0.4  0  0 - -1 
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Table 19 The damage detection results of 63-elementframe 

for scenario 3 via MSIDEA 

Element numbers 

Run number 1 ... 9 10 11 ... 31 ... 63 

Required 

modal 

analyses 

ECBI 

1 0  0.272 0.411 0.467  0  0 18120 -0.988 

2 0  0.079 0.22 0.277  0  0 18120 -0.995 

3 0  0.253 0.412 0.53  0  0 18120 -0.993 

4 0  0.083 0.174 0.262  0  0 18120 -0.995 

5 0  0.115 0.199 0.275  0  0 18120 -0.993 

6 0  0.129 0.185 0.258  0  0 18120 -0.99 

7 0  0.202 0.441 0.513  0  0 18120 -0.99 

8 0  0.113 0.157 0.293  0  0 18120 -0.993 

9 0  0.019 0.145 0.188  0  0 18120 -0.99 

10 0  0.053 0.233 0.268  0  0 18120 -0.991 

Average 0  0.132 0.258 0.333  0  0 18120 -0.992 

Actual 

damage 
0  0.1 0.2 0.3  0  0 - -1 

 
 

 

Fig. 18 Final damage ratios of the 63-element frame for 

scenario 1 via MSIDEA 

 
 

 

Fig. 19 Final damage ratios of the 63-element frame for 

scenario 2 via MSIDEA 

 
 

 

Fig. 20 Final damage ratios of the 63-element frame for 

scenario 3 via MSIDEA 

 
 

As can be seen in the tables and figures, the MSIDEA 

proposed here can accurately detect the damage sites and 

extent for most of the simulations. The average number of 

FEAs requiring for scenarios 1, 2 and 3 of MSIDEA are 

18120. 

 

 

5. Conclusions 
 
An efficient optimization procedure has been introduced 

to solve the problem of structural damage detection that is a 

highly nonlinear problem with a great number of local 

solutions. The structural damage detection problem is firstly 

formulated as a standard optimization problem aiming to 

minimize an ECBI for finding real damage variables. The 

MSIDEA is proposed to properly solve the optimization 

problem. In order to assess the competence of the proposed 

approach for structural damage detection, an experimental 

test and two numerical examples with considering 

measurement noise are tested. The results demonstrate that 

the combination of ECBI and MSIDEA can provide a robust 

tool for damage detection. The results of the proposed 

approach (MSIDEA+ECBI) have shown a high 

performance for the method when compared with actual 

damage induced and those of the DEA. 
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