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1. Introduction 
 

Functionally graded materials (FGMs) are the new class of 

composites materials that provide wide spectrum of 

applications for various machineries which are under 

extreme thermo-mechanical loadings such as heat shields of 

spacecraft body, nuclear reactor components, jet fighter 

structures and heat engine components. Because of 

continuous variation of material properties in comparison 

with classical composites, FGMs have various advantages 

such as avoiding the  cracking and delamination 

phenomenon, minimization or elimination of stress 

concentrations and residual stresses, ensuring smooth 

transition of stress distributions and so on. These new 

advanced materials were proposed by a group of Japanese 

scientists in the mid-1980s, as thermal barrier for aerospace 

applications (Koizumi and Niino 1995). The material 

properties of FGMs varies continuously in one or more 

directions. Due to high strength and high temperature  
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resistance of FGMs, they are increasingly utilized as  

structural components in modern industries such as heat 

shields of spacecraft body, nuclear reactor components, jet 

fighter structures and heat engine components.(Mortensen 

and Suresh 2013). 

The FGMs can be used to produce the shuttle structures. 

When the space shuttles enter to and from the atmosphere, 

due to friction between the vehicle surface and air with high 

velocity, the surface of the plane experiences temperature as 

high as 2100K. It is obvious that in this circumstance we 

need materials with super-heat-resistant properties to 

withstand high temperature and thermal impact in one side 

while on the other side (liquid hydrogen-cooled) we need 

materials with good toughness and thermal conductivity to 

ensure rapid cooling and a certain lifetime, hence it is 

essential to assume changing material properties due to 

thermal environment. FG structures resting on elastic 

foundations have wide applications in modern engineering.  

The interaction of a structure with its foundation can be 

explained by suggesting various basic models in the 

literature. One of the simplest model for the elastic 

foundation is Winkler model because it takes the foundation 

into account as a set of independent and separate springs. 

Pasternak improved this model later by introducing a new 
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dependence parameter that takes the interactions between 

the separated springs in Winkler model into account. In 

view of these advantages, a number of investigations, 

dealing with static, buckling, dynamic characteristics of FG 

structures, had been published in the scientific literature 

(Ebrahimi 2013, Ebrahimi et al. 2016a, Ebrahimi and Zia 

2015, Ebrahimi and Mokhtari 2015). Ying et al. (2008) 

provided exact solution for bending and vibration 

embedded FG beam based on two dimensional elasticity 

theory. Thermo-mechanical vibration of FGM sandwich 

beam under variable elastic foundations by DQM analyzed 

by Pradhan and Murmu (2009). 3-D free vibration of thick 

functionally graded plates on elastic foundations was 

examined by Malekzadeh (2009). Benchmark solutions for 

FG thick plates resting on Winkler–Pasternak elastic 

foundations was introduced by Huang et al. (2008). DSC 

method was utilized for non-linear analysis of laminated 

plates resting on Winkler–Pasternak elastic foundations 

firstly by Civalek and Akgoz (2011). A 3-D free vibration of 

thick circular plates on Pasternak foundation was 

introduced by Zhou et al. (2006). Also, 3-D free vibration 

analysis of annular plates on Pasternak elastic foundation by 

p-Ritz method was examined by Hosseini Hashemi et al. 

(2008). For more efficient and expand applications of nano 

structures, they were recently synthesized by using FGMs. 

Actually, functionally graded model enables the nano 

materials to have the optimum properties. 

Due to extensive applications of nano-structure made of 

FGM in advanced diverse technology, there has been 

intensive investigation about caption of nano materials with 

functional graded. The classical continuum theory is aptly 

practical in the mechanical behavior of the macroscopic 

structures, but it ignores the size-dependency of nano-

structures, thereupon classical continuum theory is not 

suitable one to micro and nano scales structures. In order to 

bypass this drawback, two nonlocal elasticity theory namely 

Eringen’s nonlocal elasticity theory (Eringen 2008, Eringen 

1972a, b, Eringen 1983) and nonlocal strain gradient theory 

(Ying et al. 2008, Ebrahimi and Barati 2016) are offered to 

consider size effect. According to Eringen’s model, the 

stress state at a certain point is considered as a function of 

strain states of all points in its area. Numerous studies have 

been conducted for investigation the mechanical responses 

of FG nano-beams and plates based on nonlocal elasticity 

theory (Ebrahimi and Salari 2015a, b, 2016, Ebrahimi et al. 

2015a, 2016c, Ebrahimi and Nasirzadeh 2015, Ebrahimi 

and Barati 2016 a,b,c,d,e,f, Ebrahimi and Hosseini 2016 

a,b,c). Based on nonlocal Timoshenko beam theory, 

Vibration characteristics of size dependent FG nanobeams 

is reported by Rahmani and Pedram (2014). Furthermore, 

Eltaher et al. (2012) presented free vibration analysis of 

functionally graded size-dependent nanobeams. Ebrahimi 

and Salari (2015c) provided differential transform method 

for flexural vibrational behavior of FG nanobeams. In 

another survey, Ebrahimi and Barati (2016) utilized a higher 

order refined beam theory for dynamic analysis of magneto 

electro embedded FG structures. Bounouara et al. (2016) 

provided zeroth-order shear deformation theory for free 

vibration analysis of embedded FG nanoplates. 

Notwithstanding the fact that nonlocal elasticity theory is 

widely utilized to consider the influence of small-scale, it 

considers only the stiffness softening influence. Many 

researchers have discovered increment in the stiffness of 

structures, which is disregarded in Eringen’s nonlocal 

elasticity theory (Lam et al. 2003, Fleck and Hutchinson 

1993, Stölken and Evans 1998). According to experimental 

research and as well as the strain gradient theory, the 

Eringen’s nonlocal elasticity theory is unable to anticipate 

the influence of stiffness-hardening and strain gradient 

elasticity (Lam et al. 2003, Ebrahimi and Barati 2016) via 

introducing the length scale parameter. It is noted that, two 

exactly different physical Specifications were expressed by 

nonlocal theory and the strain gradient theory. Hereupon, 

nonlocal strain gradient theory is proposed to overcome the 

defect of nonlocal Eringen’s theory with considering two 

length scales in a single theory (Lim et al. 2015). The two 

length scale parameters have an indeed influence on the 

physical and mechanical behavior of small size structures, 

which is considered in nonlocal strain gradient theory. By 

implementation of nonlocal strain gradient theory, buckling 

behavior of size-dependent nonlinear beams is presented by 

Li and Hu (2015). Based on size-dependent Timoshenko 

beam theory and employing the nonlocal strain gradient 

theory, Li et al. (2016) provided the Navier solution 

approach for vibration behavior of FG nanobeams. They 

reported that increasing in the nonlocal stress parameter 

causes the decrease in the non-dimensional frequency of FG 

nanobeams. However, for the length scale coefficient this 

behavior is vice versa. Furthermore, the flexural wave 

propagation response of Euler-Bernoulli FG beam was 

inspected by Li et al. (2015) within the framework of 

nonlocal strain gradient elasticity. Also, Ebrahimi and 

Barati (2017) examined hygro thermal impact on vibration 

behavior embedded FG nanobeams based on nonlocal strain 

gradient elasticity. Most recently Ebrahimi and Barati 

(2016g,h,i,j,k,l, 2017a,b) and Ebrahimi et al. (2017) 

explored thermal and hygro-thermal effects on nonlocal 

behavior of FG nanobeams and nanoplates. 

Piezo electro materials as one of the special sorts of 

smart materials have received much attention in engineering 

structures during the recent years. In 1990s, a strong 

electrical coupling effect was discovered which has 

potential practical application in many fields (Harshe et al. 

1993, Nan 1994, Benveniste 1995) and reported that this 

coupling effect cannot be found in a single-phase material. 

Furthermore, piezo electro materials show fascinating 

properties, influences in which the elastic deformations may 

be produced directly by mechanical loading or indirectly by 

an application of electric field. The mechanical behaviors of 

electro-elastic structures have received notable attention by 

many researchers in the recent years. 

Structures made of porous materials are the latest 

developments in the field of FGMs, so it is vital to consider 

influence of porosity parameters in their dynamic analysis 

(Ebrahimi and Jafari 2016 a, b, c). The presence of pores 

within the microstructures of such materials are taken into 

account by means of the local density of the material. 

Typically, common composition of FGMs is ceramic-metal 

and there are different approaches for processing of 

functionally graded metal–ceramic composite components 
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(Ebrahimi and Jafari 2017). In some process of fabrication 

for producing the FGMs, porosities and micro-voids can be 

occurring inside the materials due to technical problems. 

For instance, different shrinkage stresses between the 

adjacent layers of ceramic and metal phases in FGM 

compact can be occurs during the processes of sintering and 

cold compacting, which may create porosity phases inside 

the materials (Ebrahimi et al. 2016). Moreover, in the multi-

step sequential infiltration method for producing FGMs, it 

is observed that the most of the porosity phases appear 

frequently in the central areas of FGM specimens because it 

is hard to infiltrate the secondary material in these zones 

completely, whereas material infiltration at the bottom and 

top areas can be performed easier with less porosities. 

According to this information, it is necessary to consider the 

influences of these imperfections on vibration behavior of 

FGMs structures carrying porosities (Ebrahimi et al. 2017).  

There are a lot of studies related to dynamic and 

stability behaviors of FG structures but the dynamic 

analysis of porous FG structures, especially for beams, are 

still limited in number. For porous plates, the wave 

propagation of FG plates having porosities by using various 

higher-order shear deformation theories has been studied by 

Ait Yahia et al. (2015). Recently, Mechab et al. (2016) 

developed a nonlocal elasticity model for free vibration of 

FG porous nanoplates resting on elastic foundations. 

Wattanasakulpong and Ungbhakorn (2014) investigated 

linear and non-linear vibration of porous FGM beams with 

elastically restrained ends. In another work, 

Wattanasakulpong and Chaikittiratana (2015) predicted 

flexural vibration of porous FGM beams by applying the 

Chebyshev collocation method (CCM). Ebrahimi and Zia 

(2015) investigated the large-amplitude nonlinear vibration 

of porous FGM beams by utilizing Galerkin and multiple 

scales methods. Boutahar et al. (2016) presented a semi 

analytical method for non-linear vibration analysis of FGM 

porous annular plates resting on elastic foundations. 

Huge application of curve nanobeams and nanoring in 

the empirical experiments and dynamic molecular 

simulations (Wang and Duan 2008) led many researchers to 

study the mechanical characteristics of these structures. In 

comparison with straight nanobeams, curved ones possess 

various advantages such as large strokes (Ebrahimi and 

Barati 2016). Recently, the use of curved nanobeams has 

been extended in different systems as nanoswitches, 

nanovalves and nanofilters. Literature survey indicates that 

there are few researches about vibration behavior of FGM 

curved nanostructures like beam, ring and arches. Yan and 

Jiang (2011) investigated the electromechanical response of 

curved piezoelectric nanobeam with the consideration of 

surface effects. In addition, a new numerical technique, the 

differential quadrature method has been developed for 

dynamic analysis of the nanobeams in the polar coordinate 

system by Kananipour et al. (2014). In addition, 

investigating surface effects on thermomechanical behavior 

of embedded circular curved nanosize beams has been 

studied by Ebrahimi and Daman (2016). However, 

Ebrahimi and Daman (2016) have presented the radial 

vibration of embedded double-curved-nanobeam-systems. 

As well as, Wang and Duan (2008) have surveyed the free 

vibration problem of nanorings/arches. In this research the 

problem was formulated framework of Eringen’s nonlocal 

theory of elasticity according to allow for the small length 

scale effect. Also, dynamic modeling of embedded curved 

nanobeams incorporating surface effects has been presented 

by Ebrahimi and Daman (2016). In addition, Ebrahimi and 

Daman (2017) have studied analytical investigation of the 

surface effects on nonlocal vibration behavior of nanosize 

curved beams. Moreover, Ansari et al. (2013), developed 

vibration of FG curved microbeams with Out-of-plane 

frequency analyze of FG circular curved beams in thermal 

environment has been investigated by Malekzadeh et al. 

(2010). In addition, Hosseini and Rahmani (2016) presented 

free vibration of shallow and deep curved functionally 

graded nanobeam based on nonlocal Timoshenko curved 

beam model. Moreover, Ebrahimi and Barati (2017) 

employed nonlocal strain gradient theory to model size-

dependent buckling response of FG curve nanobeams with 

different boundary conditions. 

Reviewing the literature search in the field of vibration 

behavior of FG curve nanobeam indicates that there is not 

any published work considering small size effects, strain 

gradient, porosity, thermal effect, elastic foundation and 

electric voltage on vibration characteristics of FG curve 

nanobeam based on Timoshenko beam theory. As a result, 

present research analyzes thermo-mechanical vibration of 

curved FG porous embedded nanobeams exposed to electric 

voltage based on nonlocal strain gradient theory which 

consider both nonlocal and length scale parameter to 

describe size effects. Curvature rather exists in all of the 

real beams and nanobeams. Moreover, in previous 

researches in order to streamline of mathematical equations, 

straight beam models have been used, whilst curved beam 

models are more practicable than straight ones. The 

modified power-law model is exploited to describe gradual 

variation of thermo-mechanical properties of the porous FG 

piezo curve nanobeam. Applying Hamilton’s principle, 

governing equations of porous FG curve nanobeam are 

obtained together and they are solved applying an analytical 

solution method. Dimensionless natural frequencies are 

obtained respect to the effect of various parameters such as 

angle of curvature, length scale parameter, temperatures 

changes, Winkler-Pasternak foundation parameters, mode 

numbers, power-law index, electric voltage and nonlocal 

parameter on vibration of curved porous FG piezo 

nanobeams. Comparison between the results of present 

research and available data in literature reveals the accuracy 

of this model. 

 

 

2. Problem formulation 
 

2.1 The material properties of curved FGP 
nanobeams 

 

A curved FGP nanobeam made of piezoelectric 

materials involved PZT-4 and PZT-5H with length L in θ 

direction and uniform thickness h in z direction, and under 

an electric potential  , ,z t   as shown in Fig. 1 is 

assumed. 
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Fig. 1 Geometric of curved FGP nanobeam 

 

 

The relation between length of circular curved beam 

  and the angle of curvature of beam   can be written 

as (Setoodeh et al. 2015). 

R   (1) 

The effective material properties of the curved FGPM 

beam are assumed to vary continuously in the thickness 

direction based on a power-law model. According to this 

model, the effective material properties, P, can be defined 

as follow (Komijani et al. 2014). 

u u l lP PV PV   (2) 

where  ,l uP P  are the properties of materials at the lower 

surface and upper surface, respectively. In addition,  ,l uV V

are the corresponding volume fractions related by 

(Wattanasakulpong et al. 2011) 

1

2

p

u

z
V

h

 
  
   

(3) 

 

1u lV V 
 

(4) 

Hence, from Eqs. (2) and (3), the impressive material 

properties of the curved FGP beam can be defined as 

(Fallah and Aghdam 2011) 

   
1

2

p

u l l

z
P z P P P

h

 
    

   

(5) 

where p is the nonnegative variable parameter (power-law 

exponent). Power-law exponent determines the distribution 

profile of material through the thickness of the beam in z 

direction. Based on this distribution, the bottom surface is 

pure PZT-5H, whiles the top surface of curved FGP 

nanobeam stands for pure PZT-4. 

 

2.2 Governing equation 
 

Based on Timoshenko beam theory, displacement field 

in a point of the curved beam model can be remarked as 

     , , 1 , ,
z

u z t u t z t
R

    
 

   
   

(6a) 

 

   , , ,zu z t w t 
 

(6b) 

where w and u interpret the radial and tangential 

displacement of curved FGP beam. In addition,    is total 

bending rotation of cross sections of curved FGP beam. The 

strains of Timoshenko curved beam theory may be 

expressed as 

0 w u

R





 
  

(7b) 

 








  

(7b) 

 

z

u w

R
 




  
  

(7c) 

Here   denotes shear strain in curved beam model.  

 E Cos z

 


 

 
  

   

(8b) 

 

  02 i t

z

V
E Sin z e

z h


   

    
  

(8b) 

 

 0 z    
 

(9) 

The energy method (Hamilton’s principle) can be 

employed to derive the governing equations as follow 

 
0

0
t

s extU T W     (10) 

where sU ,T  and extW  are strain energy, kinetic energy 

and work done by external exerted loads, respectively. The 

first variation of strain energy sU  can be determined as 

 s z z z z
V

U D E D E dV                
(11) 

By inserting Eqs. (6) and (7) in Eq. (10), first variation 

of strain energy can be obtained as 

   

0

2

0
2

L

s

h
L

h z

u w u w
U N M Q d

R R

D Sin z D Cos z dzd

    
  

  


    




         
            

        

 
  

 



 
 

(12) 

Here M, N, and Q define bending moment of cross 

section, axial force, and shear force, respectively. These 

stress resultants existing in Eq. (12) may be expressed as 

A
N dA   (13) 
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A
M zdA   

shear z
A

Q K dA   
where 

ShearK  expresses the shear correction factor. In 

addition, Kinetic energy of Timoshenko curved beam can 

be calculated as 

 
2 2

0

1

2

L
z

A

u u
T z dAd

t

 


     
         
 

 

(14) 

Hence, first variation of kinetic energy can be calculated 

as 

1 2

0 0 2

2

1 2

2I Iu u w w
I I

t t R t tR
T d

I w w
I I

R t t t t t t

 

 
    

      
     

       
        
      

          

(15) 

where mass moments of inertias  0 1 2, ,I I I  are calculated 

as follows 

    2

0 1 2, , 1, ,
A

I I I z z z dA   
(16) 

Whereas the work done by the external loads is defined 

by extW  

 
0

2

2

1

2

L

ext E T

W P

w w
W N N

w
K w K d

 
 


 



 
  

 

 
  

 


 (17) 

where EN  and TN  are the external electric voltage 0V

and temperature changes T , which can be given as 

2
11 1

2

h

hTN c Tdz 
 

02
31

2

2

h

hE

V
N e dz

h
 

 

(18) 

By inserting u , w ,  and  coefficients equal 

to zero, following equation of motions can be determined 

for curved FGP nanobeam 

2

0 2

N Q u
I

R t

 
 
   

(19a) 

 

 
2

2

2 2

1 2 2
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T E
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N N

R

I I Iw
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R R t R t

w
K w K

 





 
   

 

    
       
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




 
(19b) 

 
2 2

2

1 22 2

IM w
Q I I

R t t





   
    

     

(19c) 

 

   2 2

2 2

0

h h

h h z

D
Cos z dz D Sin z dz   


 


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 
 

(19d) 

Boundary conditions that are related to equation of 

motions are considered as 

0N   or 0w   at 0   and L   (20a) 

 

0Q   or 0u   at 0   and L   (20a) 

 

0M   or 0   at 0   and L   (20c) 

 

 2

2

0

h

h D Cos z dz  
 

or 

0   at 0   and L   

(20d) 

 

2.3 The nonlocal elasticity model for curved FG 
nanobeam 

 
Despite the fundamental equations in classic elasticity 

theory, Eringen’s nonlocal model explains that the stress at 

a certain point x in a body is assumed as a function of 

strains of all points x  in the near realm. This supposition 

is very good agreement with experiments of atomic model 

and lattice dynamics in phonon scattering in which for a 

nonlocal piezoelectric materials. The basic equations with 

zero body force can be given as (Ke et al. 2012). 
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    
  (21b) 

where 
ij , 

ij , iD  and iE  are the stress, strain, 

electric displacement and electric field components, 

respectively; T  and kl   are the temperature changes 

and thermal expansion coefficient, respectively; 
ijklC , 

kije

, ikk and ip are elastic, piezoelectric, dielectric and 

pyroelectric constants, respectively;  ,x x    is the 

nonlocal kernel function and x x   is the nonnegative 

distance. 0e a l   is given as size coefficient. 

The relations in Eq. (21) causes the elasticity problems 

difficult to solve, in addition to possible lack of 
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determinism. Eringen (2002) presented in detail properties 

of non-local kernel  x x    and evaluated that when a 

kernel takes a Green’s function of linear differential 

operator 

   L x x x x    
 

(22) 

By matching the scattering curves with lattice models, 

Eringen (2002) supposed a nonlocal theory with the linear 

differential operator L expressed as follow 

 
2 2

01L e a  
 

(23) 

where 
2   is the Laplacian operator. Therefore, the 

fundamental relations given by Eq. (21) for nonlocal 

elasticity may be rewritten by differentiable form as 
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 (24b) 

The parameter 0e a  is the scale coefficient disclosing 

the nano scale effect on the responses of structures of 

nanoscale. The nonlocal parameter,  0e a   is 

experimentally determined for different materials. 

For a curved FGPM nanobeam under thermo-electro-

mechanical loading in the one dimensional case, the 

nonlocal fundamental relations (24(a)) and (24(b)) can be 

streamlined as 
2
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Calculating Eqs. (25) by integrating over cross-section 

area of the curved beam, force–strain and moment–strain of 

nonlocal curved FGP Timoshenko beam model will be 

determined as 
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where 
ShearK  defined as correction factor and assumed  

that equal 5 6  . Consequently, coefficients are obtained as 
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By inserting Eqs. (27) into Eqs. (19), nonlocal 

governing equations of curved FGP Timoshenko nanobeam 

in terms of displacement can be calculated as 
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3. Solution method 
 

In this section, analytical Navier method has been 

developed to solve the governing equations of curved FGP 

in regard to find out free vibrational of a simply supported 

curved FGP nanobeam. However, to define the 

displacement functions, product of unknown factors and 

known trigonometric functions has been employed to 

satisfy the governing equations and boundary conditions at 

0, L   ends. The displacement fields are assumed to be 

as follows 
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where nW , nU , n  and n  are the unknown Fourier 

factors to be obtained for each n value. The boundary 

conditions for simply supported curved FGP nanobeam can 

be given as 
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(30) 

Inserting Eqs. (29) into Eqs. (28) respectively, leads to 

Eqs. (30) 
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By inserting the determinant of the coefficient matrix of 

the Eqs. (30), the nontrivial analytical method may be 

determined from the Eq. (32) 

       2 0

n

n

T n

n

n

U

W
K T K M





 
 
 

    
 
 
   

(32) 

Here  K  and  TK  are stiffness matrix and coefficient 

matrix of temperature change, respectively and  M  is the 

mass matrix. By equaling the obtained determinant from 

coefficient matrix of above equations, which is a 

polynomial for 2

n , to zero, n  is obtained. 

 

 

 

4. Results and discussion 
 

In regard to investigate the nanosize effect on the 

thermos-electro vibration of curved nanobeams, the 

amounts of nonlocality for the curved porous FGP 

nanobeams resting on Winkler and Pasternak elastic 

foundations is considered as constant in the numerical 

results. To this purpose, the properties materials of curved 

porous FGP nanobeam made of PZT-4 and PZT-5H, are 

listed in Table 1. The beam’s material composition varies 

from pure PZT-5H at the bottom surface to pure PZT-4 at 

the top surface. To validate the results, thermal effect is 

eliminated and Simply-Simply supported boundary 

conditions are considered. In addition, material properties 

are assumed as metal and ceramic for FG curved 

nanobeams. The non-dimensional fundamental frequencies 

of the nonlocal FG curved nanobeam without consideration 

of the piezoelectric properties are compared to the results 

presented by Hosseini and Rahmani (2016) are listed in 

Tables 2 and 3 for different power-law index and opening 

angles. It is observed that the present results agree very well 

with the given by Ref (Hosseini and Rahmani 2016) and 

that increasing the nonlocality parameter tends to decrease 

the natural frequency. The reason is that the presence of the 

nonlocal effect tends to decrease the stiffness of the 

nanostructures and hence decrease the values of natural 

frequencies. The vibration of nano-size curved porous FGP 

beam resting on elastic foundation and under uniform 

temperature changes for different values of length scale 

parameter, nonlocal coefficients, power-law index, porosity 

parameter and three cases of external electrical voltage are 

tabloid in Table 4. 

The similar conclusions are extracted from this table for 

the effect of the electric voltage parameter on the 

dimensionless natural frequencies. It can be noted, from 

Table 4 that the dimensionless natural frequency decreases 

while the gradient index increases. From another 

perspective, this table reveals that the dimensionless natural 

frequency amplifies with the decrease of the power-law 

exponent parameter. It can also be observed that the natural 

frequency increases while length scale parameter    

change increasing. In addition, it can be emphasized that the 

natural Frequency decreases by increasing value of external 

voltage loading. As it can be deduced from table 4, by 

increasing porosity parameter, dimensionless natural 

frequency also increases. Table 5, presents the influences of 

Winkler  WK and Pasternak  PK  parameters on the 

dimensionless frequency of curved porous FGP nanobeams 

w i t h  d i f f e r e n t  t e m p e r a t u r e  c h a n g e  v a l u e s 

 0, 250, 500T   nonlocality  2 0, 1, 2    and porosity 

parameters  0, 0.2  at  50, , 0.01, 2
2

L v
h

       . 

So, various values of Winkler elastic foundation 

 50, 100, 150WK   and Pasternak elastic foundation 

 10, 20, 30PK   are considered. It is clear that when the 

radius of curved FG nanobeam extends to infinity the 

natural frequencies reach to those of straight nanobeam. 
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As the value of temperature change increases, the 

magnitude of dimensionless frequency reduces. As it can be 

deduced from Table 5, presence of elastic foundation makes 

the curved porous FGP nanobeam more rigid and increases 

the vibration frequencies. Moreover, effect of Pasternak 

medium on curved porous FGP nanobeam is more 

important than Winkler layer. The value of dimensionless 

natural frequency reduces as the value of nonlocal 

parameter increases. This is due to the fact that higher 

values of nonlocality make the nanobeam softer.  

In this section, the effect of voltage on dimensionless 

natural frequency with investigating different values of 

length scale parameter and nonlocality can be seen in Fig. 2. 

Thus, Fig. 2 clearly demonstrates that by increasing external 

voltage between -0.1 to 0.1, dimensionless natural 

frequency decreases. However, with the increase the length 

scale parameter between 0 and 3 the natural frequency  

increases significantly. In addition, Fig. 2 also reveals that 

the dimensionless natural frequency decreases when the 

nonlocal parameter becomes greater, disclosing that the  

 

 

effect of the external voltage is more remarkable in the case 

of curved porous FGP nanobeams. Hence the results show 

that the nonlocal effect is tending to decrease the stiffness 

of nanobeams and thus decreases the dimensionless natural 

frequencies.  

The effect of voltage on dimensionless natural 

frequency with investigating different values of porosity 

and aspect ratio can be observed in Fig. 3. Thus, Fig. 3 

illustrates that with increasing voltage between -0.1 to 0.1, 

dimensionless natural frequency decreases. In addition, with 

the increase the porosity parameter   between 0 and 0.3 

the natural frequency increases sufficiently. Fig. 3 reveals 

that the discrepancy between the different values of 

nonlocality curves decreases when the aspect ratio becomes  

greater, disclosing that the effect of the aspect ratio is more 

remarkable in the case of curved porous FGP nanobeams. 

Hence the results show that the porosity effect is tending to 

increase the stiffness of nanobeams and thus increase the 

dimensionless natural frequencies. 

 

Table 1 constants of material properties (Doroushi et al. 2011) 

Properties PZT-4 PZT-5H 

 11c Pa  910381 .  
910660 .  

 55c Pa  910625 .  
91023  

 231
Ce

m
 -10 -16.604 

 215
Ce

m
 40.3248 44.9046 

 11
F

m
  81067120 .  

81050271 .  

 33
F

m
  81002751 .  

81055402 .  

 3

Kg
m

  
7500 7500 

 1
1

K
  51020 .  

5101   

 

Table 2 Comparison of dimensionless natural frequencies of S-S curved FG nanobeams for different amounts of 

slenderness, mode number and nonlocality where 0p   and 3     

2 4   
 2 3   

 2 2   
 2 1   

 2 0    n   L
h

  

Present Hosseini 

and 

Rahmani 

2016 

 Present Hosseini 

and 

Rahmani 

2016 

 Present Hosseini 

and 

Rahmani 

2016 

 Present Hosseini 

and 

Rahmani 

2016 

 Present Hosseini 

and 

Rahmani 

2016 

  

6.9425 6.9425  7.2020 7.2020  7.4929 7.4929  7.8222 7.8222  8.1991 8.1991 1n   10 

22.2576 22.2576  24.1855 24.1855  26.7204 26.7204  30.2666 30.2666  35.7451 35.7451 2n    

36.2732 36.2732  40.4308 40.4308  46.4500 46.4500  56.3256 56.3256  77.3993 77.3993 3n    

7.0205 7.0205  7.2829 7.2829  7.5771 7.5771  7.9101 7.9101  8.2912 8.2912 1n   20 

23.2180 23.2180  25.2291 25.2291  27.8733 27.8733  31.5725 31.5725  37.2875 37.2875 2n    

39.5156 39.5156  44.0449 44.0449  50.6022 50.6022  61.3605 61.3605  84.3180 84.3180 3n    

7.0429 7.0429  7.3061 7.3061  7.6012 7.6012  7.9353 7.9353  8.3177 8.3177 1n   50 

23.5159 23.5159  25.5527 25.5527  28.2309 28.2309  31.9776 31.9776  37.7658 37.7658 2n    

40.6359 40.6359  45.2935 45.2935  52.0367 52.0367  63.1000 63.1000  86.7084 86.7084 3n    

717



 

Farzad Ebrahimi, Mohsen Daman and Ali Jafari 

 

 

 

 

 

 

To display the impact of aspect ratio on the 

dimensionless natural frequency of curved porous FGP 

resting on elastic foundation for various external voltage 

 

 

 

 

 

 

 0.05, 0, 0.05v    , Fig. 4 presents the frequency 

results versus aspect ratio with simply-simply boundary  

 

 

Table 3 Comparison of dimensionless natural frequency of S-S curved FG nanobeams for different amounts of  

slenderness, mode number and nonlocality where 1p   and 2 
 

2 4  
2 3  

2 2  
2 1  

2 0   n  L
h

  

Present Hosseini 

and 

Rahmani 

2016 

Present Hosseini 

and 

Rahmani 

2016 

Present Hosseini 

and 

Rahmani 

2016 

Present Hosseini 

and 

Rahmani 

2016 

Present Hosseini 

and 

Rahmani 

2016 

  

3.8612 3.8612 4.0055 4.0055 4.1673 4.1673 4.3504 4.3504 4.5601 4.5601 1n  10 

14.7808 14.7808 16.0611 16.0611 17.7444 17.7444 20.0993 20.0993 23.7375 23.7375 2n   

24.9704 24.9704 27.8325 27.8325 31.9762 31.9762 38.7745 38.7745 53.2817 53.2817 3n   

3.9522 3.9522 4.0999 4.0999 4.2655 4.2655 4.4530 4.4530 4.6675 4.6675 1n  20 

15.5694 15.5694 16.9179 16.9179 18.6911 18.6911 21.1716 21.1716 25.0039 25.0039 2n   

27.3356 27.3356 30.4689 30.4689 35.0050 35.0050 42.4472 42.4472 58.3285 58.3285 3n   

3.9972 3.9972 4.1466 4.1466 4.3142 4.3142 4.5038 4.5038 4.7208 4.7208 1n  50 

15.9008 15.9008 17.2780 17.2780 19.0889 19.0889 21.6223 21.6223 25.5362 25.5362 2n   

28.3067 28.3067 31.5512 31.5512 36.9551 36.9551 43.9551 43.9551 60.4005 60.4005 3n   

Table 4. Variation in the frequency parameter of the curved FGP nanobeams for various amounts of length scale 

parameter, nonlocality, external electric voltage and power-law exponent 
3

   , 10L
h
  , 50WK   , 10pK  ,

100T     

  0     2    4   

2    0V v   
Gradient index  Gradient index  Gradient index 

  0 0.5 1  0 0.5 1  0 0.5 1 

0   

 -0.05 15.681 15.615 15.588  16.237 16.148 16.116  16.748 16.634 16.595 

0 0 15.305 15.153 15.086  15.860 15.683 15.608  16.372 16.168 16.086 

 +0.05 14.912 14.665 14.552  15.467 15.193 15.071  15.982 15.680 15.550 

 

 -0.05 15.406 15.350 15.325  15.941 15.865 15.836  16.428 16.330 16.295 

1 0 15.032 14.892 14.828  15.564 15.401 15.330  16.051 15.864 15.787 

 +0.05 14.641 14.406 14.296  15.171 14.911 14.794  15.659 15.375 15.250 

             

 -0.05 15.164 15.115 15.091  15.681 15.615 15.588  16.149 16.064 16.033 

2 0 14.792 14.661 14.599  15.305 15.153 15.086  15.772 15.599 15.526 

 +0.05 14.403 14.178 14.072  14.912 14.665 14.552  15.379 15.109 14.989 

 

0.2   

 -0.05 16.807 16.721 16.682  17.379 17.270 17.227  17.899 17.762 17.713 

0 0 16.500 16.322 16.239  17.069 16.863 16.774  17.588 17.352 17.255 

 +0.05 16.183 15.902 15.771  16.749 16.438 16.298  17.267 16.925 16.776 

             

 -0.05 16.521 16.445 16.407  17.075 16.979 16.939  17.574 17.455 17.410 

1 0 16.218 16.050 15.970  16.767 16.576 16.491  17.264 17.047 16.955 

 +0.05 15.903 15.636 15.508  16.448 16.154 16.019  16.943 16.621 16.478 

             

 -0.05 16.267 16.197 16.159  16.807 16.721 16.682  17.289 17.184 17.142 

2 0 15.967 15.808 15.729  16.500 16.322 16.239  16.980 16.778 16.690 

 +0.05 15.655 15.398 15.273  16.183 15.902 15.771  16.660 16.354 16.215 
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conditions at constant value of power-law index (p=1), 

Winkler & Pasternak elastic foundation  50, 10W PK K  . 

As can be seen, at first increment of aspect ratio leads to 

increasing of dimensionless frequency of curved porous 

FGP for all of the external voltage. Then, with the 

increasing of slenderness, it is seen that 

0, 0, 0v v v  provided higher, approximately 

constant and lower dimensional frequency, respectively. In 

addition, it is observable that higher values of L/h have 

more significant influence on frequency response. 

Consequently, the difference between frequency results 

according to negative and positive values of external 

electric voltage increases with the rise of aspect ratio.  It is 

pointed that growing of the porosity is cause of increment in 

the dimensionless frequencies of curved porous FGP. In this 

section, the effect of the gradient index and external electric 

voltage on the frequency analysis of nonlocal curved porous 

FGP nanobeam resting on elastic foundation, is 

demonstrated in Fig. 5 at constant slenderness ratio L/h=10. 
It can be obviously deduced that; the dimensionless natural 

frequency reduces with high pace while the power exponent 

in realm between 0 and 2 than that while power exponent in 

realm from 2 to 10. In addition, the mentioned results 

obtained also show that the natural frequencies of the 

curved porous FGP nanobeam model are evermore lower 

than those of the classical graded piezoelectric curved beam 

model. With the increase the external voltage between -0.1  

 

 

 

and +0.1, the natural frequency decreases substantially. The 

results show that by increasing porosity parameter, 

dimensionless natural frequency also increase. 

The fundamental dimensionless frequency as a function 

of gradient index and temperature changes is presented in 

Fig. 6 for the curved porous FGP nanobeam. Similarly, it is 

disclosed that for a simply-simply curved porous FGP 

nanobeam increasing gradient index and temperature 

change, leads to reduce the dimensionless natural frequency. 

Meanwhile as it can be observed from Fig. 5, by increasing 

porosity parameter, non-dimensional frequency also tends 

to increase. Fig. 7 illustrates the variation of frequency 

parameter of curved porous FGP nanobeam respect to mode 

number for different values of strain gradient parameter at

3
  , 1p  , 100T  , 0.1  , 0.1v  , 50WK  , 10PK  . 

For various nonlocality values, a higher mode gives larger 

natural frequency. It is seen that effect of length scale 

parameter   on vibration frequency of curved porous FGP 

nanobeam is more sensitivity at higher modes. For all mode 

numbers, increasing strain gradient parameter leads to 

enlargement of frequency parameter. As expected, largest 

and smallest values of nonlocality have the greatest and 

smallest frequencies, respectively. In fact, smaller nonlocal 

parameter make the nanobeam more rigid and lead to larger 

frequencies. 

 

 

Table 5 Variation in the frequency parameter of the curved FGP nanobeams for various amounts of Winkler and 

Pasternak parameter, nonlocality, porousity and temperature changes 
2

   , 50L
h
  , 0.01V    , 2  1p     

2   
Pasternak 

Parameter 
0T    250T    500T   

Winkler Parameter  Winkler Parameter  Winkler Parameter 

  50 100 150  50 100 150  50 100 150 

0   

0 10 14.664 18.300 21.318  11.831 16.125 19.487  8.0494 13.602 17.463 

 20 21.245 23.888 26.260  19.407 22.273 24.805  17.373 20.530 23.256 

 30 26.201 28.376 30.391  24.742 27.038 29.149  23.189 25.628 27.849 

             

1 10 14.504 18.171 21.205  11.633 15.979 19.365  7.7557 13.430 17.327 

 20 21.131 23.785 26.164  19.284 22.164 24.704  17.237 20.413 23.150 

 30 26.105 28.284 30.302  24.642 26.943 29.058  23.083 25.530 27.756 

             

2 10 14.369 18.061 21.110  11.464 15.856 19.262  7.5016 13.284 17.213 

 20 21.036 23.697 26.082  19.181 22.072 24.619  17.122 20.314 23.061 

 30 26.023 28.205 30.225  24.556 26.862 28.980  22.994 25.446 27.676 

 

0.2   

 10 17.442 21.303 24.556  15.664 19.879 23.334  13.655 18.342 22.044 

0 20 24.476 27.346 29.934  23.251 26.258 28.947  21.956 25.122 27.923 

 30 29.870 32.249 34.458  28.880 31.337 33.609  27.854 30.397 32.737 

             

 10 17.307 21.190 24.455  15.515 19.759 23.230  13.484 18.213 21.934 

1 20 24.375 27.252 29.845  23.146 26.162 28.856  21.846 25.023 27.831 

 30 29.780 32.162 34.372  28.789 31.249 33.523  27.761 30.309 32.650 

             

 10 17.095 21.013 24.296  15.280 19.571 23.065  13.215 18.011 21.762 

2 20 24.216 27.103 29.700  22.981 26.009 28.710  21.673 24.866 27.683 

 30 29.636 32.020 34.229  28.643 31.107 33.381  27.613 30.165 32.508 
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Fig. 2 Variations of the dimensionless natural frequencies of the curved porous FGP nanobeam respect to the voltage 

with different values of strain gradient parameter and nonlocality 
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Fig. 3 Variations of the fundamental natural frequencies of the curved porous FGP nanobeam respect to the voltage 

with different values of porosity parameter and aspect ratio  2, 100, 1, 2, 1, 50, 10
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Fig. 4 Influence of aspect ratio on the dimensionless frequency of curved porous FGP resting on elastic foundation for 

different external voltage and porosity value 2( 1, 100, 20, 2, 1, )
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Fig. 5 Variations of the fundamental natural frequency of the curved porous FGP nanobeam respect gradient index for 

different amounts of external voltage and porousity  210, , 50, 10, 1, 2, 100
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Fig. 6 Variations of the fundamental natural frequency of the curved porous FGP nanobeam respect gradient index 

for different amounts of external voltage and porousity  250, , 50, 10, 3, 2, 0.01
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Fig. 7 Effects of strain gradient parameter on dimensionless frequency of curved porous FGP nanobeam with respect to 

mode number for different nonlocal values  T 100, , 0.1, 0.1, 10, 1, 10, 50
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5. Conclusions 
 

In the proposed investigation, vibration characteristics 

of embedded porous FG curved piezoelectric nanobeams 

exposed to thermal loading with different opening angles is 

implemented within the framework of nonlocal strain 

gradient elasticity theory in which consider length scale and 

nonlocality impact. Thermo-Mechanical properties of 

porous FG curved piezoelectric nanobeams are temperature-

dependent and vary in the radial direction based on 

modified power-law model for approximation of material 

properties with even distribution of porosities. The 

governing differential equations of motion and related 

boundary condition are derived by using Hamilton principle 

and then solved by applying an analytical exact solution 

method for Simply-Simply supported boundary condition. 

Accuracy of the results is examined using available date in 

the literature. It is indicated that the thermo-mechanical 

vibration characteristics of embedded curved FG piezo 

porous nanobeam significantly affected by various 

parameters such as material graduation index, external 

electric voltage, Winkler-Pasternak elastic foundation, 

porosity parameter, temperature environment, length scale 

parameter, nonlocal parameter, angle of curvature and 

gradient index. Numerical results show that: 

 By increasing the power-law index value and nonlocal 

parameter, the non-dimensional frequencies of 

embedded porous FG curve piezoelectric nanobeams 

are found to diminish regardless of opening angle and 

porosity values. 

 Increasing external electric voltage yields reduction of 

non-dimensional frequency of embedded porous FG 

piezo curve nanobeam. 

 Effect of slenderness ratio (L/h) on frequencies with 

respect to external electric voltage is more prominent at 

its higher values. As slenderness ratio increases, the 

difference between frequencies results according to 

negative and positive values of electric voltage 

increases. 

 Increasing temperature changing yields reduction of 

natural frequency of embedded porous FG curve 

piezoelectric nanobeams supposed thermal loading.  

 Increasing strain gradient parameter yields increment of 

non-dimensional frequency of curved FGM porous 

nanobeam. However, for the nonlocal parameter this 

behavior is opposite. Also, impact of strain gradient 

parameter on frequencies higher mode number is more 

prominent than lower mode numbers 

 As slenderness ratio increases, the non-dimensional 

frequencies of embedded porous FG piezoelectric curve 

nanobeams increase. 

 For the FG piezo curve nanobeams with elastic 

foundation, increasing the volume fraction of porosity 

first yields an increase in fundamental frequency for all 

values of gradient index. 
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