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1. Introduction 

 
Applications of the functionally graded structures have 

been increasing in the field of aerospace, aircrafts, 
automotive industry and other engineering domain (Kar and 
Panda 2015, Akbaş 2015, Akavci 2015, Ait Atmane et al. 
2015, Arefi, 2015a, b, Arefi and Allam 2015, Bakora and 
Tounsi 2015, Aizikovich et al. 2016, Benferhat et al. 2016, 
Mehar and Panda 2016a, b, c, Mehar et al. 2016, Mehar and 
Panda 2017a, b, c, El-Haina et al. 2017). FGMs structures 
with the continuous variation of properties of materials 
possess advantages to have the reduction of residual and 
thermal stresses. Advanced structural components 
composed of functionally graded materials (FGMs) are 
exposed to environmental conditions such as high 
temperature and moisture effect that are detrimental to the 
resistance and rigidity of the advanced composite structures 
even at nanoscale components. Hence the analysis of such 
composite nanoscale structures under hygrothermal loading 
has been of considerable interest to researchers. Recently,  
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considerable interests have been devoted to experimental 
and theoretical works of the hygrothermal response of 
graded structures. Since, controlling the experimental 
conditions is not evident for nanoscale structures, 
theoretical models become necessary (Benguediab et al. 
2014, Zemri et al. 2015, Adda Bedia et al. 2015, Belkorissat 
et al. 2015, Larbi Chaht et al. 2015, Ahouel et al. 2016, 
Bounouara et al. 2016, Barati and Shahverdi 2016, Bouafia 
et al. 2017, Besseghier et al. 2017, Bellifa et al. 2017). Lee 
and Kim (2013) studied the thermal postbuckling behavior 
of the FGM plates considering hygrothermal as well as 
moisture effects based on the first-order shear deformation 
plate theory. Akbarzadeh and Chen (2013) presented an 
analytical solutions for hygrothermal stresses in one-
dimensional functionally graded piezoelectric subjected to 
an external constant magnetic field and resting on a 
Winkler-type elastic foundation. Zidi et al. (2014) studied 
the bending analysis of FGM plates under hygro-
thermomechanical loading using a four-variable refined 
plate theory. Ebrahimi and Barati (2016a) investigated the 
influence of the environments on the damping vibration of 
FG nanobeams based on nonlocal strain gradient elasticity 
theory. Sobhy (2016) proposed an analytical approach to 
illustrate the hygrothermal vibration and buckling of FGM 
sandwich plates resting on Winkler–Pasternak elastic 
foundations based using new accurate four-variable shear 
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deformation plate theory.  Also, recently Laoufi et al. 

(2016) presented an analytical method to determine the 

deflection and stress distributions in functionally graded 

plates  subjected to a mechanical load, a temperature and 

moisture fields. Most recently Beldjelili et al. (2016)  

investigated bending behavior of sigmoid functionally 

graded material (S-FGM) plate resting on variable two-

parameter elastic foundations with consideration hygro-

thermo-mechanical of based on a four-variable refined plate 

theory. Due to the inability of classical beam theory or 

Euler–Bernoulli beam theory (EBT) to take into account the 

transverse shear deformations, as well as a shear correction 

factor is required to compensate for the difference between 

the actual stress state and the constant stress state in the 

case of Timoshenko beam theory (TBT), a number of 

higher-order shear deformation theories are proposed and 

developed based on the assumption of the higher-order 

variation of axial displacement through the height of the 

beam and applied in analysis of FG structures. For thick and 

moderately deep FG beams, the CBT overrated natural 

frequency due to ignoring the transverse shear deformation 

effect (Şimşek 2009, Eltaher et al. 2012, Kaci et al. 2012). 

In TBT (Şimşek and Yurtçu 2012, bouremana et al. 2013), 

the distribution of the transverse shear stress is assumed 

constant with respect to the thickness coordinate. However, 

influences of the transverse shear stress may become more 

considerable for moderately short beams. In fact, to keep 

away the use of a shear correction factor, many higher order 

shear deformation theories have been proposed, notable 

among them are the parabolic theory deformation beam 

theory (PSDBT) of Reddy (1984), the trigonometric shear 

deformation beam theory (TSDBT) of Touratier (1991), the 

hyperbolic shear deformation beam theory (HSDBT) of 

Soldatos (1992), the exponential shear deformation beam 

theory (ESDBT) of Karama et al. (2003). 

This work aims to develop a new trigonometric shear 

deformation theory to investigate the influences of moisture 

and temperature rise due to various hygro-thermal loads on 

vibration of nanosize FGM beams resting on elastic 

foundation. The proposed theory contain fewer unknowns 

and equations of motion than the first-order shear 

deformation theory, but satisfy the zero traction boundary 

conditions on the top and bottom surfaces of the beam, thus 

a shear correction factor is not required. In addition, unlike 

the previous mentioned theories, the number of variables in 

the present theory is same as that in the CPT. Three types of 

environmental condition namely uniform, linear, and 

sinusoidal hygrothermal loading are studied. Material 

properties of FG beams are assumed to vary according to a 

power law distribution of the volume fraction of the 

constituents. Equations of motion are derived from 

Hamilton’s principle. Numerical examples are presented to 

show the validity and accuracy of present shear deformation 

theories. The effects of hygro-thermal environments, power 

law index, nonlocality and elastic foundation on the free 

vibration responses of FG beams under hygro-thermal 

effect are investigated. 

 

 

 

 2. Mathematical formulation 
 

2.1 Nonlocal power-low FG nanobeam model 
 

According to power-law form the material properties of 

the FG nanobeam (Fig. 1) such as Young’s modulus  E , 

Poisson’s ratio   , the  mass  density   ,the thermal 

expansion   , moisture expansion coefficient    and 

shear modulus  G  can be calculated (Tounsi et al. 2013, 

Bouderba et al. 2013, Attia et al. 2015, Bellifa et al. 2016, 

Bouderba et al. 2016, Bousahla et al. 2016, Fahsi et al. 

2017, Meksi et al. 2017) 

mmcc VPVPzP )(  (1) 

where, iV  ( mci , ) is the volume fraction of the phase 

material. The subscripts ''c  and '' m represent the ceramic 

and metal phases, respectively. The volume fractions of the 

ceramic and metal phases are related by 

1 mc VV  (2) 

and cV  is written as 
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With '' p  is the gradient index which determines the 

material distribution through the thickness of the beam and 

z  is the distance from the mid-surface of the FG 

nanobeam, the effective material properties of the non-local 

FG beam including Young’s modulus  E , shear modulus 

 G , mass density   , thermal expansion   , and 

moisture expansion coefficient    can be expressed in 

the following form 
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The non-linear FG nanobeam material can be computed 

as the following equation 
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where, T  is the environmental temperature; P indicates 

material property; 1P , 0P , 1P , 2P  and 3P  are the 

coefficients of temperature-dependent material properties 

unique to the constituent materials (Table 1). 

 

2.2 Kinematic relations 
 

Consider a simply supported FG beam with the length 

L  and rectangular cross-section hb  with b  being the 

width and h  being the height (Fig. 1). The beam is made 

of isotropic material with material properties varying 

smoothly in the thickness direction. Unlike the previous 

mentioned theories, the number of unknown functions 

involved in the present theory is only two as in EBT. 

The displacement field of the proposed two unknowns 

shear deformation theory is built upon the Euler-Bernoulli 

beam theory (EBT) including the trigonometric function in 

terms of thickness coordinate to represent shear 

deformation and is assumed as follows (Tounsi et al. 2016, 

Houari et al. 2016, Klouche et al. 2017) 
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where 0u  and 0w  are two unknown displacement 

functions of mid-axis of the beam. )(zf  is a shape 

function representing the variation of the transverse shear 

strains and shear stresses through the thickness of the beam 

and is given as 
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The nonzero linear strains related to displacement field 

in Eq. (1) are 

xxxx zfkz  )(0  ,  0)( xzxz zg    (8) 

where 

 

 

Fig. 1 Geometry of functionally graded nanobeam resting on elastic foundation 

Table 1 Temperature-dependent material properties of FGM constituents (Ebrahimi and Salari 2015). 

Material Properties P0 P-1 P1 P2 P3 

Si3N4 
E(Pa) 

3.4843e+11 0 
-3.070e-4 2.160e-7 -8.946e-11 

 
α(K-1) 5.8723e-6 

0 
9.095e-4 0 0 

 
ρ(Kg/m3) 2370 

0 
0 0 0 

 ν 0.24 
0 0 0 0 

SUS 304 E(Pa) 2.0104e+11 
0 3.079e-4 -6.534e-7 0 

 
α(K-1) 12.33e-6 

0 
8.086e-4 0 0 

 
ρ(Kg/m3) 8166 0 0 0 0 

 ν 0.3262 0 -2.002e-4 3.797e-7 0 
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and 

 zfzg )(  (10) 

where   is defined in Eq. (27). 

 

2.3 Equations of motion 

 
Hamilton’s principle is used herein to derive the 

equations of motion. The principle can be stated in the 

following form (Ait Amar Meziane et al. 2014, Bennai et 

al. 2015, Taibi et al. 2015, Ait Yahia et al. 2015, Mahi et al. 

2015, Meksi et al. 2015, Becheri et al. 2016, Boukhari et al. 

2016, Merdaci et al. 2016, Chikh et al. 2016) 

 

t

dtKVU

0

 )  (0   (11) 

where t  is the time; 1t and 2t  are the initial and end 

time, respectively; U  is strain energy, V  is work done 

by external forces, and K  is the variation of kinetic 

energy of the beam. 

The variation of the strain energy of the beam can be 

stated as 
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In which the stress resultants xN , xM , xS  and xzQ  

are defined by 

    




2/

2/

,,1,,

h

h

xxxx dzzfzSMN  ,  






2/

2/

)( 

h

h

xzxz dzzgQ   

(13) 

The first variation of the work done by applied forces 

can be written in the form 
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where wk  and sk  are linear and shear coefficient of 

elastic foundation, respectively, and 
TN  and 

HN  are 

applied forces due to temperature and moisture change as 
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where 0T  and 0C  are the reference temperature and 

moisture concentrations, respectively. The variation of 

kinetic energy is written as 
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Where dot-superscript convention indicates the 

differentiation with respect to the time variable t ; )(z  

is the mass density; and ( 0I , 1I , 1J , 2I , 2J , 2K ) are 

mass inertias defined as 
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Using the expressions for U  , V  , and K   from 

Eqs. (14) and (16) into Eq. (11) and integrating by parts, 

and collecting the coefficients of 0 u and 0 w , the 

following equations of motion of the beam are obtained 
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(18) 

 

2.4 The nonlocal elasticity model for FG nanobeam 
 

According to nonlocal elasticity theory (Eringen and 

Edelen 1972, Eringen 1983), the stress state at a point inside 

a body is regarded to be a function of strains of all points in 

the neighbor regions. For homogeneous elastic solids, the 

nonlocal stress-tensor components ij  at each point x  in 

the solid can be expressed as 

 


 )'()'(  ,')( xdxtxxx ijij   (19) 

where )'(xtij  are the components available in local stress 

tensor at point x which are associated to the strain tensor 

components kl  as 

klijklij Ct   (20) 

The concept of Eq. (19) is that the nonlocal stress at any 

point is a weighting average of the local stress of all near 

points, and the nonlocal kernel    ,' xx   considers the 

influence of the strain at the point 'x  on the stress at the 

point x  in the elastic body. The parameter   is an 

internal characteristic length (e.g., lattice parameter, 

granular distance, the length of C–C bonds). Also xx '  

is Euclidean distance and   is a constant value as follows 

l

ae0  (21) 
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which presents the relation of a characteristic internal 

length, and a characteristic external length, l  (e.g., crack 

length and wavelength) using a constant, 0e , dependent on 

each material. The value of 0e  is experimentally evaluated 

by comparing the scattering curves of plane waves with 

those of atomistic dynamics. In the nonlocal model of 

elasticity, the points undergo translational motion as in the 

classical case, but the stress at a point depends on the strain 

in a region near that point. As for physical interpretation, 

the nonlocal model introduces long range interactions 

between points in a continuum model. Such long range 

interactions occur between charged atoms or molecules in a 

solid. Eringen (Eringen 1972, Eringen 1983) numerically 

determined the functional form of the kernel. By 

appropriate selection of the kernel function, Eringen shown 

that the nonlocal constitutive equation given in integral 

form (see Eq. (19)) can be represented in an equivalent 

differential form as 

  klkl tae  2
0 )(1  (22) 

In which 
2  is the Laplacian operator. Hence, the 

scale length ae0  considers the effects of small size on the 

behavior of nanostructures. Thus, the constitutive relations 

of nonlocal theory for a FG nanobeam can be written as 
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In which 
2

0 )( ae  and the stiffness coefficients, 

ijQ , can be expressed as 

),(11 zEQ  ).(44 zGQ   (24) 

Integrating Eq. (23) over the beam’s cross-section area 

yields the force–strain and the moment–strain of the 

nonlocal refined FG beams as follows 
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for an isotropic beam   takes the following expression 
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By substituting Eq. (25) into Eq. (18), the governing 

equations can be written in terms of generalized 

displacements ( 0u and 0w ) as 
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3. Analytical solution 
 

The above governing equations are analytically solved 

for bending problems of a simply supported beam. Based on 

Navier solution procedure, the displacements are assumed 

as follows 
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where am /  , ( mU , mW ) are arbitrary parameters to 

be determined,   is the eigenfrequency associated with 

m-th eigenmode 

Substituting the expansions of 0u  and 0w  from Eqs. 

(29) into the equations of motion, Eq. (28), the analytical 

solutions can be obtained from the following equations 
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4. Various hygro-thermal environments 

 

4.1 Uniform moisture and temperature rise 
 

For a FG nanobeam at reference moisture concentration 

0C  and reference temperature 0T , the moisture and 

temperature  are uniformly raised to a final value C  and 

T , respectively, in which the moisture and temperature 

change are 0TTT  and 0CCC  . 

 

4.2 Linear moisture and temperature rise 
 

For a FG nanobeam for which the plate thickness is thin 

enough, the moisture and temperature distributions are 

linearly variable through the thickness as follows 
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The  CT  ,  in Eq. (32) could be defined 

0TTT  , 0CCC  . 

 

4.3 Sinusoidal moisture and temperature rise 
 

The moisture and temperature fields when FG 

nanobeam is exposed to sinusoidal moisture/temperature 

rise across the thickness can be defined as (Na and Kim 

2004, Ebrahimi and Barati 2016b) 
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where 0TTT   and 0CCC   are temperature 

and moisture change. 

 

 

5. Numerical results and discussion 
 

The general approach outlined in the previous sections 

for hygro-thermomechanical vibration analysis  of a 

simply supported nanoscale FGM beam has been 

investigated through many numerical examples to verify the 

accuracy of the proposed new nonlocal trigonometric shear 

deformation beam theory. The material properties of the FG 

nanobeam as Young’s modulus, Poisson ratio, thermal, and 

moisture expansion coefficients vary within the thickness 

direction according to power-law homogenization model. In 

thermal environment, high temperature makes a important 

change in mechanical properties of the constituent materials.  

Therefore, it is necessary to take into account the 

temperature-dependent material property to predict the 

behavior of FGMs under high temperature more accurately. 

Temperature-dependent material properties of nonlocal P-

FGM beam which is made from steel (SUS 304) with 

0005.0m  and silicon nitride (Si3N4) with 0c  

are given in Table 1. Verification is carried out by assuming 

the values of different quantities in the ceramic and metal as: 

nm10(length) L , nm1(width) b , and 

varied)(thickness h . The temperature rise in fully 

metal surface of FG nanobeam to reference temperature 0T  

is K50 TTm . To indicate the exactness of the validity 

of present model, a comparison study is provided. 

Tables 2 show the natural frequency of presented 

sinusoidal FG nanobeam under linear temperature rise. The 

obtained results are compared with those computed 

independently based on the Euler-Bernoulli beam theory 

(CBT) and the parabolic shear deformation beam theory 

(PSBT), and those reported by Ebrahimi and Salari (2015) 

for Timoshenko beam theory (TBT), when nonlocal 

parameter changes from 0 to 4 nm
2
. It can be observed that 

the present model can evaluate the vibrational behavior of 

FG nanobeams with excellent agreement. The shear 

correction factor is taken as 5/6 for Timoshenko beam 

theory. For better presentation of the results, the following 

nondimensionalizations are used 

IE

A
L

c

c 2ˆ  , 
IE

L
kK

c

ww

4

 ,
IE

L
kK

c

pp

2

  

Tables 3-5 show the variations of the dimensionless 

frequencies of FG nanobeam resting on elastic foundation 

for various beam theories and three environmental 

conditions called uniform, linear, and sinusoidal hygro-

thermal loadings at L/h = 20. It can be seen that all of the 

proposed beam theories provide excellent agreement as 

values of non-dimensional fundamental frequency are 

consistent with presented analytical solution. Also, it is 

observed that frequency results of shear deformation beam 

theories are lower than classical beam theory due to the 

cause that CBT is unable to capture shear deformation 

effect. Note that CBT disregards the shear deformation 

effect so that predicted dimensionless frequencies through 

CBT are overestimated. The dimensionless frequency 

diminishes as nonlocal parameter grows, for any type of 

hygro-thermal loading. The reason is the lower rigidity of 

the nanobeam when its size reduces. 

Therefore, the variations of moisture or temperature 

have a substantial impact on the rigidity and vibration 

responses of size-dependent FG nanobeams and natural 

frequencies regardless of hygrothermal loading type. 

Moreover, it is observable that sinusoidal distribution of 

temperature and moisture provides higher natural frequency 

than other hygro-thermal loads; the uniform hygro-thermal 

loading has the lowest one. 
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(a) Ebrahimi and Salari (2015) 

 

 

 

 

 

 

 

Fig. 2  illustrate the variation of dimensionless natural 

frequency of simply supported sinusoidal FG nanobeam 

versus uniform, l inear,  and sinusoidal  moisture 

concentration rise in prebuckling domain for different 

nonlocal parameters at 1p , 20hL , 0 pw KK   

and  KT 40 . It is observable that at a specified 

environmental condition, the nonlocal beam model creates  

 

 

 

 

 

 

 

 

 

 

 

lower natural frequency than local beam model. Also, it is 

shown that for all environmental conditions, the 

dimensionless natural frequency declines with the moisture 

increment. Therefore, moisture concentration and 

nonlocality have an important softening impact and 

desirable characteristic in beam structure and should be 

considered in the analysis of size-dependent FG nanobeams. 

 

Table 2 Comparison of the nondimensional fundamental frequency for a FG nanobeam under linear temperature rise without 

elastic foundation with various gradient indexes (L/h =20)  

μ 

(nm2) 

P=0 P=0.2 P=1 P=5 
CBT TBT(a) PSBT Present CBT TBT(a) PSBT Present CBT TBT(a) PSBT Present CBT TBT(a) PSBT Present 

0 9.1796 9.1475 9.1475 9.1477 7.3681 7.3420 7.3422 7.3423 5.3740 5.3537 5.3537 5.3538 4.3059 4.2875 4.2868 4.2869 

1 8.6910 8.6601 8.6601 8.6603 6.9670 6.9419 6.9421 6.9422 5.0676 5.0480 5.0480 5.0481 4.0496 4.0317 4.0311 4.0311 

2 8.2608 8.2310 8.2310 8.2311 6.6135 6.5892 6.5894 6.5895 4.7967 4.7777 4.7777 4.7778 3.8223 3.8049 3.8043 3.8043 

3 7.8777 7.8488 7.8488 7.8490 6.2983 6.2747 6.2748 6.2750 4.5545 4.5360 4.5360 4.5361 3.6185 3.6015 3.6009 3.6009 

4 7.5334 7.5053 7.5053 7.5054 6.0145 5.9916 5.9917 5.9918 4.3357 4.3177 4.3177 4.3178 3.4338 3.4172 3.4166 3.4167 

Table 3 Variation of the fundamental nondimensional frequencies of S-S FG nanobeam under uniform hygro-thermal 

loading for various beam theories ( 0wK , 0pK , 20hL ) 

  Beam theory 
0) (0, = C) T,(   1) (20, = C) T,(   2) (40, = C) T,(   

2.0p  1p  5p  2.0p  1p  5p  2.0p  1p  5p  

0 CBT 7.9923 5.9506 4.8629 7.4706 5.2423 4.0328 6.9006 4.4134 2.9692 

 
TBT 7.9683 5.9324 4.8466 7.4449 5.2216 4.0132 6.8728 4.3887 2.9423 

 
PSBT 7.9684 5.9324 4.8460 7.4451 5.2214 4.0124 6.8729 4.3887 2.9414 

  Present 7.9686 5.9325 4.8461 7.4452 5.2215 4.0125 6.8731 4.3888 2.9414 

1 CBT 7.6249 5.6770 4.6393 7.0759 4.9289 3.7594 6.4710 4.0354 2.5845 

 
TBT 7.6020 5.6597 4.6238 7.0512 4.9089 3.7402 6.4439 4.0108 2.5564 

 
PSBT 7.6021 5.6597 4.6233 7.0513 4.9089 3.7395 6.4441 4.0108 2.5554 

  Present 7.6022 5.6598 4.6233 7.0515 4.9090 3.7395 6.4442 4.0110 2.5554 

2 CBT 7.3039 5.4380 4.4440 6.7285 4.6511 3.5148 6.0889 3.6902 2.2125 

 
TBT 7.2819 5.4214 4.4292 6.7047 4.6316 3.4960 6.0625 3.6655 2.1824 

 
PSBT 7.2820 5.4214 4.4286 6.7048 4.6316 3.4953 6.0627 3.6655 2.1813 

  Present 7.2822 5.4215 4.4287 6.7050 4.6317 3.4953 6.0628 3.6657 2.1814 

3 CBT 7.0203 5.2269 4.2714 6.4193 4.4018 3.2933 5.7452 3.3700 1.8393 

 
TBT 6.9992 5.2109 4.2572 6.3963 4.3828 3.2747 5.7193 3.3450 1.8057 

 
PSBT 6.9993 5.2109 4.2567 6.3964 4.3828 3.2740 5.7195 3.3450 1.8045 

  Present 6.9994 5.2110 4.2567 6.3965 4.3829 3.2741 5.7196 3.3452 1.8045 

4 CBT 6.7673 5.0385 4.1175 6.1415 4.1760 3.0904 5.4328 3.0686 1.4438 

 
TBT 6.7470 5.0231 4.1038 6.1191 4.1574 3.0721 5.4074 3.0431 1.4039 

 
PSBT 6.7471 5.0231 4.1033 6.1192 4.1574 3.0714 5.4076 3.0431 1.4024 

  Present 6.7472 5.0232 4.1033 6.1194 4.1575 3.0714 5.4077 3.0432 1.4025 
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The variations of the dimensionless natural frequencies 

of the simply supported sinusoidal FG nanobeams as 

function of various temperature rises for different values of 

moisture concentration at 1p , 20hL ,

0 pw KK  and 
2(nm)2l are depicted in Figure 3. 

For any type of hygro-thermal loadings with the 

temperature increment, the dimensionless natural 

frequencies of FG nanobeam reaches to zero nearby the 

critical temperature point. This particularly refers to 

stiffness degradation of nanobeam when the temperature 

increases. After the branching point, the grown in 

temperature yields larger values of natural frequency. Also, 

it is seen that moisture concentration has an important 

influence on the prebuckling and postbuckling 

configuration of FG nanobeam under hygro-thermal loads. 

Fig. 4 indicates the influence of elastic foundation 

parameters on pre-buckling and post-buckling vibrational 

behavior of FG nanobeam versus various temperature rises 

under thermal 0C and hygro-thermal 2C

loadings when 1p , 20hL and 
2(nm)2l . It can  

be seen that existence of elastic foundation enhances the  

beam structure in hygrothermal environment and increases 

the dimensionless critical buckling temperature. At a  

 

 

 

specified environmental of moisture or humidity, the 

inclusion of the shear layer or Pasternak foundation ( pK ) 

parameter yields higher magnitude results for on the 

dimensionless frequency than those with the inclusion of 

Winkler foundation parameters ( wK ). The variation of 

natural frequency with respect to volume fraction index for 

various thermal and hygro-thermal loadings with and 

without elastic foundation at 20hL and 
2(nm)2l  

are depicted in Fig. 5. It can be seen that under any type of 

environmental conditions, the natural frequency reduces 

with the rise in gradient index, significantly for lower 

volume fraction indexes. It can be seen that existence of 

elastic foundation enhances the beam structure in 

hygrothermal environment and increases the dimensionless 

frequency. Also, it is observed that the effect of moisture 

concentration on the dimensionless natural frequencies 

responses of functionally graded nanobeams is more 

important for larger values of volume fraction index. This is 

due to the fact that lower values of nonhomogeneity index 

are correspond to more portion of the ceramic phase which 

has a moisture expansion coefficient equal to zero  

( 0c ). 

 

Fig. 2 Influence of moisture and nonlocal parameter on the dimensionless frequency of the S–S FG beam for various 

hygro-thermal loadings ( 1p , 20hL , 0wK , 0pK , (K) 40= T ) 
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Table 4 Variation of the fundamental nondimensional frequencies of S-S FG nanobeam under linear hygro-thermal 

loading for various beam theories ( 0wK , 0pK , 20hL ) 

  Beam 

theory 

0) (0, = C) T,(    1) (20, = C) T,(   2) (40, = C) T,(   

2.0p  1p  5p  2.0p  1p  5p  2.0p  1p  5p  

0 CBT 7.9053 5.8680 4.7844 7.6880 5.5817 4.4153 7.4600 5.2763 4.0085 

 
TBT 7.8810 5.8496 4.7679 7.6631 5.5623 4.3974 7.4343 5.2557 3.9887 

 
PSBT 7.8812 5.8496 4.7673 7.6632 5.5623 4.3967 7.4344 5.2557 3.9880 

  Present 7.8813 5.8497 4.7674 7.6634 5.5624 4.3967 7.4345 5.2558 3.9881 

1 CBT 7.5336 5.5904 4.5570 7.3051 5.2885 4.1670 7.0644 4.9645 3.7326 

 
TBT 7.5105 5.5728 4.5413 7.2812 5.2698 4.1498 7.0397 4.9445 3.7132 

 
PSBT 7.5106 5.5728 4.5407 7.2813 5.2698 4.1491 7.0398 4.9445 3.7125 

  Present 7.5107 5.5729 4.5407 7.2814 5.2699 4.1492 7.0400 4.9446 3.7125 

2 CBT 7.2086 5.3476 4.3580 6.9691 5.0306 3.9478 6.7162 4.6882 3.4854 

 
TBT 7.1864 5.3307 4.3429 6.9461 5.0126 3.9311 6.6923 4.6688 3.4663 

 
PSBT 7.1865 5.3307 4.3423 6.9463 5.0126 3.9304 6.6925 4.6688 3.4656 

  Present 7.1866 5.3308 4.3424 6.9464 5.0127 3.9305 6.6926 4.6689 3.4657 

3 CBT 6.9211 5.1327 4.1819 6.6711 4.8011 3.7519 6.4063 4.4405 3.2612 

 
TBT 6.8997 5.1164 4.1674 6.6489 4.7836 3.7357 6.3831 4.4216 3.2424 

 
PSBT 6.8998 5.1164 4.1668 6.6491 4.7836 3.7350 6.3833 4.4216 3.2417 

  Present 6.8999 5.1165 4.1668 6.6492 4.7837 3.7351 6.3834 4.4217 3.2418 

4 CBT 6.6644 4.9408 4.0246 6.4042 4.5949 3.5752 6.1277 4.2163 3.0556 

 
TBT 6.6437 4.9251 4.0105 6.3827 4.5780 3.5593 6.1052 4.1978 3.0370 

 
PSBT 6.6439 4.9251 4.0100 6.3829 4.5780 3.5588 6.1053 4.1978 3.0363 

  Present 6.6440 4.9252 4.0100 6.3830 4.5781 3.5588 6.1054 4.1979 3.0364 

 

Fig. 3 Influence of moisture concentration on the dimensionless frequency of the S–S FG nanobeam with respect to 

various temperature rises ( 1p , 20hL , 0wK , 0pK ) 
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Table 5 Variation of the fundamental nondimensional frequencies of S-S FG nanobeam under sinusoidal hygro-thermal 

loading for various beam theories ( 0wK , 0pK , 20hL ) 

  Beam 

theory 

0) (0, = C) T,(    1) (20, = C) T,(   2) (40, = C) T,(   

2.0p  1p  5p  2.0p  1p  5p  2.0p  1p  5p  

0 CBT 7.9053 5.8680 4.7844 7.7592 5.6833 4.5349 7.6070 5.4897 4.2683 

 
TBT 7.8810 5.8496 4.7679 7.7344 5.6642 4.5174 7.5818 5.4699 4.2497 

 
PSBT 7.8812 5.8496 4.7673 7.7346 5.6642 4.5168 7.5819 5.4699 4.2490 

  Present 7.8813 5.8497 4.7674 7.7347 5.6643 4.5168 7.5820 5.4700 4.2490 

1 CBT 7.5336 5.5904 4.5570 7.3799 5.3956 4.2936 7.2194 5.1907 4.0102 

 
TBT 7.5105 5.5728 4.5413 7.3562 5.3773 4.2768 7.1953 5.1717 3.9922 

 
PSBT 7.5106 5.5728 4.5407 7.3564 5.3773 4.2762 7.1954 5.1717 3.9915 

  Present 7.5107 5.5729 4.5407 7.3565 5.3774 4.2762 7.1955 5.1718 3.9916 

2 CBT 7.2086 5.3476 4.3580 7.0475 5.1430 4.0811 6.8791 4.9272 3.7812 

 
TBT 7.1864 5.3307 4.3429 7.0248 5.1254 4.0649 6.8558 4.9087 3.7637 

 
PSBT 7.1865 5.3307 4.3423 7.0249 5.1254 4.0643 6.8559 4.9087 3.7630 

  Present 7.1866 5.3308 4.3424 7.0250 5.1255 4.0644 6.8560 4.9088 3.7631 

3 CBT 6.9211 5.1327 4.1819 6.7530 4.9188 3.8920 6.5768 4.6921 3.5756 

 
TBT 6.8997 5.1164 4.1674 6.7310 4.9018 3.8763 6.5543 4.6742 3.5585 

 
PSBT 6.8998 5.1164 4.1668 6.7312 4.9018 3.8757 6.5544 4.6742 3.5579 

  Present 6.8999 5.1165 4.1668 6.7313 4.9019 3.8757 6.5545 4.6743 3.5579 

4 CBT 6.6644 4.9408 4.0246 6.4894 4.7178 3.7219 6.3058 4.4806 3.3892 

 
TBT 6.6437 4.9251 4.0105 6.4682 4.7013 3.7067 6.2840 4.4631 3.3724 

 
PSBT 6.6439 4.9251 4.0100 6.4684 4.7013 3.7061 6.2840 4.4631 3.3718 

  Present 6.6440 4.9252 4.0100 6.4685 4.7014 3.7062 6.2842 4.4632 3.3718 

 

Fig. 4 Influence of elastic foundation on the dimensionless frequency of the S–S FG nanobeam with respect to 

temperature change for thermal, 0= C  and hygro-thermal, 2= C  environments ( 1p , 20hL , 2(nm)2= ) 
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Fig. 6 indicates the influence of slenderness ratio on the 

natural frequencies of FG nanobeams for various types of 

thermal and hygro-thermal loadings with and without 

elastic foundation at 1p and 
2(nm)2l . For all 

environmental conditions, the dimensionless frequency 

increases for lower slenderness ratios and then reduces for 

higher slenderness ratios which indicates the significance of 

shear deformation when the beam thickness is large. 

Moreover, it is seen that the hygrothermal effect is not 

significant for lower values of slenderness ratio. Therefore, 

as the slenderness ratio increases, the effect of hygrothermal 

loading becomes more remarkable. 

Fig. 7 show the variation of the dimensionless frequency 

of sinusoidal FG nanobeam with respect to Winkler and 

Pasternak parameters for different uniform and linear 

moisture concentrations, at 1p , 20hL and 
2(nm)2l . The dimensionless frequency of FG 

nanobeam increases with increase in the Winkler and 

Pasternak parameters for all values of moisture 

concentration. Also, it is found that the inclusion of the 

shear layer or Pasternak foundation ( pK ) parameter yields 

higher magnitude results for dimensionless frequency than 

those with the inclusion of Winkler foundation parameters 

( wK ). 

 

 

 

 

 

 

 
Fig. 6 Influence of slenderness ratio on the 

dimensionless frequency of the FG nanobeam for 

various moisture rises ( 1p ,
2(nm)2= ) 

 

 

 
Fig. 5 Influence of material graduation on the dimensionless frequency of the S–S FG nanobeam for thermal, 0= C  

and hygro-thermal, 2= C  environments ( 20hL ,
2(nm)2= , (K) 40= T ) 
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6. Conclusions 
 

In this paper, hygro-thermo-mechanical free vibration 

analysis of functionally graded nanobeams resting of elastic 

foundation is performed by using new trigonometric shear 

deformation beam theory with Navier’s analytical method. 

Three types of environmental conditions namely, uniform, 

linear, and sinusoidal hygro-thermal loadings are 

investigated. The model uses two parameters to capture the 

size-scale effect of nanobeam much accurately using 

nonlocal elasticity theory of Eringen. Spatially graded 

material properties according to power-law model are 

supposed to be temperature-dependent. Equations of motion 

are derived from Hamilton’s principle. The effects of hygro-

thermal environments, power law index, nonlocality and 

elastic foundation on the free vibration responses of FG 

beams under hygro-thermal effect are explored. The 

influence of moisture or humidity is significant for higher 

values of gradient index and slenderness ratio. Also, it is 

found that at a prescribed environmental condition, 

nonlocality and gradient index have a notable decreasing 

effect on the natural frequency of FG nanobeams. It is 

deduced that Pasternak foundation parameter has a more 

prominent effect on increasing rigidity and dimensionless 

natural frequency of FG nanobeam than Winkler foundation  

parameter. An improvement of present formulation will be  

 

 

considered in the future work to account for the thickness 

stretching effect by using quasi-3D shear deformation 

models (Bessaim et al. 2013, Bousahla et al. 2014, Belabed 

et al. 2014, Fekrar et al. 2014, Hebali et al. 2014, Meradjah 

et al. 2015, Hamidi et al. 2015, Bourada et al. 2015, Bennoun 

et al. 2016, Draiche et al. 2016, Benahmed et al. 2017).  
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