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1. Introduction 

 
1.1 Background 
 
Real-time operational-load estimation of structural 

systems is crucial for various monitoring and control 
applications. The accurate prediction of applied loads can 
be very important in many types of structures such as 
offshore platforms, rotating wind turbines, flying un- 
manned aerial vehicles, as well as conventional civil 
structures such as multi-span bridges, high-rise buildings, 
amongst others. Some of the noteworthy works in the area 
are the following: Chock and Kapania (2003, 2004)  
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proposed a load updating approach for finite element 
models. Li and Kapania (2004) presented a load updating 
approach for finite element models using reduced number 
of unknown load coefficients. Li and Kapania (2007) 
studied a load updating method for nonlinear finite element 
models. White et al. (2009) investigated potential 
methodologies to estimate the wind turbine blade 
operational loading and deflections with inertial 
measurements. White et al. (2010) proposed a model 
updating method to evaluate the operational monitoring 
method for wind turbines. Ahmari and Yang (2013) 
suggested an inverse analysis method for load identification 
in plates, considering bounded uncertain measurements. 
Arsenault et al. (2013) reported the development of FBG 
strain sensor system for structural health monitoring in wind 
turbines. Wang et al. (2014) used FBG sensors to monitor 
the fatigue performance of full-scale partially prestressed 
concrete beams. Oh et al. (2015) proposed a novel method 
for monitoring and diagnosing blade health for wind 
turbines. Ciminello et al. (2015) investigated the hinge 
rotation of a morphing rib using FBG sensors. Bao et al. 
(2016) studied distributed strain and crack sensors to 
monitor concrete pavement. 

Some of the recent developments in the fiber optic strain 

 
 
 

Operation load estimation of chain-like structures using  
fiber optic strain sensors 

 
Armen Derkevorkian1, Francisco Pena2a, Sami F. Masri3b and W. Lance Richards4c 

 
1Jet Propulsion Lab., California Inst. of Technology, 4800 Oak Grove Dr.,  

M/S: 157-410, Pasadena, CA 91109, USA 
2NASA Armstrong Flight Research Center, P.O. Box 273, M/S: 48202A, Edwards, CA, 93523, USA 

3Department of Civil Engineering, Viterbi School of Engineering, Univ. of Southern California, 3620 S. Vermont Ave., 
KAP210, MC: 2531, Los Angeles, CA 90089, USA 

4NASA Langley Research Center, 4876 Lilly Dr., M/S: 2017, Hampton, VA, 23681, USA 
 

(Received February 17, 2017, Revised June 9, 2017, Accepted June 26, 2017) 
 

Abstract.   The recent advancements in sensing technologies allow us to record measurements from target structures at 
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technologies, Fiber Optic Strain Sensors (FOSS), is developed at NASA Armstrong Flight Research Center, and is based on 
Fiber Bragg Grating (FBG) sensors. These strain sensors are accurate, lightweight, and can provide almost continuous strain-
field measurements along the length of the fiber. The strain measurements can then be used for real-time shape-sensing and 
operational load-estimation of complex structural systems. While several works have demonstrated the successful 
implementation of FOSS on large-scale real-life aerospace structures (i.e., airplane wings), there is paucity of studies in the 
literature that have investigated the potential of extending the application of FOSS into civil structures (e.g., tall buildings, 
bridges, etc.). This work assesses the feasibility of using FOSS to predict operational loads (e.g., wind loads) on chain-like 
structures. A thorough investigation is performed using analytical, computational, and experimental models of a 4-story steel 
building test specimen, developed at the University of Southern California. This study provides guidelines on the 
implementation of the FOSS technology on building-like structures, addresses the associated technical challenges, and suggests 
potential modifications to a load-estimation algorithm, to achieve a robust methodology for predicting operational loads using 
strain-field measurements. 
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sensing (FOSS) technology have been documented in the 
literature by Lee et al. (2002), Stewart et al. (2003), 
Richards (2004), Stewart et al. (2005), Ko et al. (2007), 
Emmons (2009), Ko and Richards (2009), and Emmons et 
al. (2010). Lizotte and Lokos (2005) proposed a deflection-
based aircraft structural load estimation algorithm and 
experimentally tested it on the active aeroelastic wing F/A-
18 aircraft. Richards and Ko (2010) obtained a patent on a 
process for using surface strain measurements to obtain 
operational loads for complex structures. Bakalyar and Jutte 
(2012) experimentally validated the algorithm proposed by 
Richards and Ko (2010) using various plate elements.  

Richards et al. (2012) described various applications of 
the fiber optic instrumentation. Nicolas et al. (2013) used 
the proposed algorithm to estimate out-of-plane loads of a 
large-scale carbon-composite wing. Derkevorkian et al. 
(2012, 2013) assessed the viability of the algorithm for 
control and monitoring applications. Strunter et al. (2014) 
investigated the recovery of strain readings from chirping 
fiber Bragg gratings in composite overwrapped pressure 
vessels. Pena et al. (2014) evaluated the embedded FBGs in 
composite overwrapped pressure vessels for strain based 
structural health monitoring. 

Estimating the lateral pressure loads (i.e., wind loads) on 
tall high-rise buildings is important for design, control, and 
monitoring applications. There is a paucity of 
methodologies that can accurately predict the lateral 
pressure loads on building surfaces. Most of such 
methodologies are not practical to be implemented on full-
scale high-rise buildings. Many studies in the literature 
address the limitations of current techniques that are used to 
estimate static equivalent wind loads on tall buildings. Zhou 
et al. (1999) examined two code methods for equivalent 
static wind load estimation and demonstrate that they may 
lead to some undesirable load effects. Chen and Kareem 
(2001) addressed the current design practice for wind load 
estimation on bridges and shows that the estimated load 
distributions may not be a physically accurate description of 
the real applied loads. Zhou et al. (2002) pointed out the 
scatter among the wind loads predicted by various 
international codes and standards. Tamura et al. (2008) 
presents a guide for numerical prediction of wind loads on 
buildings. Lou et al. (2012) shows an experimental and 
zonal modeling for wind pressures on double-skin facades 
of a tall building. Magalhaes and Cunha (2016) assessed the 
viability of data based approaches to identify the modes of a 
cable-stayed bridge subjected to various wind conditions.  

 
1.2 Motivation 
 
The recent advancements in the sensing technology allow 

the use of sophisticated, high-resolution, lightweight Fiber 
Brag Grating (FBG) strain sensors. These sensors are known 
for their accuracy and their durability in rough environmental 
conditions. The Fiber-Optic Strain Sensing (FOSS) technology 
developed at the NASA Armstrong Flight Research Center 
utilizes FBG strain sensors within long fibers to achieve a 
robust monitoring system that can be used for various real-time 
data sensing applications. The availability of the FOSS 
technology along with the development of the load-estimation 

algorithms at the Armstrong Center, combined with the need 
for a robust data-driven methodology to estimate lateral loads 
on tall buildings, provide a great opportunity to investigate the 
viability of adopting the approach to monitor lateral loads 
acting on buildings. 

 
1.3 Scope 
 
Motivated from the preceding, this study assesses the load-

estimation algorithms developed at the NASA Armstrong 
Flight Research Center combined with the state-of-the-art 
FOSS strain-sensing technology, to explore their viability for 
lateral operating-load estimation on tall building-like 
structures. The section on load-estimation algorithm presents 
the strain sensing approach and the corresponding load-
estimation algorithm that consists of two phases; calibration 
phase and estimation phase. The section on sensitivity analyses 
presents the analytical investigation of exact and approximate 
methodologies for moment calculations in typical frames 
encountered in buildings. Sensitivity analyses are performed to 
demonstrate the effects of the relative stiffness between the 
horizontal and the vertical members, as well as the hight-to-
width ratio of the frame, on the calculated moments. 
Furthermore, analyses are performed to show the effects of 
uncertainty in section properties on the moment calculations.  

The section on finite-element analyses shows the finite-
element model of a building structure created and analyzed 
using finite-element software Femap and the Nastran solver. 
The section on computational results presents the FEA results 
of the load-estimation algorithm from various loading cases. 
The section on design of the experimental test-bed structure 
describes the experimental test-bed, the instrumentation, and 
the test apparatus. The section on experimental test results 
presents sample recorded strain measurements and shows the 
correlation of the experimental tests with the FEA. The 
discussion section summarizes the observations from the 
various parts of this research study and provides a guideline on 
potential future plans to achieve the desired load-estimation 
framework. 

 
 

2. Load estimation algorithm 
 
The load-estimation algorithm depends on obtaining 

strain measurements using Fiber Bragg Gratings (FBGs). 
The strain information at a specific location can be 
calculated by measuring the Bragg wavelength λB, as shown 
in Eq. (1) 

 
 

Fig. 1 Flowchart of the load-estimation algorithm for 
flexure-dominated structure 
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  1

1 pe 
B

B









  (1)

Where ε is the measured strain, pe is the strain-optic 
coefficient, λB is the Bragg reflected wavelength, and ∆λB is the 
change in the Bragg wavelength. Important works that show 
the validity of the FBG sensors include Lee et al. (2002), Zhou 
and Sim (2002), Richards (2004), amongst others. As seen in 
Fig. 1, the load-estimation algorithm developed by Richards 
and Ko (2010) consists of two phases; calibration phase and 
estimation phase. During the calibration phase, a known point-
load is applied at the tip of the structure and the corresponding 
strain at each sensor location i is measured (i.e., εi(clb)). For a 
uniform cantilever beam-like structure, the moment Mi at each 
location i can be computed by multiplying the known point-
load at the tip by it’s distance from the sensor location i  (i.e., 
Mi = P × Li, where Li is the distance from the tip of the 
structure to the location of sensor i, and P is the point-load 
applied at the tip (free-end)). The equivalent section property 
(EI/c)i at each location i can then be estimated by dividing the 
computed moments Mi by the measured strains εi(clb), as shown 
in Eq. (2) 

Mi

i(clb)

 EI

c









i

 (2)

Where E is the Young’s modulus, I is the moment of 
inertia, and c is the distance from the neutral axis. It should be 
noted that the algorithm depends on the flexural characteristics 
of the structure and it assumes the strain is due to bending-only 
(not shear). It should also be noted that for a more complex 
structure (i.e., a building consisting of interacting beams and 
columns with varying stiffness characteristics), the relative 
stiffness values of the members might be needed to calculate 
the exact moments needed for the calibration. Further 
discussion will be provided on this in the upcoming sections. 

During the estimation phase, the section properties 
determined from the calibration phase are used along with the 
new strain measurements εi(new) from new (different) applied 
loads, to estimate the corresponding moment i, as shown in 
Eq. (3). 

M̂i i(new) 
EI

c











i
 (3)

If needed, one can then use the moment information to 
calculate the equivalent distributed load along the fiber line. 
Estimating the load from the predicted moment is dependent 
on the characteristics of the applied load (i.e., orientation, type, 
point load, distributed load, etc.). In their patent, Richards and 
Ko (2010) demonstrated two loading cases: Point load at the 
tip of a cantilevered beam, and uniformly distributed load 
along a cantilevered beam. In most real-life scenarios, it is a 
daunting task to have this information a priori. For example, 
wind often blows non-uniformly from multiple directions; 
hence, characterizing the corresponding analytical loading 
function is a very complex problem. However, having an 
accurate physics-based moment prediction in it self can be 
extremely helpful in solving the investigated inverse problem.  

The scope of this paper is the investigation of the moment 

prediction aspect of the methodology, as part of the overall 
assessment of using FOSS in conjunction with classical 
mechanics approach. Once the feasibility of the equivalent 
moment estimation is validated, the authors intend to utilize the 
algorithm further to estimate the corresponding loads. 

 
 

3. Sensitivity analyses on analytical moment 
calculations for calibration phase 

 
As seen in the previous section, an accurate calculation 

of the moments during the calibration phase is essential for 
the proposed load-estimation algorithm. In most of the 
previous studies related to this approach, the testing and the 
validation was performed on relatively simple structures 
(i.e., cantilever, uniform and homogeneous beam or plate 
element). In such structures, the analytical calculation of the 
moment is relatively simple and can be performed by 
multiplying the calibration point-load at the free-end of the 
beam with the distance from the sensor station. No 
information is needed about the physical characteristics of 
the beam or the plate (i.e., moment of inertia, stiffness). The 
objective of this study, as mentioned earlier, is to extend the 
technique and assess its viability when used with more 
complex structures, such as buildings with various 
interacting elements (i.e., beams and columns with varying 
stiffness characteristics). In the classical theory of structures 
literature, there are well-established techniques to calculate 
the moments of statically indeterminate rigid frames. Such 
techniques include matrix force method, moment 
distribution method, slope-deflection method, amongst 
others Hsieh and Mau (2002). In this study the slope-
deflection method will be demonstrated symbolically for a 
one-bay frame. Then, numerical results from the exact 
solution will be compared to corresponding approximate 
solutions. The sensitivity of the approximate approach to 
relative stiffness between horizontal and vertical members, 
as well as to frame height and width will be analysed. 

Let us consider the frame shown in Fig. 2. As seen, the 
frame consists of one bay. The columns have moment of inertia 
of  and the girder has a moment of inertia of . 

 

Fig. 2 The sample single-story frame under investigation
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The width of the bay is denoted by L, and the height of the 
frame is denoted by H. A single point-load P is applied at one 
side of the frame. The frame has four joints denoted by a, b, c, 
and d. It is assumed that the Young’s Modulus of the material 
for the columns and the girder is E. 

Based on the slope-deflection method the moment at each 
joint (i.e., joint a, Mab) comprises of the moment due to the end 
rotation θa while the other end b is fixed, the moment due to 
the end rotation θb while the other end a is fixed, the moment 
due to the relative deflection ∆ab between the ends of the 
member ab, and the moment due to potential loads along the 
span of the member. In case of the frame shown in Fig. 2, since 
the bottom supports are fixed, θa = θd = 0. Also given the 
symmetric nature of the frame, ∆ab = ∆dc = ∆. Since there are 
no loads applied on the span of any member, the moment due 
to loads on span is MF = 0. Therefore the frame-specific 
moment equations can be written as follows 

Mab 
2EIC

H







 b 

3
H








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H


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(4)

The three unknowns (i.e., θb, θc, and ∆) in the above 
equations can be solved using the following equations 

Mba  Mbc  0

Mcb Mcd  0

P Vab Vdc  0

 (5)

where Vab = (Mab + Mba)/H and Vdc = (Mdc + Mcd)/H. The 
above expressions can be organized in a matrix from as 
follows 

K F  (6)

Where 

K 
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F 
0
0
P
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













 (9)

It is seen that the exact moments of the single-story frame 
are function of IC , IG, H, L, and E. 

In some cases, there might be no information available 
about the physical properties of the frame (such as the 
moment-of-inertia of the beams and the columns), or 
performing the exact analytical calculations might take time, 
especially, for bigger multi-bay multi-story frames with no 
sophisticated FEA models available. As a result, approximate 
methods were developed to estimate the moments of the frame. 
The main assumption with the approximate method is that the 
inflection point of the member is at the midpoint of the 
member. Since the inflection point has zero curvature, the 
bending moment will be zero as well. As a result, one can use 
statics equations to compute the moments, without 
incorporating any of the physical characteristics of the member 
into the equation. For the frame in this example, the 
approximate moment can be calculated as follows: 

M̂a  M̂b 
P

2
 H

2
 PH

4
 (10)

 
3.1 Numerical results using exact and approximate 

methods 
 
In order to better understand the difference between the 

exact and the approximate solution, and to investigate the 
sensitivity of the exact approach to the member stiffness and 
the frame geometry, two numerical examples are presented. In 
Fig. 3, the sensitivity of the exact solution to the member 
stiffness is examined. It is seen that as the horizontal member 
(girder) becomes stiffer, the exact solution approaches the 
approximate solution. The second subfigure in Fig. 3 shows 
that if the vertical members are stiffer than the horizontal 
member, the normalized error between the exact and the 
approximate solution is about 31% when IG = 0.25 × IC. It is 
also seen that the normalized error decreases to about 4% when 
IG = 5 × IC. This analysis shows that the approximate method 
can be a viable approach to compute the member moments if 
the horizontal members are much stiffer than the vertical 
members (i.e., IG ≫ IC). 

Fig. 4 shows the sensitivity of both the exact and the 
approximate approaches to the frame geometry. This numerical 
simulation was performed for constant moment-of-inertia 
values for the horizontal and the vertical members, given by IG 
= 3IC. The simulation was performed for various frame heights 
(with a constant bay width). The first subfigure shows that both 
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the exact and the approximate solutions are relatively similar 
for Mab and Mba. When looking at the normalized error in the 
second subfigure, it is seen that as the height-to-width ratio 
increases, the exact and the approximate solutions converge. 
Meaning, for tall and slender frames, the approximate solution 
might provide a good moment estimate (given, the horizontal 
members are stiffer than the columns). 

 
3.2 Effects of uncertainty on the moment calculations 
 
Let’s consider the frame shown in Fig. 5. This is a similar 

frame to the one analyzed earlier with a slight modification in 
the section properties. As seen in the figure, the moment-of-
inertia for the members ab, bc, and cd are I1 ± ε1, I2 ± ε2, and I3 
± ε3, respectively. The values of I1, I2, and I3 are not necessarily 
equal. On the other hand, ε1, ε2, and ε3 represent the uncertainty 
in the moment-of-inertia values. In this case, we assume the 
width of the bay L and the height of the frame H to be known 
and deterministic. 

  
 
 

Fig. 3 The first subfigure shows the moments Mab and 
Mba for different values of EIG/EIC. The exact and the 
approximate results are superposed. The second 
subfigure shows the normalized absolute percent error 
between the exact and the approximate solutions for Mab

 
 

Fig. 4 The first subfigure shows the moments Mab and 
Mba for different values of H/L when IG = 3IC. The exact 
and the approximate results are superposed. The second 
subfigure shows the normalized absolute percent error 
between the exact and the approximate solutions for Mab

 

Fig. 5 The sample single-story frame with 
nondeterministic parameters 

 
 
Similar to the previous case, a known point-load P is 

applied on the frame, as shown in Fig. 5. 
Taking into account the errors (i.e., uncertainties), the 

matrix K defined earlier, which is used in the moment 
calculations, is updated as follows 
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(11)

In order to assess effects of the uncertain parameters, 
numerical simulations are performed. The values for ε1, ε2, and 
ε3 are generated by creating a vector of random numbers that 
has a zero-mean Gaussian distribution and a standard deviation 
equal to 10% of the deterministic value of the corresponding 
moment-of-inertia. Each vector has 2000 samples. For each 
simulation, all section properties are assumed to be 
deterministic (i.e., ε = 0) except one moment-of-inertia, which 
will have normally distributed random values (i.e., I ± ε). This 
will show the effects of that uncertain parameter on the 
accuracy of the calculated moments across the frame. The 
probability density functions pdf of the calculated moments are 
then estimated using kernel density estimator. Assuming a 
Gaussian kernel, the bandwidth h of the kernel was chosen to 
be , where σ is the standard deviation of the 
data and n is the number sample points. 

The results from two cases are shown in Figs. 6 and 7. Fig. 
6 shows the pdfs from the case where I1 = I2 = I3 = 1. Each 
subfigure corresponds to a different moment. In each 
subfigure, the pdfs from three simulations are superposed. 
Each simulation has a different random variable indicated in 
the legend. The normalized deterministic exact moment is 
indicated with a dot on the x-axis. The first subfigure 
represents the distributions of the moment at point a at the 
bottom of the left column in the frame shown in Fig. 5. As 
seen, an uncertainty in the section properties of any of the 
columns, drastically effects the distribution of the calculated 
moment (i.e., Mab) at that location. On the other hand, the 
effects of the uncertainty in the girder’s properties are not as 
drastic. 
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Fig. 6 Normalized probability distribution functions pdfs 
of the calculated moments Mab, Mba, and Mcb, where  
I1 =I2 =I3 =1 

 
 
Fig. 7 shows simulations from a case where I1 = I3 = 3 and 

I2 = 1. This case is similar to strong-column weak-beam 
condition encountered in most realistic structural frames. 
Analyzing each of the subfigures can draw similar important 
information. This analysis shows the importance of taking 
uncertain parameters into account and their effect on the 
accuracy of the corresponding moment calculations for the 
calibration phase in the load-estimation algorithm. 
 
 
4. Finite Element Analyses (FEA) 
 

4.1 Model description 
 
A finite-element model of a four-story building was created 

in Femap. The model consists of 2144 combined horizontal 
and vertical bar elements. The vertical bar elements (columns) 
are modeled to represent a square tube with dimensions of 
(2.54 cm ×2.54 cm), a thickness of (0.3175 cm), and a cross-
sectional area of (2.83 cm2). The horizontal bar elements are 
modeled to have a cross-sectional area of (1.61 cm2). The 
material used for the elements is 6061-T651 Aluminum. The 
width of the frame is (40.64 cm), the height of each floor is 
(44.45 cm), resulting in a total height of (177.8 cm). Nodal 
constraints are applied at four nodes at the bottom of the 
model. 

The four nodes are fixed and cannot translate or rotate in 
any direction (x,y,z). 

 
4.2 Load cases 
 
A total of five load cases are investigated. The load 

cases under consideration are shown in Fig. 8. The first load 
case shown in Fig. 8(a) is used for calibration. Two point  

 

Fig. 7 Normalized probability distribution functions pdfs 
of the calculated moments Mab, Mba, and Mcb, where I1 = 
I3 =3 and I2 = 1

 
 

loads (45.36 kg each) are applied at the tip of the two 
columns. Both loads are applied in the same negative X-
Direction. The purpose of this load case (calibration case) is 
to obtain the strain measurements and estimate the section 
properties using the calculated analytical moments. Using 
the estimated section properties from the calibration load-
case, the next four load cases are used for testing. 

The second load case (Distributed Point-Loads) is 
shown in Fig. 8(b). In this case, 8 point loads (45.36 kg 
each) are applied on two columns (four loads per column).  

The loads are all in the same direction. The loads are 
applied at the intersection of the horizontal members 
(girders) with the vertical members (columns) at each floor 
level. The third load case is shown in Fig. 8(c). Point loads 
are applied at each node on two columns to simulate a 
pressure load on the two columns. Each point load is 4.53 
kg and there are a total of 256 nodes per column. The loads 
are applied in the same direction. 

In order to assess the viability of the algorithm with 
torsional loads, two load cases were created. The load case 
named Single-Point-Load (SPL) is shown in Fig. 8(d), 
where a single point load (45.36 kg) is applied at the tip of 
one column. The other load case named Moment (TL) is 
shown in Fig. 8(e), where four moments (1.13 N.m each) 
are applied (one per floor). The moments are applied to 
rotate the structure counterclockwise about the Z-Axis. The 
load cases are summarized in Table 1. 

 
 

5. Computational results 
 

5.1 Calibration phase 
 
The results from the calibration phase are shown in Fig. 9.  
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As mentioned earlier, load case (CALIB) was used on the 

FEA model to obtain the strain measurements. The presented 
strain measurements are obtained from the column labeled (1) 
in Fig. 8(a). The X-Axis in each of the three subfigures of Fig. 
9 represents the normalized height of the building starting from 
zero being the ground (fixed-end) and ending with one being 
the tip of the building (free-end). The discontinuities seen in 
the strain and the moment plots are at the location of 
intersection between the horizontal and the vertical members. 

The third subfigure shows the estimated flexural section 
properties. The column from which the strain data is extracted 
has uniform section properties along the span; therefore, the 
estimated EI/c values are identical at every sensor station. Of 
course, this is a highly idealized case (proof of concept) where 
no uncertainty or modeling errors are involved. More realistic 
scenarios will be investigated in upcoming studies, taking into 
account uncertain parameters and modeling errors. 

 
 

Fig. 8 Description of the five loading cases 

 

 

 
 

Fig. 9 Strains and moments from the calibration load 
case, and the estimated section properties 

 
 
5.2 Estimation phase 
 
Using the section properties estimated in the calibration 

phase, the remaining four loading cases are tested. The results 
are shown in Fig. 10. As expected, the estimation is excellent 
with bending-only loads (i.e., load cases DL and PL), but not 
as good when twisting effects are introduced (i.e., load cases 
SPL and TL). As mentioned earlier, this is due to the fact that 
the algorithm takes into account strain from bending-only 
loads. It is seen that as the torsional characteristics of the load 
increase, the estimation quality decreases (Figs. 10(c) and 
10(d)). 

 
 

6. Design of the experimental test-bed structure 
 

6.1 Description of the experimental test-bed 
 
A relatively large-scale experimental building structure 

was designed and fabricated at the USC Machine Shop. The 
photo of the building is shown in Fig. 11(a). The total 
height of the structure is 182.88 cm and the height of each 
floor is 44.45 cm. As seen in Fig. 11(a), the building has 
four floors. All components of the structure is made of 
aluminum. The columns are made of aluminum tubes. The 
cross-sectional dimensions of the columns are (2.54 cm × 
2.54 cm), with a thickness of 0.476 cm. The plates are also 
0.476 cm thick and are made of aluminum. The plates are 
square-shaped with a dimension of (43.18 cm × 43.18 cm).  

The plates are connected to the columns via angle-
brackets. Each angle-bracket is connected to the column 
with two No. 10 bolts arranged diagonally along one face of 
the angle. The angle’s other face is connected to the plate 

Table 1 The investigated load cases for the four-story building model 

Load/Moment Name Test Code Number of Loads Loading Values Locations 

Two Point-Loads (Calibration) CALIB 2 Two 45.36 kg Tip (free-end), two columns 

Distributed Point-Loads DL 8 Eight 45.36 kg Each floor, two columns 

Uniform Pressure PL n/a 4.53 kg/node Each node, two columns 

Single Point-Load SPL 1 45.36 kg Tip (free-end), one column 

Moment (Torsion) TL 4 1.13 N.m One column, each floor 
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with two No. 10 bolts. No. 10 bolts are also used to connect 
angle-stiffeners to the plates. These stiffeners are designed 
to be portable so they can easily be added or removed, when 
needed. Enlarged photos of both the angle-brackets and the 
stiffeners are shown in Figs. 12(a) and 12(b). The structure 
is designed such that it can be connected to a heavy base 
fixture via four large angle-brackets connected to each 
column at the bottom of the structure. The large brackets are 
connected to the columns using M8 bolts. On the other 
hand, the large brackets will be connected to the base-
fixture using 1.27 cm diameter bolts. 

 
6.2 Description of the computational model 
 
In order to augment the experimental studies, a finite-

element model of the test-bed structure is created using Femap 
and is shown in Fig. 11(b). The model consists of 45424 
elements and 46346 nodes. The element type used to model 
most of the horizontal and vertical members are 4-noded quad-
shape plate elements. The connecting bolts were modeled 
using 2-noded line-shape bar elements. The geometry and the 
material properties were designed to match the physical test-
bed structure described earlier. Modal analysis was performed 
and the corresponding classical and torsional mode shapes are 
plotted in Figs. 13 and 14. The fundamental natural frequency 
of the modeled structure is 6.76 Hz. The first torsional 
frequency is 15.90 Hz. The FOSS system is currently capable 
of sampling at a rate of up to 50 Hz. The test-bed structure was 
deigned to have two bending modes and two torsional modes 
below 50 Hz. 

 
 

Fig. 10 Estimated moments (dotted line) from various 
loading cases superposed on the exact analytical 
moments (solid line) from the FEA 

 

 

Fig. 11 The experimental and the computational test-bed 
structure 

 
 

Fig. 12 The details of the stiffeners used in the test-bed 
structure 

 
 
6.3 Instrumentation and test apparatus 
 
6.3.1 Instrumentation 
Installing the fibers on the test-bed is an important part of 

the experimental test procedure. As shown in Section 5, the 
load-estimation algorithm currently relies on bending-only 
(flexural) strains to estimate the corresponding loads. In the 
same section, it was shown that the estimation quality was not 
good when dealing with torsional loads. Hence, there is a need 
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to incorporate additional strain information (i.e., shear strain) in 
the algorithm. In order to capture more complete strain-field 
information, several fiber configurations were considered. It 
was seen that the middle of the column-face is the best location 
for straight fibers to span, because it will capture the most 
accurate bending-strains. In order to achieve a rosette-effect 
and capture the shear strain, fibers were also placed at 30-
degree angles. Initially, a bending radius of 45 degrees was 
being considered, but it was found that a 45-degree bending 
would exceed the allowable bending radius for the fiber.  

Accordingly, the fibers are bent at 30-degree angles and 
there are 8 locations along the span of each column-face where 
three-component strain information can be measured. Fig. 
15(a) shows the fiber locations on the columns. As seen, the 
fibers will be installed on the outer two faces of each column. 
As seen in Fig. 15(a) tapes are placed on the columns to depict 
the geometry of the fibers before installing them. While the 
fibers are extremely thin, the tapes were designed to provide a 
6.35 mm wide pathway to install the fibers. It is worth 
mentioning that Fiber Bragg Gratings (FBGs) are placed in the 
fibers at 6.35 mm distance from each other, providing very 
high spatial-resolution sensors. Photos of the instrumented 
columns are shown in Fig. 15(b). 

 
 

Fig. 13 The classical mode shapes and the corresponding 
natural frequencies 

 
 

Fig. 14 The torsional mode shapes and the corresponding 
natural frequencies 

 
 

 

Fig. 15 Location of the fibers installed on the columns of 
the test-bed structure 

 
 

6.3.2 Test apparatus 
While the ultimate objective of this research is to assess the 

viability of the approach in predicting random dynamic 
pressure loads on buildings, the current study concentrates on 
static loads similar to the ones described in Table 1. In order to 
apply quasi-static point- loads at various locations on the test-
bed structure simultaneously, two pulley-structures were 
designed and are shown in Fig. 16(a). Furthermore, a base 
structure was designed to fix the instrumented test-bed 
structure as well as one of the pulley-structures on it. The 
dimensions and the spacing of the holes on the base structure 
were designed to match the angle-brackets at the bottom of the 
test-bed structure explained earlier. The second pulley-structure 
was designed to simultaneously apply multi-directional loads 
on the test- bed and explore the effects of torsional loads. As 
seen in Fig. 16(a), a 1.83 m tall person is incorporated in the 
Solidworks model to get a qualitative sense of the overall 
dimensions of the multiple structures in discussion. The 
corresponding actual experimental test setup is shown in Fig. 
16(b). 

 
 

7. Experimental test results 
 

Before applying any loads on the test-bed structure, a 
hammer test was performed to measure the free-vibration 
response of the structure. The measured strain response was 
then converted to the frequency-domain using Fast-Fourier-
Transform (FFT). Fig. 17 shows the resulting FFT. As seen in 
the figure, the peak corresponding to the fundamental natural 
frequency of the structure is at 6.25 Hz. This compares 
relatively well with the first natural frequency (6.76 Hz) 
calculated from FEA (shown in Fig. 14(a)). 

A sample strain measurement from the distributed load 
case is shown in Fig. 18. As seen in the figure, the strain 
discontinuities are clearly depicted in the measurements. The 
measured strains qualitatively compare well with the FE strains 
for all load cases. The combination of the observed strain 
measurements and FFT results indicate that very well 
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correlated computational and experimental models were 
achieved. An effort is currently underway to use the measured 
strain datasets from this experiment (both bending strain and 
shear strain) and to incorporate them into the load-estimation 
algorithm, to improve its performance when dealing with 
torsional load cases. The results of the investigation will be 
reported in upcoming papers. 

 
 
 

(a) Solidworks model of the test-bed structure 
 

(b) Photo of the actual structure and the pulley system 
for load application. 

Fig. 16 The test-bed structure model and the test 
apparatus 
 
 
 

Fig. 17 The calculated FFT using experimental strain 
measurements form the hammer test 

 
 
 

 

Fig. 18 A sample experimental strain measurement form 
the distributed load case 

 
 
8. Conclusions 
 

The load-estimation algorithm under investigation was 
developed at the NASA Armstrong Flight Research Center 
providing a robust data-driven model-free approach to estimate 
operating loads on flexible wing-like aerospace structures. The 
overall objective of this inaugural effort is to assess the 
viability of adapting the approach and applying it to chain-like 
structures, such as tall buildings. The scope of this particular 
paper is to investigate the moment prediction aspect of the 
methodology and report on some of the discovered challenges 
that might arise when using it with building-like structures, 
such as the effects of strain discontinuities between beams and 
columns, and sensor topology and bend radius to address 
torsional loads. Upcoming papers by the authors will focus on 
resolving the reported challenges in this study and extending 
the application into predicting operational loads. 

With the above summary in mind, the first part of this 
study concentrated on performing analytical studies of the 
moment calculations that constitutes a major part of the 
algorithm. It was shown that the knowledge of the interacting 
horizontal and vertical members in typical frames, along with 
their relative section properties, has a big impact on the 
accuracy of the moment calculations. This is particularly 
important, since it shows that a priori information is needed for 
the approach to yield viable estimation results. Approximate 
moment calculation methods were investigated, where no 
knowledge is required about the physical characteristics of the 
frame members; however, it was shown that the results 
converge to the exact solution only if the horizontal members 
are much stiffer than the vertical members. In current design 
practice, most lateral resisting moment frames are geared 
toward the strong-column weak-beam concept, which further 
emphasizes that the exact moment calculation methods might 
be needed for our purposes. Furthermore, a sensitivity analysis 
was performed on the effects of uncertainty on the moment 
calculations, and it was shown that an uncertain parameter in a 
particular frame member might significantly impact the 
accuracy of the calculated moment in the other frame 
members. 

This paper also pinpoints the discontinuous nature of the 
strain measurements from building-like structures due to the 
floor-slabs along their span (or horizontal members such as 
girders). It was shown that such discontinuities do not affect 
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the accuracy of the load estimation algorithm if the calibration 
phase is performed properly. However, it is crucial to validate 
the findings from the computational model by performing 
experimental analyses. 

As mentioned in the previous sections, the load-estimation 
approach is currently based on bending-only strains for flexural 
behavior of wing-like structures. A common phenomenon in 
tall buildings, as well as many other types of structures, is the 
existence of loads with twisting (torsional) effects. The 
computational analysis in this study using a finite-element 
model further emphasizes the importance of having a robust 
approach that takes into account more complete strain-field 
information, as opposed to the bending-strains only. 

With the above challenges in mind, the final part of this 
study concentrated on the design of an experimental test-bed 
structure. Details on the instrumentation, sensor location, 
sampling frequency, the mode shapes of the test-bed, and the 
test apparatus for the load application are discussed. The test-
bed structure is designed to be used for testing with static loads 
(as shown in this study), as well as dynamic loads, for future 
studies. Further experimental testing will shed light on many of 
the challenges discussed in this study, and will help to develop 
solutions to overcome them. The load-estimation approach 
under investigation along with the FOSS sensing technology 
provide an excellent opportunity to develop a robust 
framework that can estimate real-time operating loads on 
variety types of structures, and consequently, have a positive 
impact on several design, control, and monitoring applications. 
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