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1. Introduction 

 
Damping is a significant factor when predicting and 

analyzing the dynamic behavior of a structure dominated by 
energy dissipation. Other system properties such as mass, 
stiffness that can be determined via system identification of 
structures (Li et al. 2015, Li and Hao 2015, Liu 2014, Chen 
and Maung 2014). The estimation of structural parameters 
is essential for the condition and reliability assessment of 
structures (Ye et al. 2015, Li et al. 2014, Ye et al. 2016a, Ye 
et al. 2016b). Compared with identifying the stiffness and 
mass parameters of structural systems, the process of 
accurately identifying damping for predicting and analyzing 
the structural vibration behavior is challenging, especially if 
the measured data is disturbed by model errors, noise 
pollution and other measurement errors (Huang 2007).  

Accurate estimation of damping is important in 
predicting structural dynamic responses and energy 
dissipation behavior. The effective estimation method for 
damping ratios is required in a broad range of areas 
including the structural design, space technology,  
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earthquake response analysis and damage prediction, and 
mechanical system fault diagnosis etc. Because of the 
complexity of large-scale engineering structures, a slight 
difference between the actual and estimated damping ratios 
may produce a significant difference in vibration response 
prediction. Vibration-based methods to accurately identify 
the damping ratios of structural systems under a wide range 
of conditions have been intensively studied. Barbieri et al. 
(2004) established a procedure to identify damping of 
transmission line cables. Xu et al. (2003) identified the 
damping ratio of a high rise building under strong typhoon. 
Wang et al. (2016) proposed a damping ratio identification 
method for rotor systems. Holland and Epureanu (2013) 
proposed a component damping identification method for 
mistuned blisks. Devriendt et al. (2013) identified the 
damping of an offshore wind turbine on a monopile 
foundation.  

To identify the damping ratios, damping model needs to 
be defined first. The research on damping models have been 
dated for a long time and several damping models have 
been developed, for example, Rayleigh damping, modal 
damping and Caughey damping models. The first damping 
model was Rayleigh damping (Chopra 1995). Two 
coefficients associated with mass and stiffness matrices are 
determined by using only the first two vibration modes of 
structure. Caughey damping is also widely accepted as 
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modal damping. Caughey and O’kelly (1965) proposed that 

the classical damping model can be applied to more than 

two modes of structures. Caughey damping can 

theoretically specify damping ratios for any number of 

modes of a structural system, however, with the large 

number of coefficients in the Caughey damping model, 

inappropriate damping coefficients may lead to a negative 

modal damping ratio which cannot exist in nature (Ding and 

Law 2011). Therefore, the Rayleigh damping model is still 

applied in most cases in engineering practice. 

Damping identification methods can be classified into 

frequency domain method, time domain method, and time-

frequency domain method. Methods in the frequency 

domain include half-power bandwidth method (Olmos and 

Roesset 2010, Papagiannopoulos and Hatzigeorgiou 2011, 

Wang 2011) and frequency domain decomposition 

(Brincker et al. 2011). Papagiannopoulos and Hatzigeorgiou 

(Papagiannopoulos and Hatzigeorgiou 2011) proposed the 

third order correction to improve the half-power bandwidth 

method, which provided conservative and more reliable 

results. Wang (2011) studied the error contribution from 

using either the classical or the third order half power 

approximations to calculate the damping effect. Results 

show that when the system damping is less than 0.1, the 

classical approximation itself introduced little error. A 

higher order correction may be used to reduce the 

truncation error for systems where the damping ratio is 

higher. Methods in the time domain include, such as 

logarithmic-decrement technique (Salzmann et al. 2003), 

eigensystem realization algorithm (Juang and Pappa 1985), 

STD method (Ibrahim 1986), etc. Time-frequency domain 

methods such as wavelet analysis method (Slavič, M. 

Boltežar 2011, Uhl and Klepka 2005, Zhang et al. 2014) 

and Hilbert–Huang Transform (HHT) method (Xu et al. 

2003), have also been proposed. Uhl and Klepka (2005) 

proposed a recursive based wavelet method for modal 

parameters identification based on operational 

measurements. The results show that the natural frequencies 

identified by the HHT method are almost the same as those 

obtained by the FFT-based method. The first two modal 

damping ratios given by the HHT method are, however, 

lower than those by the FFT-based method, which may 

indicate that the FFT based method overestimates the modal 

damping ratios. It is noted that the above-mentioned are 

non-model based methods. 

Sensitivity-based model updating method (Li et al. 

2015) for damping identification with vibration 

measurements belongs to another category, which has 

gained significant attentions. Traditional non-modal based 

method is difficult to identify the damping of the high 

frequency modes because these modes are difficult to 

excite. Kang et al. (2005) used the Rayleigh damping and 

the two coefficients were identified from acceleration 

responses with optimization methods. Pradhan and Modak 

(2012) proposed a Frequency Response Function (FRF) 

based method for damping matrix identification through FE 

model updating. The method is formulated such that the 

damping matrix is identified iteratively so as to reduce the 

difference between the complex and the normal FRFs of a 

structure. Li and Law (2009) conducted the identification of 

damping ratios based on the sensitivity of acceleration 

response and model updating technique, and performed a 

numerical study on a five-bay frame structure to investigate 

the effectiveness and validity of the sensitivity-based model 

updating method. An iterative regularization based 

approach (Ding and Law 2011) was also proposed to 

identify time-invariant Rayleigh damping, time-variant 

Rayleigh damping and modal damping, respectively. A new 

constraint is imposed on the identified iterative increment as 

well as on the unknown structural parameters to ensure their 

physical meaning in the identification process is not lost. 

Regarding the sensor placement for the optimal system 

identification and modal estimation, Yi et al. (2016), Yi et 

al. (2016), proposed an original distributed wolf algorithm 

and an innovative swarm intelligent algorithm based on 

pigeon colony algorithm and have done the comprehensive 

study with detailed investigations. It is noted that the focus 

of this study is to investigate the performance of the 

sensitivity based model updating method for the damping 

identification.  

This paper presents numerical and experimental 

investigations on civil engineering structures to identify the 

damping ratios with measured acceleration responses via 

dynamic response based model updating. Numerical studies 

on a three-dimensional truss bridge model are conducted to 

verify the effectiveness of the proposed approach. 

Measurement noise effect and the initial finite element 

modelling errors are considered. Experimental studies on a 

steel planar frame structure are conducted. The robustness 

and performance of the proposed damping identification 

approach are investigated with real measured vibration data. 

 

 

2. Sensitivity-based model updating method 

 

2.1 Sensitivity of acceleration response with respect 
to damping ratios 
 

The general equation of motion of a damped structural 

system with n  Degrees-of-Freedom (DOFs) can be 

written as 

           )()()()( tfDtxKtxCtxM    (1) 

in which  M ,  C  and  K  are the nn  mass, 

damping and stiffness matrices of the structure respectively; 

  tx ,   tx  and   tx  are respectively the 

acceleration, velocity and displacement response vectors of 

the structure;   tf  is a vector of applied forces on the 

associated DOFs of the structure with the mapping matrix 

 D  relating the excitation force location to the 

corresponding DOF. Rayleigh damping 

     KaMaC 21   is assumed, where 1a  and 2a  

are the Rayleigh damping coefficients, which can be 

calculated based on the first two natural frequencies and 

damping ratios. The dynamic responses of the structure can 

be obtained from Eq. (1) using the time integration 

algorithm. 
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The sensitivity of acceleration response with respect to 

damping ratios is expressed as S=∂ẍ(𝑡)/∂ζ, where S and ζ 

denote the sensitivity matrix and damping ratio, 

respectively. With the Rayleigh damping considered in this 

study, only two damping ratios associated with the first two 

modes are considered. The sensitivity matrix is established 

as 
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where k is the measurement location on the structure. In the 

sensitivity matrix, the number of rows is the same as the 

total number of sampling points nt, and the number of 

column as the number of modes considered in the damping 

model. t is the time vector, t =[t1, t2,…,tnt]
T
. In this study, 

numerical difference method is used to calculate this 

sensitivity matrix. 

 

2.2 Sensitivity-based model updating method 
 
Damping ratios identification by the sensitivity-based 

model updating method is performed through an iterative 

process to match the analytical response with the measured 

response (Li and Law 2009). The basic formula is derived 

from Taylor’s series 

 ( )  ∑
 ( )( )

  
(   )  

     (3) 

The higher order terms are ignored when expanding Eq. 

(3). For simplicity, only the first two terms are considered, 

the approximated Taylor’s series expansion is obtained as 

 ( )  
 ( )

  
 

  ( )

  
(   ) (4) 

Substituting   ( ) ,   ( )  and   ( )  with 

 ̈𝑘
𝑚(𝑡),   ̈𝑘

 (𝑡), and  (𝑡) respectively, the expression of 

damping ratios identification equation is derived as 

 (𝑡)        ̈(𝑡)   ̈𝑘
𝑚(𝑡)    ̈𝑘

 (𝑡) (5) 

where    denotes the change in the damping ratios. 

  ̈𝑘
𝑚(𝑡) is the measured acceleration from experimental test 

on the k-th Degree-of-Freedom (DOF).  ̈𝑘
 (𝑡)  is the 

analytical response from the finite element analysis, which 

can be calculated by time-step integration method, i.e., 

Newmark-beta method (Newmark 1959). Tikhonov 

regularization (Tikhonov 1963) is used to stabilize the 

solution of Eq. (5) by defining a modified objective 

function which controls the errors between the accuracy and 

stability of the solution. The Tikhonov regularized solution 

is obtained by minimizing the following objective function 

  22
)(   txtSJ   (6) 

where   is the optimal regularization parameter which 

balances the weight of the norm of the solution and the 

minimization of the identification equation. The L-curve 

method (Hansen 1992) is employed to obtain this optimal 

regularization parameter  . The solution of can be 

expressed as 

   txSISS TT 
1

    (7) 

where I  is an identity matrix. 

An iterative procedure is followed to obtain    in each 

iteration from Eq. (5) to minimize the difference between 

measured and updated analytical responses. The damping 

ratio is updated with  𝑖+1    𝑖       after each iteration. 

The procedure of using model updating for damping ratios 

identification is presented as the following three steps: 

1) Based on the initial finite element model, calculate 

the analytical response with the Newmark-beta method and 

the sensitivity matrix with the numerical difference method, 

and then form the identification equation in terms of Eq. 

(5). 

2) Solve the above equation with Tikhonov 

regularization method to obtain the increment of the 

damping ratios.   

3) The damping ratio vector   is updated as  𝑖+1  
  𝑖      . With the new damping ratios, the finite element 

model is updated, and the analytical responses are re-

calculated.  

4) The iterative process will stop until the following two 

convergence criteria are satisfied 

‖ ̈ 
     ̈ 

 ‖

‖ ̈ 
 ‖

     ; 
       

             (8) 

The flowchart of the proposed approach is shown in Fig. 

1. 

 

  

3. Numerical studies  
 

3.1 Finite element model of a steel truss 
 
Numerical studies on a three-dimensional steel truss 

bridge model are conducted to verify the effectiveness and 

performance of the proposed approach for damping 

identification. The dimensions and mesh of the finite 

element model are shown in Fig. 2. Finite element model of 

the truss bridge model is built in Matlab by using the two 

nodes space truss elements based on the material and 

system properties as listed in Table 1. 

Each node consists of six DOFs which include the 

translational and rotational displacements. The finite 

element model includes totally 104 elements and 72 nodes. 

Simply supported boundary conditions are assumed with 

supports at nodes 1, 9, 19 and 27. The system mass and 

stiffness matrices can be established based on the geometry 

and material properties of the model. The first two natural 

frequencies of the truss bridge model are 50 Hz and 213 Hz, 

respectively.  
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Considering a steel bridge usually has a low damping 

effect, the damping ratio coefficients associated with the 

first and second modes are assumed as 1% and 2%, 

respectively. The truss model is subjected to an impact force 

at node 67 in Y direction, and the acceleration response at 

node 66 in Y direction is obtained for identification.  

The sampling rate is set as 2000 Hz and the first 0.25s 

data are used in the damping identification. Since the truss 

bridge has a low damping effect, the energy after 0.25s 

dissipates very quickly. 

 

 

 

 

 

 

3.2 Identification under ideal conditions 
 
No measurement noise, finite element modelling errors 

and other errors are considered in this case. The response 

from the ideal conditions are used for the damping ratio 

identification by following the procedure presented in Fig. 

1. The damping ratio identification results are presented in 

Table 2. When the identified damping ratios are used for 

calculating the dynamic responses, it can be observed from 

Fig. 3 that the analytical response after updating can match 

the simulated measured response very well, indicating the 

good accuracy in identifying the damping effect. 

 

 
Fig. 1 The flowchart of the proposed approach 

 
Fig. 2 Geometry and dimensions of the numerical truss bridge model (unit: mm) 
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Table 1 Physical properties of the numerical truss bridge 

model 

Members Chords 
Diagonal and 

vertical elements 

Material Steel Steel 

Young’s modulus 210GPa 210GPa 

Cross section area A 475 mm2 250 mm2 

Density, 7800 kg/m3 7800 kg/m3 

Moment of area Iy 1.125 x 105 mm4 5.21 x 102 mm4 

Moment of area Iz 1.125 x 105 mm4 5.21 x 104 mm4 

Torsional constant J 
2.0604 x 103 

mm4 
3.9583 x 103 mm4 

Poisson ratio 0.3 0.3 

 

 

Table 2 Damping identification under ideal conditions 

Damping ratio Before updating After updating True value 

 1 5% 1% 1% 

 2 5.5% 1.5% 1.5% 

 

 

3.3 Uncertainty effects 
 
The robustness of the proposed approach for identifying 

the damping ratios is investigated when the uncertainty 

effects, i.e., the measurement noises in responses and the 

finite element modelling errors are considered.  

 

3.3.1 Measurement noise 
White Gaussian noise is added to the actual acceleration 

to simulate the polluted response. The identifications of  

 

 

 

damping ratios with acceleration contaminated by 2%, 5% 

and 10% noise effects are conducted. The results listed in 

Table 3 demonstrates that the proposed approach is not 

sensitive to the noise effect and the accuracy is generally 

good.  

 

3.3.2 Initial finite element modelling errors 
The initial finite element modelling errors inevitably 

exist in the modelling process due to the possible structural 

damage, inaccurate estimation of boundary conditions and 

inhomogeneous material properties etc. Random 

uncertainties are considered in the stiffness of the truss 

model. 2% and 5% random levels of normal modelling 

errors are considered and the identification results are 

presented in Table 4. It should be noted that in this case, the 

damping ratios for the first and second modes are defined as 

2% and 2.5%, respectively. It can be observed from Table 4 

that the identification of damping ratios are significantly 

affected by the initial random finite element modelling 

errors. 

 

 

Table 3 Damping ratios identification under measurement 

noise effect 

Mode True 2% noise 5% noise 10% noise 

1 1% 1.02% 1.02% 0.87% 

2 1.5% 1.51% 1.5% 1.47% 

 

 

Table 4 Damping ratios identification under initial random 

modelling errors 

Mode True 2% modelling errors 5% modelling errors 

1 2% 2.28% 6.42% 

2 2.5% 2.53% 3.63% 

 

 
Fig. 3 Comparison between the simulated measured and analytical responses after updating 
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4. Experimental investigations  
 

4.1 Experimental model 
 

Experimental studies on a seven-storey planar frame 

structure are conducted to investigate the effectiveness of 

the proposed approach. The steel frame structure in the 

laboratory is shown in Fig. 4. The total height of the frame 

is 2.1 m where each storey has a height of 0.3 m. The 

parallel beams at seven stories have a length of 0.5 m. 

Beams and columns are connected by a continuous weld at 

two ends of beam section. The cross-sections of the column 

and beam elements are measured as 49.98 mm × 4.85 mm 

and 49.89 mm × 8.92 mm, respectively. The measured mass 

densities of the column and beam elements are 7850 kg/m
3
 

and 7734.2 kg/m
3
, respectively. Two pairs of mass blocks 

are bolted at 1/4 and 3/4 length along the beam members to 

represent the mass on the floor in practical structure. Each 

pair of mass blocks is approximately 4 kg containing two 

steel blocks fixed on top and bottom of beam with washers 

between steel block and beam member. The two bottom 

ends of frame are welded to a thick and flat steel plate 

connecting with the floor. Therefore, the connections of 

both ends are considered as fixed supports. All the 

measurement equipment and cables are connected to the 

ground to reduce the disturbances of AC power effect on the 

measured response. The first seven frequencies of the 

structures are 2.54, 7.66, 12.86, 18.03, 18.03, 26.99 and 

29.91 Hz, respectively. 

The acceleration responses of the structure were 

measured from Model B&K 3023 and KD 1010 

accelerometers. The measuring sampling rate is set as 2000 

Hz. A low-pass filter with a cutoff frequency of 1000 Hz is 

defined. The SINOCERA LC-04A hammer with a rubber 

tip is used to generate the excitation. 

 

 

 

Fig. 4 The laboratorysteel frame model 

 

The signals were recorded with National Instruments 

(NI) data acquisition system and DEWESoft data 

acquisition software was employed to communicate with 

the NI system and record the vibration testing responses.  

 

4.2 Finite element modelling 
 
The finite element model of the frame structure is built 

in a two-dimensional Cartesian coordinate system. Each 

beam and column in every storey is equally defined as four 

and three elements respectively with two-node planar beam 

elements. In this two-dimensional frame finite element 

model, every node consists of three DOFs which are the 

translational displacements in X and Y directions and the 

rotational displacement in XY plane. 

The weights of mass blocks are added to the 

corresponding nodes of the finite element model as lumped 

masses. The finite element model of the frame includes 

totally 70 planar elements and 65 nodes. With 3 DOFs at 

each node, the model has 195 DOFs in total. Two fixed 

supports are at node 1 and 65. The accelerometers are 

attached to the columns, and the impact load is applied by 

an impact modal hammer. The locations of sensors and 

impact load are shown in Table 5. The finite element model 

of the frame structure is shown in Fig. 5. 

 

 

 

Fig. 5 Finite element model of the frame structure 
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Table 5 Location of sensors and impact load 

Sensor number 
Sensor Location 

(Node) 

Sensor Location 

(DOF) 

1 19(x) 55 
 

2 16(x) 46 
 

3 13(x) 37 
 

4 10(x) 28 
 

5 7(x) 19 
 

Impact load 

location 
44(x) 130 

 

 

 

4.3 Updating structural stiffness and boundary 
conditions 

 
The accuracy of sensitivity-based model updating 

method is significantly influenced by the finite element 

modeling errors. The mass matrix is constructed accurately 

because in this experiment test the mass and dimensions of 

used steel members can be easily measured. While the 

stiffness of the finite element model is difficult to accurately 

establish with the initial estimation due to the stiffness of 

connections and the inhomogeneous material properties. To 

reduce the discrepancy between the analytical model and 

the experimental model, the initial stiffness matrix and 

boundary conditions are updated before the damping ratios 

identification. Detailed updating procedure and results can 

be found in the literature (Li et al. 2012, Li and Hao 2014).  

The accuracy of updating the structural stiffness and 

boundary conditions is demonstrated with the minimized 

errors in the frequencies and Modal Assurance Criteria 

(MAC) values before and after updating, indicating that the 

analytical finite element model matches well the actual 

experimental model. 

 

4.4 Identification of damping ratios by sensitivity-
based model updating method 
 

The damping ratios are identified by using the proposed 

approach with different lengths of time responses to 

investigate the robustness of the approach. The response 

duration varies from 1s, 2s, 3s, 4s to 5s. Measured 

responses from five accelerometers at sensor numbers 1, 2, 

3, 4 and 5, as shown in Table 5, are used simultaneously to 

obtain more information from the testing model such that 

the identification results are more reliable. The initial 

damping ratios for 1
st
 and 2

nd
 modes are set as  1=1% and 

 2  0.5% respectively. 

As the actual damping ratios of the frame structure are 

unknown, the errors of the true damping ratios and 

identified ones cannot be directly presented in the 

experimental study. Therefore, the relative error is 

calculated by comparing the measured responses and 

analytical responses with the updated damping ratios.  

Table 6 shows the identified damping ratios for the 1st 

and 2nd modes. It is observed that the relative errors 

between the measured and analytical responses increase 

with the extension of used response time duration. This is 

because when a longer period is used, higher modes are 

involved since the response decays very quickly for this 

planar steel frame with very low damping coefficients. 

When higher modes are engaged, the Rayleigh damping 

model has the limited capacity to simulate the energy 

dissipation. Figs. 6-8 show the measured responses from 

tests and analytical responses calculated with the updated 

damping ratios identified by using 1s, 2s and 5s 

measurement data respectively. It can be seen that a good 

agreement between measured and analytical responses is 

achieved using identified damping ratios as shown in Figs. 

6 and 7. The identification of damping ratios for the 1st and 

2nd modes by the sensitivity-based method is more accurate 

with short term responses. As shown in Figs. 6 and 7, the 

analytical acceleration response is very close to the 

measured response for the first second and first two seconds 

data, respectively. It indicates that the damping ratios of the 

1st and 2nd modes obtained from the first 1 or 2 seconds 

acceleration responses are more reliable due to the small 

discrepancy in responses. A satisfactory result is observed 

between those two responses as shown in Fig. 8. The 

differences in the identified damping ratios with 3s, 4s and 

5s data, respectively as shown in Table 6, are not prominent. 

Therefore the damping ratios identification results are still 

acceptable to reconstruct the dynamic acceleration 

responses. 

 

 

Table 6 Identified damping ratios with sensitivity-based 

model updating method 

Time dura

tion(s) 
      

Relative error between  

analytical and measured  

responses 

1 1.10% 0.38% 7.64% 

2 0.79% 0.27% 11.26% 

3 0.70% 0.24% 15.67% 

4 0.67% 0.23% 20.11% 

5 0.66% 0.22% 24.34% 

 

 

Table 7 The relative errors in the measured and analytical 

responses with identified damping ratios by half-power 

bandwidth method and the proposed approach 

Response  

duration (s) 

With damping ratios

 by half-power band

width method 

With damping ratios 

by the proposed  

approach 

1 9.02% 7.64% 

2 12.39% 11.26% 

3 17.66% 15.67% 

4 22.87% 20.11% 

5 43.34% 24.34% 
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Fig. 6 Measured responses and calculated responses before and after updating with 1s data 

 
Fig. 7 Measured responses and calculated responses before and after updating with 2s data 
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4.5 Comparing the response prediction error with 
the identified damping ratios by half-power bandwidth 
method 
 

Half-power bandwidth method is a simple and popular 

method, which is employed to calculate the damping ratios. 

To investigate the accuracy of using the damping ratios 

obtained by the half-power bandwidth method and the 

proposed approach to respectively predict the structural 

vibration responses, those damping ratios will be used to 

calculate the analytical responses with the finite element 

analysis and compare with the measured response.  

The relative errors between the analytical and measured 

responses with identified damping ratios by half-power 

bandwidth method and the proposed approach are listed in 

Table 7. The damping ratios calculated with 90 seconds 

response with the half-power bandwidth method are 0.2% 

and 0.19% for the first and second modes respectively. They 

are different as the damping ratios identified with the 

proposed model updating method. However, it can be 

observed from Table 7 that using the identified damping 

ratios with the proposed approach to calculate the analytical 

response gives a smaller relative error in the dynamic 

response prediction compared with the experimental 

measured response. 

 

 

 

 

The relative error by using the damping ratios from 

sensitivity-based model updating method is generally lower 

than that using the two pairs of the damping ratios from 

half-power bandwidth in all the time durations from 1s to 

5s, as shown in Table 7. This demonstrates that the 

proposed approach may provide a more accurate response 

prediction for dynamic analysis with the estimated damping 

ratios. 

 

 

5. Conclusions 
 

Compared with other damping identification methods, 

sensitivity-based model updating method has a very good 

performance to predict the structural vibration responses 

with the identified damping ratios. Rayleigh damping model 

is assumed and the response sensitivity based model 

updated is performed to identify the damping ratios by 

minimizing the measured responses and analytical 

responses from finite element analysis. Numerical and 

experimental studies on a truss bridge model and a steel 

frame structure are conducted respectively to investigate the 

effectiveness and performance of the proposed approach. 

Identification results in numerical studies demonstrate that 

the damping ratio identification with the proposed approach 

is not sensitive to the noise effect but could be affected 

 

Fig. 8 Measured responses and calculated responses before and after updating with 5s data 
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significantly by the modelling errors. It can be observed 

from the results in experimental investigations that the 

proposed approach can identify the damping ratios of the 1
st
 

and 2
nd

 modes simultaneously with the Rayleigh damping 

model. When a longer time domain response period is 

involved, higher modes responses may be observed. If the 

damping ratios for more than two modes need to be 

determined, the modal damping model may be used, and the 

similar approach and procedure can be followed. The steel 

frame structure is of very small damping ratios, which may 

be difficult for the sensitivity-based model updating method 

to give an accurate identification result. With the identified 

damping ratios, the analytical responses from the finite 

element analysis can match well with the experimentally 

measured responses, indicating that a good estimation of 

damping ratios can be helpful for accurately analysing the 

structural vibration behavior and performing the response 

analysis.  
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