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Abstract. The use of smart dampers to optimally control the response of structures is on the increase. To
maximize the potential use of such damper systems, their accurate modeling and assessment of their performance
is of vital interest. In this study, the performance of a controllable fluid dashpot damper, in terms of damper forces,
damper dynamic range and damping force hysteretic loops, respectively, is studied mathematically. The study
employs a damper Bingham-Maxwell (BingMax) model whose mathematical formulation is developed using a
Fourier series technique. The technique treats this one-dimensional Navier-Stokes’s momentum equation as a
linear superposition of initial-boundary value problems (IBVPs): boundary conditions, viscous term, constant
Direct Current (DC) induced fluid plug and fluid inertial term. To hold the formulation applicable, the DC current
level to the damper is supplied as discrete constants. The formulation and subsequent simulation are validated with
experimental results of a commercially available magneto rheological (MR) dashpot damper (Lord model No’s
RD-1005-3) subjected to a sinusoidal stroke motion using a ‘SCHENK’ material testing machine in the Materials
Laboratory at the University of Technology, Sydney.
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1. Introduction

Due to the controllable fluids’ unique rheological behavior capable of transforming from viscous

liquid into semi solid state within a relatively short time, and due to its controllability under the

influence of electric or magnetic fields, engineers have been utilizing these fluids to develop various

locking, suspension and damper devices (Gavin, et al. 1996a-b, Makris, et al. 1996, Spencer, et al.

1997, Bölter and Janocha 1997, Kamath and Wereley 1997, McMahon and Makris 1997, Gorodkin, et

al. 1998, Lee and Wereley 1999, Lindler and Wereley 1999, Park, et al. 1999, Sims, et al. 2000, Jansen

and Dyke 2000, Bica 2002, Yang, et al. 2002, Janocha 2001, etc.). The use of this unique behavior is

credited to Willis M. Winslow and Jacob Rabinov in relation to their patented works in the late 1940s as

indicated in literature (Spencer, et al. 1997, Jansen and Dyke 2000). Among three operation modes,
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i.e., pressure driven or flow mode, direct shear mode, and squeeze mode which are found in fluid

devices, only the first two modes are mostly employed in device force generating mechanisms.

Common types of pressure driven mode devices are dashpot dampers or actuator type dampers,

shock absorbers and suspensions. Meanwhile clutches, brakes, controllable valves and shear mode

dampers are classified as fluid direct shear mode devices. Moreover, the device force characterization is

mostly carried out using a system identification method for mathematical modeling or by adjusting

the relationship between device force and its response extracted from the experimental results in

laboratory.

The current approaches include phenomenological modeling using Bouc-Wen model (Spencer, et

al. 1997, Spencer, et al. 1998, Yang, et al. 2002), employing Chebyshev polynomials (Gavin, et al.

1996b), mechanical models (Chompucot 2000), rigid-viscoplastic material approximation or

Buckingham’s cubic equation (Makris, et al. 1996, Burton, et al. 1996, McMahon and Makris 1997),

nonlinear viscoelastic-plastic model (Kamath and Wereley 1997), modified Buckingham’s cubic

equation (Sims, et al. 2000), a proposed polynomial model (Choi, et al. 2001), etc. Besides using

experimental results, attempts by Gavin, et al. (1996a), Wereley, et al. (1998), Lee and Wereley (1999) and

Widjaja et al. (2003) to characterize the relationship between device force and its response,

mathematically, are mostly carried-out for quasi-static and fully developed steady conditions without

emphasizing on force contribution of each parameter, namely, boundary conditions, viscous term,

plug fluid and inertial term. To study force contributions to damper force, a damper Bingham-

Maxwell (BingMax) model is employed in this study. The model comprises a non-linear equivalent

viscous damping element and a spring mounted in series. The non-linear equivalent viscous damping

forces are generated by Bingham fluid flowing through a parallel plate (duct) model in a shear-flow

mode condition, while the spring, representing an accumulator, generates out of phase ‘inelastic’

damper forces. The study is based on the unsteady non-Newtonian flow and dynamic pressure

gradient (Gavin, et al. 1996a). Although the simulation results are validated using the experimental

results at device characterization stage, the study does not include the effects of friction between

piston and casing, the carrier liquid type, the particle diameter, concentration, temperature and

damper controllability performance. The controllability performance, adjustable with the supplied

Direct Current (DC) level, requires control tests on the integrated models of MR dashpot damper and

the structural prototype model.

Fig. 1 Flow-field profile and ‘uniform loadings’ for pressure gradient and plug layer



The controllable fluid dashpot damper performance 211

2. Normalized non-Newtonian flow

Flow through the gap between piston and casing of a dashpot damper can be simulated as duct flow

through a two parallel plate model with one moving boundary velocity U as shown in Fig. 1. 

The flow, considered as a one dimensional non-Newtonian duct flow (Massey 1991) with constraint

conditions such as: incompressible fluid, non-slip boundary, constant density, neglecting the presence

of body forces and satisfying the principles of conservation of mass and momentum, is represented by

the relationship below,

(1)

In the above equation, ρ is fluid mass density;  is flow velocity in x direction in the Cartesian (x- )

coordinate system;  is temporal variable; ∂p/∂x is pressure gradient; τy is shear yield stress of fluid; µ is

plastic viscosity of fluid; sgn is signum function and x,  are spatial coordinates of the Cartesian

coordinate system. The above equation is derived using Bingham fluid model where fluid shear stress

τxy is expressed as

(2)

Introducing the normalized parameters given in Eq. (3) below, one can obtain the normalized Navier-

Stokes’ momentum equation as shown in Eq. (4) 

(3a)

(3b)

(3c)

(3d)

(3e)

(4)

In Eq. (3), RU is the boundary velocity gradient induced fluid shear stress to density ratio; D is the size

of annulus gap between piston and damper casing; Tf is the fluid time constant which varies from 0.003

to 0.24 for Magnetorheological (MR) fluids and from 0.001 to 0.12 for Electrorheological (ER) fluids,

respectively. Both values hold for the gap size D in the range of 1 to 2.5 millimeters. The parameter Up

is the amplitude of piston head velocity. 

3. Solutions of partial differential equation (PDE)

Using method of separation of variables, Eq. (4) can be separated into two ordinary differential

equations (ODEs), by which the homogenous solution with the non-slip boundary conditions can be
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obtained directly. The solution is taken as a product of two functions with each containing temporal and

spatial terms only. The unknown constant associated with the homogenous solution is to finally be

determined by imposing initial conditions to total velocity field contributed by boundary velocity,

pressure gradient and fluid shear yield stress. On the other hand, the non-homogenous solution is solved

by treating the pressure gradient, fluid shear yield stress (plug) and boundary velocity as ‘constant

terms’. The normalized boundary and initial conditions are as follows: 

(5a)

(5b)

(5c)

In Eq. (5), λ = ωTf is the piston head normalized frequency and ‘ω’ is the piston head frequency.

Eq. (5a) represents stationary boundary for damper casing, while Eq. (5b) is only used for moving

boundary representing piston head, otherwise nil for homogenous, pressure gradient and fluid shear

yield stress cases. Eq. (5c) corresponds to no fluid motion or at rest condition at initial time and is

applicable to normalized unsteady flow velocity u.

Solving the homogenous and non-homogenous boundary cases of Eq. (4), with reference to normalized

variables in Eq. (3), yields the following ‘homogenous flow velocity uh’ and ‘boundary induced flow

velocity ub’ as follows:

(6a)

(6b)

where Cm is integration constant of homogenous solution; Re stands for Real; Im stands for imaginary;

 and m is the subscript index (= 1,2,….~).

The pressure gradient and fluid shear yield stress are assumed to be piston head velocity dependent.

Moreover, pressure gradient in Eq. (3) is treated as a constant with respect to ordinate y. As a result of

treating Eq. (3) for steady state condition, the particular solution for the first RHS term of Eq. (3)

represents the fully developed “pressure gradient-steady flow velocity up”,

(7)

(8a)

(8b)

where Bm is the Fourier coefficient; β is the normalized pressure gradient; F is the dashpot damper

force; R is the radius of piston head and L is the length of magnetic poles. In view of previous work of

the authors (Widjaja, et al. 2003) the velocity profile for controllable fluid will transform into three

layers when the applied pressure gradient is larger than the critical pressure gradient. The layers are two

boundary adjacent fluid layers and one middle semi-solid or plug layer. Similar to the derivation of

Eq. (7), the particular solution of “the plug inhibited flow velocity us” for the second RHS term of

u y 0 t,=( ) 0 =

  u y 1 t,=( ) Re exp iλt( )( ) =

  u y t 0,=( ) 0 =
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Eq. (3), can be determined by using the conjugate beam analogy that the derivative of the fluid shear-

yield stress is “a distributed loading α /δ ” in the plug layer. In this case, the inertial term in

conservation of momentum equation is neglected.

(9)

In the above equation, H(*) is Heaviside’s unit function, yp is the normalized distance measured from the

centroid of plug to the bottom plate, δ is the normalized plug thickness and α is the normalized fluid

shear stress. These variables are defined below,

(10a)

(10b)

(10c)

Eq. (9) shows “a uniform loading” α /δ in the semi-solid region and “no loading” in the fluid regions

acting on “a simple beam” as shown in Fig. 1. By applying the boundary conditions for velocity and

compatibility conditions for velocity gradient at the fluid interface ‘points’ between liquid and semi-

solid or plug layers, the “plug inhibited flow velocity us” can be obtained similar to ‘bending moment’

of a conjugate beam. The technique can avoid solving the integration constants resulting from

mathematical double integration of discontinued ‘loading’.

(11)

For the ease of computation, Eq. (11) above is expanded into Fourier series as

(12)

In Eq. (12), the coefficient Am can be expressed as

(13a)
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       (13b)

      (13c)
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          (13e)

In view of Eqs. (6), (7), (8a), (12) and (13), the normalized unsteady flow velocity u through a parallel

plate model for the condition of pressure gradient larger than critical pressure gradient (Widjaja, et al.

2003) can be derived after satisfying the initial condition in Eq. (5c):

(14)

where Cm = −(Am+Bm). Eq. (14) indicates that the solution for typical flow velocity profile across the

parallel plate model as shown in Fig. 2, is influenced by inertial and initial conditions, boundary

conditions, pressure gradient and fluid shear yield stress which are represented, respectively by Cm, ub,

Bm and Am. 

In the case of viscous dashpot damper with no electric or magnetic field applied, Am equals to zero.

Moreover, when used for flow mode dashpot dampers, the second term in Eq. (14) is dropped from the

equation.

In order to observe the force characteristics of dashpot damper, the closed-form normalized damper

force F* of Bingham model is derived in view of Eq. (14).

(15)

In the above equation, F* = F/{ρRU(πR2L/D)} =β ; a is the damper geometrical factor (R/(γD));

α* = Fy /{ρRU(πR2L/D)}; γ is the ratio of the gap annular perimeter with the piston perimeter and Fy is

damper shear yield force. These normalized damper forces for various gap sizes with constraint of

maximum piston head velocity gradient less than ‘super slip velocity’ 2τy /µ (Widjaja, et al. 2003) can
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Fig. 2 Typical velocity profile for the case of a = 50,  f = 1 Hz, Tf =.003 and α = 100
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be typically shown in Fig. 3.

Moreover, Eq. (15) shows that the normalized damper force comprises of fluid shear yield stress

induced force and viscous force, respectively, represented by Am, the first numerator term and the

numerator second term. This equation, and also indicates that damper damping characteristic is applicable

with its second numerator term bounded larger than its first term as indicated by the Heaviside’s unit

function in Eq. (15). Furthermore, one can optimize the damper force by enlarging ‘Am’, which means

increasing the ratio of shear yield stress to gap size. This can be achieved by increasing electric or

magnetic field intensity and/or by decreasing the gap between two dielectric plates or magnetic poles.

The transient contribution due to inertial and initial condition, represented by negative temporal

exponential term, will decay in a short time during the damper operation. The roles of boundary

condition and damper geometry in generating viscous force are represented respectively by the second

numerator term. In view of Eq. (15), one can see that the viscous force increases as the ratio of piston

head velocity to the squared gap size increases.

The decreasing gap size (or increasing the damper geometrical factor R/D) increases the damper force

approximately linearly for the ‘plug’ flow and by more than two orders of magnitude larger (acting

more like a viscous damper) than that of increasing piston head velocity with the same ratio. The effect

occurs during post yield flow where the contribution of the viscous force becomes dominant especially

at high piston head frequency or velocity. On the other hand the damper controllable force contributed

by the pre-yield flow becomes dominant for the high yield stress controllable fluid damper or when

operated at low piston head frequency or velocity. Furthermore, the normalized damper force in Eq.

(15) for Bingham fluid model is represented by one mathematical function which can not describe the

damper damping hysteretic behavior.

4. Damping characteristics of controllable dashpot damper

As Bingham fluid model used for dashpot damper (stated in Eq. (15) cannot describe the damping

hysteretic behavior, the model is enhanced by installing an accumulator in series arrangement. The

Fig. 3 Typical Simulation (--) versus Experimental results (—) for damper RD-1005-3 for 1 Hz, 1 Amp. and
12 mm stroke. 
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accumulator will act as spring with stiffness coefficient Ka. The new arrangement of damper representing

a proposed Bingham-Maxwell (BingMax) device model as shown in Fig. 4 is able to generate the

damping hysteretic behavior which is important if used as a control device. 

The accumulator plays a role to split-up the function in Eq. (15) into four functions, illustrating the

damper damping hysteretic curves. The piston velocity term contributed by the action of accumulator

works at a different phase to those by the action of fluid. In this model, the normalized piston head

velocity U/Up is categorized into two conditions: for the case of F* being less than Fy the normalized

piston velocity is contributed by the accumulator only as in Eq. (16a). For the other case the normalized

piston velocity is expressed as the summation of each normalized velocity contributed by plug, boundary

effect, pressure gradient and accumulator (spring) which is further mathematically manipulated in

relation to the normalized damper force F* as in Eq. (16b).

(16a)

(16b)

The above equations hold for constant fluid shear yield stress where K is the normalized accumulator

stiffness and C is the normalized viscous damping coefficient. The normalized viscous damping

coefficient C of dashpot damper for the case of zero initial conditions can be derived by assuming the

plug contribution or fluid shear yield stress is constant for each time step. 

(17)

(18)

Furthermore, the Right Hand Side (RHS) term in Eq. (16) which represents the normalized forcing term

can be expressed in relation to the fluid flow velocity as

(19)

The normalized forcing term in the RHS of Eq. (19) is nonlinear and damper force dependent as
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Fig. 4 Proposed BingMax device model
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implicitly stated in Am or specifically in δ and yp. Treating Eqs. (16) as a linear ODE with constant

coefficients for C, K and U/Up for each time step and solving Eq. (16b) using MATLAB ODE45 or

Euler method, the damper hysteretic behavior expressed as the damping force versus the piston head

velocity relationship, can be obtained correspondingly as presented in Figs. (8a-l). The piston head

displacement, which is also harmonic, can be derived using its velocity by which the damper energy

dissipated can be computed as the area of hysteretic loop between damper force and piston head

displacement. Further, the equivalent viscous damping can be determined as 

(20)

where nt is the number of time steps per cycle and k is the subscript index (1, 2, 3,…k,…., nt=2π/(ω

∆t)).

5. Validation of the proposed BingMax damper model

To validate the performance of the proposed mathematical model with the test results, a series of

experiment were set-up using a SHENCK material testing machine to drive a Lord Corp. manufactured

‘Rheonetic’ MR damper with part No. RD-1005-3, with an approximately 5 kN capacity load cell

installed between the damper piston rod and the machine actuator as shown in Fig. 5. The test was

conducted using sinusoidal excitations having frequencies of 0.5; 1.0; and 2.0 Hertz, while the supplied

constant DC current levels to the damper varied correspondingly (0.0; 0.5; 1.0 and 2.0 Amperes). The

damper fluid’s rheological properties were characterized from the experimental results with the damper

geometrical dimensions obtained by measurements. The damper has a piston diameter of 37.70 mm,

Ceq

µπL R D⁄( )2
----------------------------- 2

nt
---- Fk

*

k 1=

nt

∑ Uk=

Fig. 5 Experimental Set-up for MR damper RD-1005-3 using a ‘SCHENCK’ test machine
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1 mm gap thickness and 89.54 mm annular gap perimeter. The gap has two fixed magnetic poles (part

of piston) 9 mm long through which the MR fluid flows in flow (valve) mode.

For the case of magnetized fluid condition, characterization of fluid shear yield stress, the fluid’s

rheological properties and accumulator elastic stiffness can be approximated using the measured slopes

α, αu, αl, the measured piston velocity offsets Uu and Ul, depicted from the damper idealized hysteretic

curve in Fig. 6. 

(21a)

(21b)

(21c)

In the above equations, Fy is the measured damper shear force; αu, αl  are the measured slopes of post-

yield curves and Uu, Ul are velocity offsets at yield points. While for the case of non-magnetized fluid

condition or zero DC current level, the dashpot damper is characterized similar to the viscous damper

as shown in Fig. 7.

µ D
2
tan

αu αl+

2
----------------⎝ ⎠

⎛ ⎞ 12aApL( )⁄≅

ka 4π fpFy( ) Uu Ul–⁄≅

τy FyD 2ApL( )⁄≅

Fig. 6 Idealized MR damper hysteretic curve

Fig. 7 Idealized viscous damper hysteretic curve
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(21d)

(21e)

In Eqs. (21d-e), Fd and Fm are the measured offset damper force and maximum damper force,

respectively. Characterization results can be seen in Table 1. Results indicate the nonlinearity of

accumulator stiffness coefficient, fluid shear yield stress τy and post-yield viscosity ‘µ’. The fluid shear

yield stress is heavily current level rather than post yield viscosity dependent.

To build the signal based dashpot dampers, the damper performance can be expressed by the

relationship of fluid shear yield stress and DC current level i as shown

(kPa.) (22)

Validation of the proposed model using the experimental results and the input data in Table 1 can be

seen in Figs. 8(a-l). In these figures, the dashed and solid lines correspond to damper forces obtained

from the BingMax model and experiments, respectively.

6. Dynamic range of controllable dashpot dampers

One of the two most important parameters (besides the damper force) used for evaluation of damper

performance (Carlson, et al. 1996, Gavin, et al. 1996, Yang G. 2001, Yang, et al. 2002) is dynamic

range ‘RD’, referred to also as control range of damper force which is defined as the force ratio between

the maximum damper force when the damper is in ‘ON’ state (2.0 Ampere) and the maximum damper

viscous force when the damper is in ‘OFF’ state (0 Ampere). The dashpot damper dynamic range, in

view of Eq. (15) can be explicitly derived as: 

(23)

µo Fd 6UpaπR
2
L D

2⁄( )⁄=

kao 4π fpFm Up⁄=

τy 7.0578i
3

32.76i
2

– 59.682i+=

RD

max Am 1 mπ( )2t–{ }exp–[ ] 1 mπ( )cos–{ } mπ( )H
β α*
–( )

⁄
m 1=

∞

∑

max Re 1 φ( )cos–{ } φsin φ( ){ }⁄[ ] a 2⁄+( )Re iλt( )exp( )
----------------------------------------------------------------------------------------------------------------------------------------------------- 1+=

Table 1 Fluid shear yield stress, plastic viscosity and accumulator stiffness

Case
Freq.
(Hz)

Current
(Amp)

Stroke
(mm)

τy

(kPa.)
µ

(Pa.s)
ka

(kN/m)

1
2
3
4

0.5

0.0
0.5
1.0
2.0

12.0

-
21.01
31.83
43.89

2.130
1.815
1.785
1.680

014.233
413.730
528.899
756.551

5
6
7
8

1.0

0.0
0.5
1.0
2.0

12.0

-
21.38
34.05
44.53

1.327
1.110
1.162
1.162

019.774
368.604
522.704
694.231

9
10
11
12

2.0

0.0
0.5
1.0
2.0

8.0

-
25.21
36.06
45.94

0.727
1.125
1.207
1.267

026.858
401.132
532.600
622.920
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Fig. 8 Validation of BingMax model using Lord MR damper RD-1005-3: Experimental results (solid line), 
BingMax model (dashed line) corresponding to cases presented in Table 1
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One can observe that the dashpot damper dynamic range can be actively adjusted through ‘Am’ or  τ y ,

which can be controlled by DC current level. Further, the numerical BingMax model shows an

insignificant time delay in the damper operation especially for the large stiffness accumulator. In view

Fig. 8 Continued
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of Eq. (15), the decay time required to reach the quasi-steady condition for the dashpot damper can be

approximated when the contribution of transient effects (exponential term) to damper force becomes

equal or less than one percent, i.e.,

(24)

Employing bisection method to find the root of Eq. (24) with the use of MATLAB version 6.1 release

12, one can obtain the approximate decay time td as 

(25)

The above solution indicates an approximate duration for fluid to reach its fully developed steady state

which leads to a harmonic damper force. Furthermore, in view of Eq. (3d) it is shown that the smaller

gap size causes significant reduction of decay time rather than having a larger plastic viscosity. 

7. Discussions and conclusions

The formulation for controllable fluids’ flow, as presented in this study shows that the flow can be

represented explicitly by individual flows caused by inertial flow, boundary motions, generated

pressure gradient and the presence of fluid plug generated by magnetic or electric fields. This approach

is advantageous as it allows the study of the effect of each contributing factor to the damper force. The

study firstly verifies the fluid velocity profile development as shown in Fig. 2. The higher will be the

pressure gradient or damper force, as indicated by the development of post-yield viscous flow, when

reducing the plug thickness inside the annulus gap. The analytically generated velocity profiles are

based on the piston sinusoidal velocity. To validate the damper hysteretic force against the experimental

results, a sinusoidal stroke motion was adopted as expressed by the formulations. Validation of the

simulated BingMax damper model with experimental results was achieved typically for the case of 1

Hz. frequency, 1 Ampere constant DC supplied current with 12 mm piston stroke as presented in Fig. 3.

The results indicate that the proposed damper BingMax model is in good agreement with the

experimental results, with the exception that the simulation slightly over-estimates the maximum

damper force. The root of this inaccuracy seems to lie in the characterization of the damper rheological

properties and accumulator stiffness coefficients. Further works are still required to refine the

characterization technique.

Without the presence of an accumulator, the damper cannot generate a significantly large force

hysteretic behavior. One possibility is to place the accumulator and the dashpot component of damper

in a serial arrangement. This arrangement leads to the so called BingMax damper model which in turn

is capable of simulating the hysteretic behavior without affecting the magnitude of damper force.

Validation of BingMax model for fluid dashpot dampers was carried-out using a ‘Rheonetic’ MR

damper No. RD-1005-3 tested using sinusoidal excitation generated by a SHENCK material testing

machine. Comparative results with those of BingMax models, employing the characterized fluid

rheological properties and accumulator stiffness in Table 1, were presented in Figs. 8a-l. It can be seen

that the BingMax models due to somewhat inaccurately characterized properties, are more rigid

especially for low frequency, generally in good agreement but over estimating the damper force and the

mπ( )2t–{ }exp 1 mπ( )cos–( )
m 1=

∞

∑ mπ( )⁄ 0.01≤

td 0.42Tf≅
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damping/dissipated energy as indicated by the higher forces in Fig. 3 and larger width of hysteretic

loops in Figs. 8a-l, respectively. In general the BingMax models show good results in comparison with

the experimental results, however they require further softening to Bingham fluid model in order to be

able to predict more accurately the damper hysteretic behavior. Moreover, the hysteretic loops for

‘OFF’ state or viscous condition indicate the presence of static friction forces which are not detected in

characterization.

The transient effect on the damper dynamic ranges or forces due to initial condition occurs in a very

short time and has no effect on dynamic range as indicated by the insignificant time delay in Eq. (25).

This phenomenon also shows the insignificant fluid inertial effect passing through a small gap of two

parallel magnetic poles or dielectric plates in a very short time, especially for low frequency mode of

operation. 
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