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1. Introduction  
 

Advances in science and technology, and the need to 

benefit from products based on new developments, entail 

the construction of safe and economic physical spaces for 

industrial buildings. By the end of World War II, countries 

became engaged in the reconstruction of the ruins of the 

war. Due to the extent of damage, the conventional methods 

were not sufficient for providing suitable residential and 

industrial spaces. This was the time when the industrialized 

countries started to think of producing buildings in harmony 

with other industrial manners for passing from the housing 

crisis. This led to construction of the low-rise metal 

buildings. Buildings are often considered as low-rise when 

their heights are less than 18 m. Sloped roof frames are the 

most common for low rise buildings, can be categorized 

based on their shapes: gable frames, mono slope frames, 

lean-to frames, saw tooth frames, domed frames, T-shape 

frames. These frames may have symmetrical or 

unsymmetrical geometry.  

All of these frames, except T-shaped frames, may have 

one or two middle floors called mezzanines. The members 

of these frames are categorized as prismatic or non-

prismatic sections. In non-prismatic type, the cross-section 

continuously vary from bottom to top (start to end) of 

members, and in prismatic type, the member has the same 

geometrical characteristics along the member (Fraser 1983, 

Watwood 1985). 

In the field of structural optimization, there are many  
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methods to optimize the weight/cost of the structures, such 

as gradient-based and stochastic optimizers 

(Spires and Arora 1990, Saka and Geem 2013, 

Kazemizadeh Azad and Hasançebi 2015a). Since 1960s a 

vast amount of research has been carried out in the area of 

structural optimization, majority of which deal with 

minimizing the weight of the structures. The last two 

decades were highlighted by the development and 

improvement of the metaheuristic methods. Most of them 

deal with optimal design of two/three dimensional 

structures such as trusses, frames, dams, etc. (Kaveh 2016, 

Saka and Dogan 2012). A small fraction of the published 

papers are on gable frame structures with tapered members. 

Therefore, optimal design of the gable rigid frame with 

web-tapered members in the low rise buildings can be 

considered as an interesting and challenging issue in 

structural engineering research (Saka 1997, McKinstraya et 

al. 2016). 

The main objective of this paper is to find the optimum 

member sections of a symmetric gable frames by 

considering different alternatives based on the number of 

member divisions. The members of these frames are also 

considered as the web-tapered I-section members. The 

design method used in this study is also consistent with 

ASCE/SEI 7-10 (2010) and AISC-LRFD (1999) 

Specifications. Three metaheuristic algorithms consisting of 

the Particle Swarm Optimization (PSO), Colliding Bodies 

Optimization (CBO) and Enhance Colliding Bodies 

Optimization (ECBO) algorithms are utilized for finding the 

optimum weight of frames. CBO belongs to a family of 

meta-heuristic algorithms which were recently developed. 

Simple formulation and no internal parameter tuning are the 

main features of this algorithm (Kaveh and Mahdavi 2014, 

2015). The ECBO is introduced by Kaveh and Ilchi 
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Ghazaan (2014) and it uses memory to save some 

historically best solution to improve the performance of the 

CBO. Gholizadeh et al. (2016) optimized double layer 

barrel vaults considering nonlinear behavior. Gholizadeh 

and Milany (2016) presented optimal performance-based 

design of steel frames using different metaheuristics. 

It should be noted that, since the plan rectilinear shape 

of gable frame depends on the dimensions of the sections, 

this work can be considered as the shape optimization of 

gable frames. In such a gable frame design problem, 

selecting appropriate cross-sections for the members is 

important because it influences the structural analysis and 

weight of the gable frame. Therefore, it is often necessary to 

find the best set of cross-sections for reducing the weight of 

gable frames and achieving an optimal and economical 

design.  

The remainder of this paper is organized as follows: In 

section 2, the mathematical formulations of the structural 

optimization of the gable rigid frame problems are 

presented and a brief explanation of the ASCE/SEI 7-10 and 

AISC-LRFD 99 specifications is provided. Section 3 

consists of the loading of the structures. Then an 

explanation of the enhance colliding bodies algorithm is 

presented in section 4. In section 5 the design examples and 

the discussions on the results are presented. Section 6 

concludes the reaserch. 

 

 

2. Gabel rigid frame optimization problems 
 

The optimization problem can formally be stated as 

follows 

Find           X = [x1, x2, x3, ..., xn] 

to minimizes Mer(X) = f(X) × fpenalty(X) 

subjected to    gi(X)0, i=1,2,…,m 

ximin ≤ xi ≤ ximax 

(1) 

where X is the vector of design variables with n unknowns 

[x1, x2, x3,…, xn], gi is the ith constraint from m inequality 

constraints and Mer(X) is the merit function; f(X) is the cost; 

fpenalty(X) is the penalty function which results from the 

violations of the constraints corresponding to the response 

of the gable rigid frames. Also, ximin and ximax are the lower 

and upper bounds of the design variables vector, 

respectively. 

The exterior penalty function method is employed to 

transform the constrained optimization problem into an 

unconstrained one as follows 





m

i

jppenalty xgXf
1

))(,0max(1)(   (2) 

where γp is penalty multiplier. 

 

2.1 Objective function of the problem 
 

In the gable frame design many factors affect the 

construction cost of the project, the cost of the frames, 

foundation, purlins, girts, etc. However the main cost 

belongs to the structural frames. This cost in turn includes 

different items such as the frame steel, and the cutting, 

fabrication, installation, connections, etc. of the frame. 

Among all the aforementioned items, the most effective 

parameter is the steel due to the repetition of a frame in 

consecutive bays. Moreover, the weight of foundation and 

the seismic behavior of structure are significantly dependent 

upon the weight of the gable frames (Hwang et al. 1991). 

Therefore, the weight of gable frame structures is 

considered as the objective function in order to reduce the 

construction cost of the pitched roof frames. The weight of 

a gable frame structure can be expressed as 

i

n

i

i
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i
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(3) 

where ρ is weight per volume of steel, Vi and li are the 

volume and length of the ith segment of the rigid frame 

structure, respectively, iA  is the average of starting and 

ending cross section areas of the ith segment, n is the total 

number of segments in a gable frame. 

 

2.2 Design constraints 
 

Design constraints are divided into some groups 

including the deflection, strength and stability constraints. 

The strength and displacement constraints for steel frames 

are imposed according to the provisions of LRFD-AISC 

specifications (AISC 1999). These constraints are briefly 

explained in the following: 

 

(a) Maximum vertical displacement of the pitched roof 

0


V
V R

L
 (4) 

where ΔV is the maximum vertical displacement of roof; L 

is the length of span in the gable frame structure; and RV is 

the allowable vertical displacement index which is equal to 

1/360 and 1/240 under live and total loading, respectively. 

(b) Maximum horizental displacement 

0


H
H R

H
 (5) 

where ΔH is the maximum horizental displacement of eaves 

in the gable frame; H is the eaves height; RH represents the 

allowable horizental displacement index which considered 

as H/200 under the all loadings. 

(c) Strength constraints 
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(6) 

where Pu is the required strength (tension or compression); 

Pn is the nominal axial strength (tension or compression); ϕc 
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is the resistance factor (ϕc = 0.9 for tension, ϕc = 0.85 for 

compression); Mu is the required flexural strength; Mn is the 

nominal flexural strength; and ϕb denotes the flexural 

resistance reduction factor (ϕb = 0.90). The nominal tensile 

strength for yielding in the gross section is calculated by 

.n g yP A F
 

(7) 

The nominal compressive strength of a member is 

computed as 

.n g crP A F
 

(8a) 
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where Ag is the cross-sectional area of a member and k is 

the effective length factor. 

(d) The buckling constraints 

Considering the ANSI/AISC 341-10 (ASIC 2010) 

manual for design of slender compression elements, the 

reasonable and practical width-to-thickness ratios of 

18
2


f

f

t

b
 and 260

4.0


yw F

E

t

h
 are considered as the 

constraints this study. Here, the material characteristics are 

considered as: E=2.1e6 kg/cm2; Fy=2520 kg/cm2, ρ=7850 

kg/m3; and Poisson’s ratio=0.3. 

 (e) The stability constraint 

The stability constraints are considered in accordance 

with the ANSI/ AISC 360-10 (AISC 2010) manual. In 

designing the gable frames with web-taper, achieving the 

second-order analysis is one of the most significant aspects 

due to the offset of the cross-section central axis from the 

chord. This includes the matrix formulations based on the 

deformed geometry and the P-delta analysis procedures 

(Saffari et al. 2008). The P-delta effects cause the resulting 

additional force or moment in the members. Consider the 

following equation as an indicator of the magnitude of the 

expected stability index under P-delta effects 

dsxx

ex

ChV

IP 
  (9) 

where θ is the stability coefficient,  xP  is the total vertical 

design load above level x with a maximum load factor of 

1.0 (kip or kN), Δ is the design story drift occurring 

simultaneously with xV , eI  is the importance factor, xV  

is the seismic shear force acting between Levels x and x – 1, 

sxh  is the story height below level x, and dC  is the 

deflection amplification factor. The upper bound of the 

stability coefficient ( max ) is determined as follows 

25.0
5.0

max 
dC

  (10) 

where β is the ratio of shear demand to shear capacity for 

the story between levels x and x – 1. This ratio is permitted 

to be conservatively taken as 1.0. If the stability coefficient, 

θ, of a structure could be found equal or less than 0.1, the 

designer would ignore the second-order analysis. Where θ 

is greater than 0.10 but less than or equal to max , the 

incremental factor related to P-delta effects on 

displacements and member forces should be determined by 

the rational analysis. Alternatively, it is permitted to 

multiply displacements and member forces by 1.0/ (1 – θ). 

Where θ is greater than max , the structure is potentially 

unstable and should be redesigned (AISC 2010). In this 

study, the deflection amplification factor, dC , is 

considered as 4 due to the frame system. Also, the P-delta 

effect is considered on the seismic load combinations.  

 

 

3. Structural loading 
 

In this study, ASCE/SEI 7-10 (2010) manual is used for 

considering the dead, live, snow, wind and seismic loads 

and their influence on the gable frame. The applied loads on 

the gable rigid frame in low rise buildings generally consist 

of the vertical and horizontal loads, which are described in 

the follow subsections. 

 

3.1 The vertical loads 
 

In accordance with the ASCE/SEI 7-10 (2010), the most 

effective vertical loads, which should be considered in the 

analysis process consist of: 

 The dead loads including the self-weight of the 

structure and the weight of roof panel.  

 The collateral loads including the false ceiling load and 

the weight of permanent appurtenance (i.e., R.T.U). 

  The live loads 

  The snow load 

  The rain surcharge load 

 

The dead and collateral loads (D) 

For considering the dead and collateral loads, it is 

assumed that the type of cladding is a metal sandwich panel 

with a mass of 14.65 kg/m2. This load includes the purlins 

on the roof and there is no false ceiling. The collateral load 

was assumed zero. The dead load information is shown in 

Table 1. 

The live loads (L) 

According to the ASCE/SEI 7-10 (2010) manual, the 

live load of a pitched roof is 97.648 kg/m2 (20 Ib/ft2), and 

there is no concentrated load to check the rigid frames with 

it. It is also assumed that the live load is not reducible. The 

live load information is shown in Table 2.  
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The snow load (SL) 

The snow loads consist of the balanced and unbalanced 

snow loads.  

 The balanced snow load 

The flat roof snow load, Pf, is evaluated by using the 

following equation 

gstef PIC0.7C =P  (11) 

where the exposure factor, Ce, thermal factor, Ct, and 

importance factor, Is, are taken as 1.0 based on sections 

7.3.1 through 7.3.3 of ASCE/SEI 7-10 manual. The ground 

snow load, Pg, determined per site-specific analysis is equal 

to 97.65kg/m2 (20.0 lb/ft2); thus: Pf = 14psf. The snow load 

acting on a sloping surface are assumed to act on the 

horizontal projection of that surface. The sloped roof 

(balanced) snow load, ps, is calculated by multiplying the 

flat roof snow load, 
fP , by the roof slope factor, Cs as 

fSs PC =p  (12) 

The roof slope factor, Cs, is taken as 1.0 based on 

sections 7.4 of ASCE/SEI7-10; thus sp =14.0 psf (68.353 

kg/m2). 

 The unbalanced snow loads  

As shown in Fig. 1, for hip and gable roofs with a slope 

exceeding 7 on 12 (30.2°) or with a slope less than 0.5 on 

12 (2.38°) unbalanced snow loads are not required to be 

applied. Roofs with an eave to ridge distance, W, of less 

than 6.1 m (20ft) and having simply supported prismatic 

members, the spanning from ridge to eave should be 

designed to resist an unbalanced uniform snow load on the 

leeward side equal to I.Pg. For these roofs the windward 

side should be unloaded. For all other gable roofs, the 

unbalanced load should consist of 0.3ps on the windward 

side, and ps on the leeward side plus a rectangular surcharge 

with magnitude 
S

γhd
   and horizontal extent from the 

ridge Shd3

8
, where hd is the drift height (Eq. (13)) which 

𝑙𝑢 is equal to the eave to ridge distance for the windward 

portion of the roof, W. 

5.1)10(43.0 43  gud plh  (13) 

Thus: ps=68.353 kg/m2, lu=8 m, Pg=97.65 kg/m2, S=3.63, 

hd=0.45 m. 

 

 

Table 1 Summary of the dead loading 

Dead load (kg/m2) 14.64 

Loading per (m) 6 

Uniform dead load (kg/m) 87.84 

 

Table 2 Summary of the live loading 

Live load (kg/m2) 97.648 

Load per (m) 6 

Uniform live load (kg/m) 585.89 

 

Fig. 1 Balanced and unbalanced snow loads for the gable 

roofs 

 

3.2 The lateral loads 
 

In accordance with ASCE/SEI 7-10, the most effective 

lateral loads, which should be considered in the analysis 

process, consist of:  

 The seismic load (E)  

The seismic base shear, V, in a given direction is 

determined according to the following equation 

WCV S  (14) 

where CS and W are the seismic response coefficient and the 

effective seismic weight, respectively. The seismic response 

coefficient, CS, is calculated as 

e

DS
S

RI

S
C   (15) 

where SDS is the design spectral response acceleration 

parameter in the short period range, R is the response 

modification factor and Ie is the importance factor. Because 

of the location of this study is assumed to be Clay county 

Kansas in USA, the mapped Risk-Targeted Maximum 

Considered Earthquake (MCER) spectral response 

acceleration parameter for short periods (SS) and the 

mapped MCER spectral response acceleration parameter at 

a period of 1s (S1) are as 17% and 5%, respectively. 

 

 

Table 3 The summarized calculation of    

    0.2768 

R 4.5 

   1 

Maximum    0.041 

Minimum    0.01 

e

DS

RI

S
 0.079 

Then    = 0.041 
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Then, the SDS values are evaluated as 0.2768 and the 

summarized calculation of the CS parameter is shown in 

Table 3. 

 The wind loads (W) 

For evaluating the wind load for a low rise building, the 

wind pressure is calculated with the following equation 

 m/sin  V;)/(613.0 22 mNVKKKq dZtZZ   (16) 

where Kd is the wind directionality factor, KZ is the velocity 

pressure exposure coefficient, KZt  is the topographic 

factor, and V is the basic wind speed. These parameters 

values used in this study are Kd=0.85, KZ=0.93, KZt=1.0 and 

V=90 mph. In this case study qZ=16.365 psf. The velocity 

pressure at height h=26.57 ft,   , is also taken as 16.876 psf.  

The design wind pressures for the frame system of an 

enclosed and partially enclosed rigid buildings at all heights 

is determined by the following equation 

)( piip GCqqGCp   (17) 

where:  

 

q =qZ for the windward walls evaluated at height z above 

the ground (q=79.90 kg/m2 ).  

q = qh for the leeward walls, side walls, and roofs, 

evaluated at height h (q=82.398 kg/m2). 

qi= qh for the windward walls, side walls, leeward walls, 

and roofs of enclosed buildings and for negative internal 

pressure evaluation in partially enclosed buildings 

(qi=82.398 kg/m2). 

qi = qZ for the positive internal pressure evaluation in 

partially enclosed buildings where height z is defined as the 

level of the highest opening in the building that could affect 

the positive internal pressure. For positive internal pressure 

evaluation, qi may conservatively be evaluated at height h 

(qi=qh=82.398 kg/m2). 

G = gust-effect factor (=0.85). 

p = external pressure coefficient. 

(GCpi) = internal pressure coefficient=  0.18. 

 

 

 

Table 4 The coefficient of  𝑝  in two orthogonal directions 

of wind 

The directions of wind    

Transvers wind direction

 (Case 1) 

Windward wall 0.8 

Windward roof -0.7 

Leeward roof -0.5 

Leeward wall -0. 5 

Transvers wind direction

 (Case 2) 

Windward wall 0.8 

Windward roof -0.18 

Leeward roof -0.5 

Leeward wall -0.5 

 

 

Table 5 The wind load (kg/m) on the gable frame of this 

study 

Surface

 No. 

     +0.18      -0.18 

IPP*- Case1 IPP*-Case2 INP*- Case1 INP*- Case2 

1 237.02 237.02 415.00 415.00 

2 -383.15 -164.63 -205.17 13.35 

3 -299.11 -299.11 -121.13 -121.13 

4 -288.60 -288.60 -110.62 -110.62 

* IPP= Internal positive pressure, INP= Internal negative pressure 

 

 

Pressure is applied simultaneously on the windward and 

leeward walls and on the roof surfaces. The coefficient of 

CP is defined at two orthogonal directions of wind as shown 

in Table 4 based on the ASCE 7-10 specifications. The 

values of wind loading on the gable frame are shown in 

Table 5.   

 

3.3 Loading combinations 
 

In this study, basic combinations for strength design are 

considered based on the ASCE 7-10 manual. The term of 

0.2   D in combinations 5 and 7 is added because of the 

consideration of vertical seismic load.  

1. 1.4D 

2. 1.2D+1.6L+0.5(S or R)  

3. 1.2D+1.6(S or R) + (L or 0.8W)    

4. 1.2D + 1.0W + L + 0.5(S or R) 

5. (1.2 +0.2 SDS)D + E + L + 0.2S 

6. 0.9D+1.0W 

7. (0.9 – 0.2 SDS)D +E 

 

 

4. Enhanced colliding bodies optimization algorithm 
 

The optimization of gable rigid frame with tapered web 

members is a complex problem because of a large search 

space, multiple local optima and corresponding constraints. 

In this paper a simple and efficient meta-heuristic is applied, 

the so-called enhanced colliding bodies’ optimization 

(ECBO), to solve this problem. For comparative study and 

showing the complexity of the problem, the standard 

colliding bodies optimization (CBO) is also utilized. In the 

following, the ECBO algorithm is briefly introduced. 

The colliding bodies optimization is based on the 

momentum and energy conservation law for 1-dimensional 

collision. This algorithm contains a number of Colliding 

Bodies (CB) with each one being treated as an object with 

specified mass and velocity which collided with others. 

After collision, each CB moves to a new position with new 

velocity with respect to old velocities, masses and 

coefficient of restitution (Kaveh and Mahdavi 2015).  

In order to improve the CBO to obtain faster and more 

reliable solutions, Enhanced Colliding Bodies Optimization 

(ECBO) was developed which uses memory to save a 

number of historically best CBs and also utilizes a 

mechanism to escape from local optima. The steps of this 

technique are as follows:  
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Level 1: Initialization 

Step 1: The initial positions of all the populations are 

determined randomly in the search space. 

Level 2: Search 

Step 1: The value of mass for kth CB, mk, is evaluated as 

nk

ifit

kfit
m

n

i

k 2,...,2,1,

)(

1

)(

1

1






 
(18) 

where fit(i) represents the objective function value of the 

ith CB, and 2n is the population size. 

Step 2: Colliding memory (CM) is utilized to save a 

number of historically best population vectors and their 

related mass and objective function values. Solution vectors 

which are saved in CM are added to the population and the 

same number of current worst populations are removed. 

Finally, the populations are sorted according to their masses 

in a decreasing order.  

Step 3: The CBs are divided into two equal groups: (i) 

stationary group, (ii) moving group. The first group is 

stationary and consists of good agents. This set of 

populations is stationary and their velocity before collision 

is zero. The second group consists of moving agents which 

move toward the first group. 

Step 4: The velocities of stationary and moving bodies 

before collision are evaluated as 










 nnixx

ni
v

nii

i
2,...,1,

,...,1,0
 (19) 

where, 𝑣𝑖  and 𝑥𝑖  are the velocity vector and position 

vector of the ith  CB, respectively. 

Step 5: The velocities of stationary and moving bodies after 

the collision are evaluated using the following equation 


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 (20) 

where, 𝑣𝑖 and 𝑣𝑖
′ are the velocities of the ith CB before and 

after the collision, respectively. ε is the coefficient of 

restitution (COR) and is defined as the ratio of the 

separation velocity of the two agents after collision to 

approach velocity of two agents before collision. In this 

algorithm, this index is defined to control of the exploration 

and exploitation rates. For this purpose, the COR is 

decreased linearly from unit value to zero. Here, ε  is 

defined as 

max

1
iter

iter
  (21) 

where iter is the actual iteration number, and itermax is the 

maximum number of iterations. Here, COR is equal to unity 

and zero representing the global and local search, 

respectively. In this way, a good balance between the global 

and local search is achieved by increasing the iteration. 

Step 6: The new position of each CB is calculated by 












 nnivrandx

nivrandx
x

ini

iinew

i
2,...,1,

,...,1,

'

'



  (22) 

where, 𝑥𝑖
𝑛𝑒𝑤 and 𝑣𝑖

′ are the new position and the velocity 

after the collision of the ith CB, respectively. 

Step 7: A parameter Pro within (0, 1) is introduced and it is 

specified whether a component of each CB must be 

changed or not. For each colliding body, Pro is compared 

with 𝑟𝑛𝑖 (i=1,2,…,n) which is a random number uniformly 

distributed within (0, 1). If 𝑟𝑛<Pro, one dimension of the 

ith CB is selected randomly and its value is regenerated as 

follows 

).( min,max,min, jjjij xxrandomxx   (23) 

where 𝑥𝑖𝑗 is the jth variable of the ith CB, and 𝑥𝑖.𝑚𝑖𝑛and 

𝑥𝑖.𝑚𝑎𝑥 are the lower and upper bounds of the jth variable, 

respectively. In order to protect the structures of CBs, only 

one dimension is changed. 

Level 3: Terminal condition check. 

Step 1: After a predefined maximum evaluation number, 

the optimization process is terminated. 

 

 

5. Design examples 
 

In this study, one design example is considered for 

optimization by the PSO, CBO and ECBO algorithms. 

There are three alternatives for design that considers the 

different variables. The differences are member division, 

assignment and alignment. As appointed in Fig. 2 to Fig. 4, 

the numbers of variables are different in these alternatives 

and help to achieve the optimal design for the frames. The 

columns and rafters are web-tapered I-section that may have 

different inside and outside flange thickness with the same 

flange width.  

 

 

 

Fig. 2 The first alternative considered as variables 
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Fig. 3 The second alternative considered as variables 

 

 

Fig. 4 The third alternative considered as variables 

 

 

Fig. 5 The geometrical shape of the example building 

 

 

Fig. 6 An idealized model of a gable frame based on the 

neutral axis of members 

All three frames had the same plan layout and 

geometrical date as shown in Fig. 5 and Table 6, with the 

bay width of 16 m, the eave height of 7 m and a ridge 

height of 9.2 m. The center-to-center spacing of the gable 

frames had 6m. The site location had county clay from 

Kansas in United States of America. As mentioned before, 

17, 17 and 11 design variables are considered for the first, 

second and third alternatives, respectively. The number of 

Colliding Bodies (CB) or agents for these examples is 

considered 30. The maximum number of iterations is 100. 

Hence, the number of fitness function evaluation is 

30×100=3000. For the sake of simplicity, the penalty 

approach is used for constraint handling. The optimization 

algorithms and the analysis and design of structures are 

coded in Matlab and SAP200 software, respectively. In the 

analysis process, a pin-based structural frame is 

constructed, and the nodal geometry of the members are 

given based on the neutral axis of the members. An 

idealized model of a gable frame is shown in Fig. 6. 

For designing the gable frame, two major classes of 

design variables must be dealt with. The first class is 

geometric layout variables such as the length of spans or the 

slope of rafters, the second class is cross section design 

variables such as dimensions of the starting and ending 

sections of a segment. In the sizing optimization literature, 

design variables can be either continuous or discrete. In real 

applications, the designer is restricted to selecting the 

design variables (cross section sizes), from a pre-assigned 

list of available values (Kazemizadeh Azad and Hasançebi 

2015b). 

In this study, only the second class of design variables is 

considered as discrete sizing optimization. These design 

variables are the dimensions, i.e., the thickness and width of 

web and flange, of cross sections at the intersections of 

segments of gable frame. In order to make the optimal gable 

frame model practical, the thickness of webs and flanges 

should be selected from the discrete set T= {0.5, 0.6, 0.8, 1, 

1.2, 1.5, 2, 2.5, 3} (cm), the width of webs should be 

selected from the discrete set WW= {15, 20, 25, …, 115, 

120} (cm), and the width of flanges should be selected from 

the discrete set FW= {15, 20, 25, …, 40, 45} (cm). The web 

thicknesses should be selected equal or less than the flange 

thicknesses in all member sections for practical application.  

Tables 7, 8 and 9 compare the results obtained using the 

PSO, CBO and ECBO algorithms for all of the examples. 

As discussed before and shown in these tables, the 

constraints of outcome of all algorithms are satisfied, and 

now the results can be compared. The outcomes of the 

ECBO algorithm are also better than those of the PSO and 

CBO with the same number of objective function 

evaluations. In addition comparing the results, it can be 

seen that the optimum weight of the ECBO in the first 

through third alternatives are respectively 10.81%, 9.76% 

and 24.64% lighter than those of the CBO. Also, the 

optimum weight obtained using the ECBO in the second 

and third alternatives are respectively 1.41% and 8.31% 

lighter than those of the first alternative, and these values 

are 0.45% and 21.83% for the CBO algorithm. 
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Table 6 The geometrical information of building shape 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Eave height 7.0 m 

Slope 27.5% 

Width 16.0 m 

Length 18.0 m 

Bay spanning 3@6.0 m 

Load width of the main frame 6.0 m 

Ridge offset 8.0 m 

Ridge height 9.2 m 

Mean roof height 8.1 m 

α=Wall offset in surface 1 0.2 m 

β= Roof offset in surfaces 2 and 3 0.18 m 

ɣ= Wall offset in surface 4 0.2 m 

Roof slope angle at surface 2 15.37 degree 

Roof slope angle at surface 3 15.37 degree 

Table 7 Optimal design of three alternative examples using the ECBO algorithm 

Case 

No. 

Surface 

No. 

Element

 type 

Element

 No. 

Start web

 height 

(m) 

Flange

 width

 (m) 

Inside flange

 thickness 

(m) 

Web 

thickness 

(m) 

Outside 

flange 

thickness 

(m) 

End web 

height (m) 

Weight  

(kg) 

1 

 

1 Column 
1 0.15 0.2 0.008 0.005 0.006 0.8 

1457.2 

2 0.8 0.2 0.008 0.005 0.006 1.2 

2 Beam 

3 1.2 0.15 0.01 0.006 0.01 0.85 

4 0.85 0.15 0.01 0.005 0.01 0.35 

5 0.35 0.15 0.01 0.005 0.01 1.05 

2 

1 Column 1 0.35 0.25 0.008 0.005 0.008 1.1 

1477.8 
2 Beam 

2 1.1 0.15 0.008 0.005 0.008 1.2 

3 1.2 0.15 0.008 0.005 0.008 0.45 

4 0.45 0.15 0.008 0.005 0.008 0.3 

3 
1 Column 1 0.65 0.2 0.008 0.005 0.008 0.95 

1578.4 
2 Beam 2 0.95 0.25 0.008 0.005 0.008 0.3 

Table 8 Optimal design of three alternative examples using the CBO algorithm 

Case 

No. 

Surface 

No. 

Element 

type 

Element 

No. 

Start web 

height (m) 

Flange 

width (m) 

Inside 

flange 

thickness 

(m) 

Web 

thickness 

(m) 

Outside 

flange 

thickness 

(m) 

End web 

height (m) 

Weight 

(kg) 

1 

 

1 Column 
1 0.15 0.15 0.006 0.006 0.01 1.2 

1614.8 

2 1.2 0.15 0.01 0.005 0.01 1.1 

2 Beam 

3 1.1 0.15 0.01 0.006 0.01 1.2 

4 1.2 0.15 0.01 0.005 0.01 0.3 

5 0.3 0.15 0.01 0.006 0.01 0.95 

2 

1 Column 1 0.35 0.2 0.015 0.005 0.03 1.2 

1622.14 
2 Beam 

2 1.2 0.45 0.025 0.005 0.03 0.75 

3 0.75 0.45 0.01 0.01 0.005 0.45 

4 0.45 0.45 0.01 0.005 0.005 1.2 

3 
1 Column 1 0.15 0.2 0.015 0.008 0.01 0.9 

1967.3 
2 Beam 2 0.9 0.25 0.01 0.006 0.01 0.35 
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 (a)  

 
(b) 

 
(c) 

Fig. 7 The convergence rate of the PSO, CBO and ECBO 

for: (a) first, (b) second and (c) third alternative 

 

 

 

 

 

 

Fig. 8 Comparison of optimal weights obtained using PSO, 

CBO and ECBO for three alternatives 

 

 

Fig. 7 shows the convergence rates of the best penalized 

weights obtained using all algorithms in the optimization 

process for all the alternatives. It can be seen from this 

figure that though the PSO and CBO algorithms are 

considerably faster in the early optimization iterations, the 

ECBO algorithm converged to a significantly better design 

in the later optimization iterations without being trapped in 

local optima. Fig. 8 compares the optimal weights obtained 

using all algorithms for all alternatives. As mentioned 

before, the design variables and the number of member 

divisions are decreased in the first through third 

alternatives. It can also be observed that the optimal weight 

is decreased by increasing the number of member divisions.  

 

 

6. Conclusions 
 

An efficient optimization method is proposed for 

optimal design of the symmetric gable frames for tapered-

web I-section members, based on Colliding Bodies 

Optimization (CBO) and Enhanced Colliding Bodies 

Optimization (ECBO) algorithms. The CBO mimics the 

laws of collision between bodies. The very simple 

implementation and parameter independency are definite 

strength points of CBO. In the ECBO, some strategies have 

been achieved to promote the exploitation ability of the 

CBO.  

In order to find the optimal cross section sizes of the 

Table 9 Optimal design of three alternative examples using the PSO algorithm 

Case 

No. 

Surface 

No. 

Element 

type 

Element

 No. 

Start web  

height (m) 

Flange 

width 

(m) 

Inside 

flange 

thickness 

(m) 

Web 

thickness 

(m) 

Outside 

flange 

thickness

 (m) 

End web

 height 

(m) 

Weight 

(kg) 

1 

 

1 Column 
1 1 0.15 0.01 0.005 0.012 0.75 

1605.21 

2 0.75 0.15 0.01 0.005 0.012 1.15 

2 Beam 

3 1.15 0.15 0.006 0.006 0.01 0.75 

4 0.75 0.15 0.006 0.008 0.01 0.8 

5 0.8 0.15 0.006 0.005 0.01 0.2 

2 

1 Column 1 0.8 0.2 0.015 0.006 0.02 0.85 

2140.73 
2 Beam 

2 0.85 0.90 0.025 0.008 0.02 0.40 

3 0.40 0.90 0.015 0.012 0.015 0.45 

4 0.45 0.90 0.015 0.012 0.006 0.4 

3 
1 Column 1 0.50 0.2 0.025 0.005 0.015 0.85 

2019.17 
2 Beam 2 0.85 0.45 0.02 0.005 0.02 0.80 
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gable frames, the weight of gable frame and cross section 

sizes are respectively defined as the objective function and 

variables in the optimization process. Then, the cross 

section sizes are selected based on optimization algorithms 

from practical available discrete variables.  

The validity and efficiency of the proposed method are 

shown through three alternative examples with different 

member divisions of the members for the test problem. The 

outcomes are that all the algorithms could decrease the 

weight of the real gable frames without appearing to violate 

any constraint. Moreover, the ECBO algorithm clearly 

outperforms the PSO and CBO algorithms with the same 

computational time, which shows the importance of 

selecting the effective optimization algorithm for this 

problem. Also, the optimal weight is decreased by 

increasing the number of member division and the decision 

variables in the gable frame. Future researches can 

investigate problems such as, optimization other types of 

the gable frames using recently developed metaheuristic 

optimization algorithms. 
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