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1. Introduction  
 

Due to the recent large-scale development and 

utilization of polymers and composite materials, the linear 

viscoelasticity remains an important area of research. 

Linear viscoelastic materials are rheological materials 

that exhibit time temperature rate-of- loading dependence. 

When their response is not only a function of the current 

input, but also of the current and past input history, the 

characterization of the viscoelastic response can be 

expressed using the convolution (hereditary) integral. 

Tschoegl (1997) has presented a general overview of time-

dependent material properties. Gross (1953) investigated 

the mechanical-model representation of linear viscoelastic 

behavior results. One can refer to Atkinson and Craster 

(1995) for a review of fracture mechanics and 

generalizations to the viscoelastic materials, and Rajagopal 

and Saccomandi (2007) for non-linear theory. In most of 

these investigations the effect of the thermal state in a 

viscoelastic material is not considered. 

The mechanical-model representation of linear 

viscoelastic behavior results was investigated by Staverman 

and Schwarzl (1956), Alfrey and Gurnee (1956), and Ferry 

(1970). A reciprocity theorem for the theory of 

viscoelasticity was derived by Fung (1980), and Pobedria 

(1984) derived the reciprocity theorem for the coupled 

thermo-viscoelasticity. 

 Notable works in this field were those by Gurtin and 

Sternberg (1962), Sternberg (1963), and Ilioushin (1968), 

which offered an approximation method for linear thermal 

viscoelastic problems. One can refer to the book of  
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Ilioushin and Pobedria (1970) for a formulation of the 

mathematical theory of thermal viscoelasticity and the 

solutions of some boundary value problems as well as to the 

work of Pobedria (1984) for the coupled problems in 

continuum mechanics. Results of important experiments 

determining the mechanical properties of viscoelastic 

materials were involved in the book by Koltunov (1976). 

The modification of the heat-conduction equation from 

diffusive to a wave type may be affected either by a 

microscopic consideration of the phenomenon of heat 

transport or in a phenomenological way by modifying the 

classical Fourier law of heat conduction. The first is due to 

Cattaneo (1958), who obtained a wave-type heat equation 

by postulating a new law of heat conduction to replace the 

classical Fourier law. 

The theory of generalized thermoelasticity has drawn 

attention of researchers due to its applications in various 

diverse fields such as earthquake engineering, nuclear 

reactor’s design, high energy particle accelerators, etc. 

Several generalizations to the coupled theory which 

proposed by Biot (1956) are introduced. Lord and 

Shulmann (1967) introduced the theory of generalized 

thermoelasticity with one relaxation time by postulating a 

new law of heat conduction to replace the classical Fourier 

law. One can refer to Ignaczak and Ostoja-Starzewski 

(2009) and Chandrasekharaiah (1998) for a review. 

Hetnarski and Ignaczak (1999) described the modern 

approaches to the analytical treatment of dynamical 

thermoelasticity. 

Within the theoretical contributions to thrmo-

viscoelasticity theory are the proofs of uniqueness theorems 

under different conditions by Ezzat and El Karamany (2002 

a,b, 2003) and the boundary element formulation was done 

by El-Karamany and Ezzat (2002, 2004). The fundamental 

solutions for the cylindrical region were obtained by Ezzat 
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(2004).  

Ezzat et al. (2001) solved some problems in thermo-

viscoelasticity with thermal relaxation by using state space 

approach (2008). Ezzat (2006) investigated the relaxation 

effects on the volume properties of an electrically 

conducting viscoelastic material. Kumar and Kumar (2013) 

investigated the wave propagation at the boundary surface 

of elastic half-space and initially stressed 

viscothermoelastic diffusion with voids half-space. Kumar 

et al. (2015) constructed the fundamental solution to a 

system of differential equations in micropolar 

viscothermoelastic solids with voids in case of steady 

oscillations in terms of elementary functions.   

Thermoelectric is an old field. In 1823, Thomas Seebeck 

discovered that a voltage drop appears across a sample that 

has a temperature gradient. This phenomenon provided the 

basis for thermocouples used for measuring temperature 

and for thermoelectric power generators (See e.g., Mahan et 

al. 1997). 

A direct conversion between electricity and heat by 

using thermoelectric materials has attracted much attention 

because of their potential applications in Peltier coolers and 

thermoelectric power generators (See e.g., Rowe 1995). The 

interaction between the thermal and magnetohydrodynamic 

fields is a mutual one, owing to alterations in the thermal 

convection and to the Peltier and Thomson effects (

S T  ) as in Morelli (1997), where  is a Peltier 

coefficient, S is thermoelectric power and T is the absolute 

temperature, (although these are usually small). 

Thermoelectric devices have many attractive features 

compared with the conventional fluid-based refrigerators 

and power generation technologies, such as long life, no 

moving part, no noise, easy maintenance and high 

reliability.  However, their use has been limited by the 

relatively low performance of present thermoelectric 

materials as shown in the work of Hicks and Dresselhaus 

(1993). The performance of thermoelectric devices depends 

heavily on the material intrinsic property; Z, known as the 

figure of merit and defined by Hiroshige et al. (2007), 
2

oSZT T
k


 where

o , k and S are are respectively 

the electrical conductivity, thermal conductivity and 

thermoelectric power or Seebeck coefficient. Increasing of 

such parameter Z has a positive effect on the efficiency of 

thermoelectric device. In order to achieve a high figure of 

merit, one requires a high thermopower S, a high electrical 

conductivity
o , and a low thermal conductivity  . 

However, this process is not easy as the written sentence.  

The direct proportion between o  and k , and the 

inverse proportion between S and 
o  yields a difficulty in 

improving the thermoelectric efficiency. 

Liquid metals are considered to be the most promising 

coolants for high temperature applications like nuclear 

fusion reactors because of the inherent high thermal 

diffusivity, thermal conductivity and hence excellent heat 

transfer characteristics. Lithium is the lightest of all metals 

and has the highest specific heat per unit mass. Lithium is 

characterized by large thermal conductivity and thermal 

diffusivity, low viscosity, low vapor pressure. Liquid metal 

in a closed container made of dissimilar metal under a 

magnetic field is, in general, set into motion by 

thermoelectric effects if the interfacial temperature is 

nonuniform, a situation likely to occur in fusion reactor 

blankets owing to the high thermoelectric power of lithium. 

Lithium is the most promising coolant for thermonuclear 

power installations. Shercliff () treats Hartmann flow and 

points out the relevance of thermoelectric 

magnetohydrodynamic (MHD) in liquid metal use, such as 

lithium, in nuclear reactors. 

Mathematical modeling is the process of constructing 

mathematical objects whose behaviors or properties 

correspond in some way to a particular real-world system. 

The term real-world system could refer to a physical 

system, a financial system, a social system, an ecological 

system, or essentially any other system whose behaviors 

can be observed. In this description, a mathematical object 

could be a system of equations, a stochastic process, a 

geometric or algebraic structure, an algorithm or any other 

mathematical apparatus like a fractional derivative, integral 

or fractional system of equations. The fractional calculus 

and the fractional differential equations are served as 

mathematical objects describing many real-world systems. 

In the last decade, considerable interest in fractional 

calculus has been stimulated by the applications in different 

areas of physics and engineering. Recently, some efforts 

have been done to modify the classical Fourier law of heat 

conduction by using the fractional calculus in Refs. 

Povstenko (2005), Sherief et al. (2010) and El-Karamany 

and Ezzat (2011a, b). One can refer to Podlubny (1999) for 

a survey of applications of fractional calculus. 

Ezzat (2010, 2011a, b, c, 2012) introduced the fractional 

order theory of continuum mechanics, in which the heat 

conduction equation was assumed to be the form 

!
k T

t

 








   



q
q  (1) 

Ezzat and El-Karamany (2011a,b,c) studied some 

problems for a perfect conducting half-space in the context 

of fractional magneto- thermoelasticity. Ezzat and El-Bary 

(2016 a,b) introduced a unified mathematical model of the 

equations of generalized magneto-thermoelasticty and 

magneto-thermo-viscoelasticty based on fractional 

derivative heat transfer for isotropic perfect conducting 

media.  

Diethelm (2010) has developed Caputo (1967) 

derivative to be 

( )( ) ( ) ( ) d

t

m

a

a

D f t K t f     (2) 

with 

1( )
( )

( )

mt
K t

m




 
 

 
 (3) 
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where ( )K t   is the kernel function and 
( )mf  denotes 

the common m-order derivative, which has specific physical 

meaning. 

Wang and Li (2011) introduced a memory-dependent 

derivative, the first order of function f which is simply 

defined in an integral form of a common derivative with a 

kernel function on a slipping interval, in the form 

1( )
( )

( )

mt
K t

m




 
 

 
 (4) 

where  is the time delay and ( )K t  is the kernel 

function in which they can be chosen freely.  Yu et al. 

(2014) introduced memory-dependent derivative into the 

Lord and Shulman (1967) generalized thermoelasticity 

theory. Recently, Ezzat et al. (2014) constructed a new 

generalized thermo-viscoelasticity theory with memory–

dependent derivatives, to denote memory-dependence, as 

D k T   q q  (5) 

Eq. (5) has more clear physical meaning. 

Motivated by the above works, the present manuscript is 

an attempt to derive a new model of the linear electro-

thermo-viscoelasticity by including the memory-dependent 

derivative and thermoelectric properties. The new model 

has been applied to several concrete one-dimensional 

problems for a conducting thermoelectric viscoelastic metal 

permeated by a primary uniform magnetic field. The direct 

approach developed in Shereif and Abd El-Latief (2015) is 

adopted for the solution of the problem for any set of 

boundary conditions. Laplace transforms techniques are 

used to get the solution in a closed form. The inversion of 

the Laplace transforms is carried out using a numerical 

approach proposed by Honig and Hirdes (1984).  

 

 

2. Derivation heat equation with memory-dependent 
derivative in thermoelectric materials  

 

The conventional electro-thermoelasticity is based on 

the principles of the classical theory of heat conductivity, 

specifically on the classical Fourier’s law, in which relates 

the heat flux vector q and the conduction current density 

vector J to the temperature gradient (Kaliski and Nowacki  

1963) 

k T    q J  (6) 

 

= +o S T
t


 

   
 

u
J E B  (7) 

The energy equation in terms of the heat conduction 

vector q in the context of thermoelasticity theory is given by 

Biot (1956) 

 ( , ) ( , ) ( , ) ( , )E oC T t T e t t Q t
t
 


  


x x q x + x  (8) 

Using relation (5), we get the generalized heat 

conduction law for the considered new generalized theory 

with time-delay 

( , ) ( , ) + ( , )t t D t  q x q x q x  (9) 

From a mathematical viewpoint, Fourier law (6) in the 

theory of generalized heat conduction with time-delay, is 

given by 

( , ) ( , ) ( , ) ( , )t D t k T t t    q x q x x J x  (10) 

Taking the memory-time derivative of Eq. (8) 

(suppressing x  for convenience), we get  

 E o wD C T T e D D Q
t

  


    


q  (11) 

Multiplying Eq. (11) by   and adding to Eq. (8), we 

obtain 

     1 1E o

e
D C T T D D Q

t t
      

  
        

  
q q

 
(12) 

Substituting from Eq. (10), we get 

   21 1E o

e
D C T T k T D Q

t t
    

  
        

  
J

 
(13) 

Eq. (13) is the new generalized energy equation with 

memory-dependent derivative, taking into account the time- 

delay for thermoelectric materials.  

The dynamic coupled theory of heat conduction law 

follows as the limit case when 0 , so that

0

( , ) ( , ) ( , )
( , ) lim

f t f t f t
D f t

t








  
 



x x x
x . 

This model is more intuitionistic for understanding the 

physical meaning and the corresponding memory dependent 

differential equation is more expressive. 

 

 

3. The mathematical model 
 

We shall consider a conducting thermoelastic solid of 

finite conductivity σo occupying the region x ≥ 0, where x-

axis is taken perpendicular to the bounding plane of half-

space pointing inwards. A constant magnetic field with 

components (0, Ho, 0) is permeating the medium in the 

absence of an external electric field.  

The governing equations for generalized magneto-

thermo-visvoelasticity when the thermoelectric properties 

of the material are taken into account consist of (Ezzat 

2011b):  

1- The figure-of-merit 
oZT at some reference temperature 

oT  

2

o o
o o

k
ZT T

k


  (14) 

where ok the Seebeck coefficient at To. 
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2- The first Thomson relation at 
oT  

ooo Tk  (15) 

where o is the Peltier coefficient at To . 

3-The equation of motion the absence of body forces 

, , ,ji j o ijk k j i ttJ H u      (16) 

where B magnetic induction vector given by 

i iB H  (17) 

and modified Ohm's law is defined 

 0 , ,i i o ijk k t j o iJ E u H k T      (18) 

4-The constitutive Ea. (54) 

 
0

( , τ)
( τ) τ

τ

t
ij

ij ij

e x
S R t d R e


  

  (19) 

where 

3

kk
ij ij ijS


    (20) 

and R(t) is relaxation function given by 









 

 dtteAtR

t

t 1*

0

**12)( 


 (21) 

where *, * and A* are non-dimensional empirical 

constants and *)( is the Gamma function, 

*

*

*
0 1, * 0, 0 * , ( ) 0, ( ) 0

( )

d
A R t R t

d t


 


      


. 

5- The kinematic relations 

, ,

1
( ), ,

2 3
ij i j j i ij ij ij kk

e
u u e e         (22) 

6- The stress-strain temperature relation 

 3o T oK e T T       (23) 

where 

,
3

kk
ij ji


     

Substituting from (23) into (19) we obtain 

 
3

ij ij ij o ij o ij

e
R K e T T     
 

     
 

 (24) 

7- The heat equation with memory-dependent derivative in 

the absence of heat sources 

, ,

2 2

2 2

( , ) ( , )

( , ) ( , )
                 ( ) ,

ii o i i E o

t

E o

t

T x t e x t
k T J C T

t t

T x e x
K t C T d



  

 
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 


 
  

 

  
   

  


  

(25) 

In the above equations a comma denotes material 

derivatives and the summation convention are used. Now f

or the one-dimensional problems, all the considered fun

ctions will depend only on the space variables x and t 

and the displacement vector has components (u(x, t), 0, 

0). Since no external electric field is applied, and the 

effect of polarization of the ionized medium can be ne

glected, it follows that the total electric field E vanishe

s identically inside the medium.  

The components of the electromagnetic induction vector 

are given by 

0,     (constant)x z yB B B H B      , while 

the components of the Lorentz force appearing in Eq. (16) 

are given by 

2 ,   0.x y z

u
F B F F

t



   


 

Let us introduce the following non-dimensional 

variables 

2

2 2

2 2

3 2

0

( - ) 1
* ,    * ,    * ,    *   ,  , ,

2
, ,  ,  , .

3

o ij ij

o o o

o
i i o

o o E o

T T
x c x u c u t c t

c K c

B c
q q R R M T

k c K C c


    

 



 
       

 

  


     

 

 

     
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Using the above values, Eqs. (16), (24) and (25) reduce to 

(dropping the asterisks for convenience) 

 
2 2

2 2
1

u u u
R M

x t t x

   
   

   
 (26) 

 

   
2 2

2

( , ) ( , )
1 1o

x t u x t
ZT D

x t x t


 
 

   
    

    

 (27) 

 

 1
u

R
x

 


  


 (28) 

 









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 dtteA
K

tR

t

t

o

1*

0

**1
3

4
)( 

 (29) 

From now on, the kernel function form ( )K t  can 

be chosen freely as 

2 2

2

2

1 0

( ) 1
1 0,

2 ( ) 2
( ) 1 ( )

1 ( ) 0 / 2

(1 ) 1,

if a b

t
if a b

b a t
K t t

t if a b

t
if a b



 
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



 



   

 
      

   
 
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(30) 

where a and bare constants. 
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4. The Analytical solutions in the Laplace-transform 
domain 

 

Performing the Laplace transform defined by the 

relation 

st

0

g(s) e g(t) dt



 
 

of both sides Eqs. (26)-(29), with the homogeneous initial 

conditions 

2 ( ) ,D s s M u D        (31) 
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x
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2 2 2
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G s e a b e
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 

  
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and 
2
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t x t
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Eliminating u  between Eqs. (25) and (26), we obtain 

4 2 21 1
( ) (1 ) ( ) 0

1 1o o

G G
D s s M s D s s M

ZT ZT
   

       
           

       

 

(35) 

In a similar manner, we can show that u  satisfies the 

equation 

4 2 21 1
( ) (1 ) ( ) 0

1 1o o

G G
D s s M s D s s M u

ZT ZT
  

       
           

       

 
(36) 

The solutions of Eqs. (35) and (36) which are bounded 

for x ≥ 0 have the form 

1 2

1 2( , ) k x k xx s C e C e     (37) 

 

1 2

3 4( , ) k x k xu x s C e C e    (38) 

where 
1k and

2k are the roots with positive real parts of the 

characteristic equation 

4 2 21 1
( ) (1 ) ( ) 0

1 1o o

G G
k s s M s k s s M

ZT ZT
  
     

          
     

 satisfying the relations 

2 2

1 2

2 2 2

1 2

1
( ) (1 )

1

1
( )

1

o

o

G
k k s s M s

ZT

G
k k s s M

ZT

 



 
     

 

 
   

 

 (39) 

and , 1,2,3,4iC i  are parameters depending on s to be 

determined from the boundary conditions of the considered 

problem. 

Substitution from Eqs. (37) and (38) into Eq. (31), we 

obtain the following relations 

1 2
3 1 4 22 2

1 2

,
( ) ( )

k k
C C C C

k s s M k s s M

 
   

   
 

(40) 

Substitution from Eq. (40) into Eq. (38), we have 

1 21 2
1 22 2

1 2

( , )
( ) ( )

k x k xk k
u x s C e C e

k s s M k s s M

 

 

   
   

 
(41) 

Substitution from Eqs. (37) and (41) into Eq. (33), we 

have 

1 21 2

2 2

1 2

( , ) ( )
( ) ( )

k x k xC C
x s s s M e e

k s s M k s s M
 

 

  
   

    

 
(42) 

 

 

5. Applications 
 

 (i) A problem of time-dependent thermal shock

   The problem considered is that of producing combined 

viscoelastic and electro-magnetic waves in an elastic half-

space by means of thermal shock acting on the boundary of 

the half-space. It is assumed that the elastic half-space is 

adjacent to a vacuum. 

 (1) Thermal boundary condition: 

A thermal shock is applied to the boundary plane x = 0 

in the form 

(0, ) ( )t f t  ,     or   (0, ) ( )s f s   (43) 

(2) Mechanical boundary condition: 

The bounding plane x = 0 is taken to be traction-free, i.e. 

(0, ) 0t  ,     or   (0, ) 0s   (44) 

In order to determine the 1 2andC C , we shall use the 

boundary conditions (43) and (44), we obtain 
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2 2

1 2
1 22 2 2 2

1 2 1 2

( ) ( )
( ), ( )

k s s M k s s M
C f s C f s

k k k k

    
  

 

 
(45a) 

 

1 2
3 42 2 2 2

1 2 1 2

( ), ( )
k k

C f s C f s
k k k k

 
  

 
 (45b) 

Hence, we can use the conditions on (45) into Eqs. (37), 

(38) and (42) to get the exact solution in the Laplace 

transform domain in the following forms 

 1 22 2

1 22 2

1 2

1
( , ) ( ) ( ) ( )k x k xx s k s s M e k s s M e f s

k k
              

 
(46) 

 

 1 2

1 22 2

1 2

( , ) ( ),k x k xu x s k e k e f s
k k

    


 (47) 

 

 1 2

2 2

1 2

( )
( , ) ( )k x k xs s M
x s e e f s

k k


  

 


 (48) 

 

(ii) A problem for a half-space subjected to ramp-type 

heating 

Consider a half-space of homogeneous elastic medium 

occupying the region 0x  .  

(1)  Thermal boundary condition: 

A thermal shock is applied to the boundary plane x = 0 

in the form 

(0, ) ( )t g t     or (0, ) ( )s g s   (49) 

(2) Mechanical boundary condition: 

The bounding plane x = 0 has a constant displacement, 

that is 

(0, ) 0u t    or (0, ) 0u s   (50) 

The parameters C1, C2 can obtain by using the boundary 

conditions (49) and (50), hence 

   

2 2 2 2

2 1 1 2

1 22 2 2 2

1 2 1 2

( ) ( )
( ), ( )

( ) ( )

k k s s M k k s s M
C g s C g s

s s M k k s s M k k

 

 

           
   

 
(51) 

Substituting from Eq. (51) into (37), (41) and (42), we 

have 

 




1

2

2 2

2 12 2

1 2

2 2

1 2

1
( , ) ( )

( )

             ( ) ( )

k x

k x

x s k k s s M e
s s M k k

k k s s M e g s

 








    
 

    

 
(52) 

 

 
 1 21 2

2 12 2

1 2

( , )
( )

k x k xk k
u x s k e k e

s s M k k

   
 

 
(53) 

 

 1 22 2

2 12 2

1 2

1
( , ) ( )k x k xx s k e k e g s

k k
   


 (54) 

(iii) A problem for a layered medium 

Consider a layer of thickness X whose lower surface 

rests on a rigid base, while its upper surface is traction free. 

We choose the coordinate axes such that the upper plane 

lies at x = 0 and the x-axis pointing downwards. The 

mechanical boundary conditions can be written as 

(1) (0, ) 0 or (0, ) 0t s    (55) 

 

(2) ( , ) 0 or ( , ) 0u X t u X s   (56) 

The thermal boundary conditions are assumed to be 

(3) (0, ) ( ) or (0, ) ( )t h t s h s    (57) 

 

(4) ( , ) 0 or ( , ) 0q X t q X s   (58) 

where q denotes the component of the heat flux vector 

perpendicular to the surface of the layer. Condition (57) 

means that the upper surface is acted on by a constant 

thermal shock at time t = 0, while condition (58) signifies 

that the lower rigid surface is thermally insulated. This 

problem is somewhat similar to a one treated by Ezzat 

(1997) for generalized thermoelasticity theory. 

Using the Fourier’s law of heat conduction, which is 

valid for generalized thermoelasticity theory (Ezzat 2006), 

Eq. (58) reduces to 

( , ) 0X s   (59) 

Eqs. (33), (55) and (57) can be combined to give 

(0, ) ( )u s h s   (60) 

The general solution of the Eq. (36) for a bounded 

region is assumed to be 

1 1 2 2( , ) cosh sinh cosh sinhu x s A k x B k x C k x D k x     (61) 

where A, B, C and D are some parameters depending on s 

and X. 

From Eqs. (31) and (61), we get 

   

   

2 2

1 1

1 1

1 1

2 2

2 2

2 2

2 2

( ) ( )
( , ) sinh cosh

( ) ( )
             sinh cosh

A k s s M B k s s M
x s k x k x

k k

C k s s M D k s s M
k x k x

k k

 


 

    
 


   
 


 

(62) 

Using the boundary conditions (55)-(60) in Eqs. (61) 

and (62), the parameters A, B, C and D can be obtained as 

1 1
12 2 2 2

1 2 1 2

2 2
22 2 2 2

1 2 1 2

tanh ,

tanh ,   

k h k
A k X B h

k k k k

k h k
C k X D h

k k k k

  
 

  
 

 (63) 

Substituting from Eq. (63) into (61) and (62), we have 
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1 2
1 22 2

1 2 1 2

sinh ( ) sinh ( )
( , ) ( )

cosh cosh

k X x k X x
u x s k k h s

k k k X k X

   
   

  

 
(64) 

 

2 1
12 2

1 2 1

2 2
2

2

cosh ( )1
( , ) ( )

cosh

cosh ( )
               ( ) ( )

cosh

k X x
x s k s s M

k k k X

k X x
k s s M h s

k X

 



 
     


     



 
(65) 

Substituting Eqs. (64) and (65) into Eq. (33), one 

obtains 

1 2

2 2

1 2 1 2

cosh ( ) cosh ( )( )
( , ) ( ).

cosh cosh

k X x k X xs s M
x s h s

k k k X k X


  
  

  

 
(66) 

 

 

6. Inversion of Laplace transforms 

 

In order to invert the Laplace transform in the above 

equations, we adopt a numerical inversion method based on a 

Fourier series expansion proposed by Honig and Hirdes 

(1984). In this method, the inverse g (t) of the Laplace 

transform ( )g s is approximated by the relation 

/
1

1 1

11

1
( ) [ ( ) Re( ( / ) ) ], 0 2 ,

2

c t
i k t t

k

e
g t g c e g c i k t t t

t








    
 
(67) 

where N is a sufficiently large integer representing the 

number of terms in the truncated infinite Fourier series. N 

must chose such that 
/

1
1 1Re[ ( / ) ]

i N t tc te e g c i N t


    

where 
1 is a persecuted small positive number that 

corresponds to the degree of accuracy to be achieved. The 

parameter c is a positive free parameter that must be greater 

than the real parts of all singularities of ( )g s . The optimal 

choice of c was obtained according to the criteria described 

(See Ref. Honig and Hirdes 1984).  

 

 

7. Numerical results 
 

The method based on a Fourier series expansion 

proposed by Honig and Hirdes (1984) and is developed in 

detail in many texts such as Ezzat et al. (1996, 1997a,b) and 

Sherief and Abd El-Latief (2013) is adopted to invert the 

Laplace transform in Eqs. (46)-(48), (52)-(54) and (64)-

(66). The numerical code has been prepared using Fortran 

77 programming language. The accuracy maintained was 

five digits for the numerical program. 

The analysis is conducted for a Polymethyl 

Methacrylate 

 (Plexiglas) material. Following the values of physical 

constants are shown in Table 1 (Ezzat et al. 2014). 

The calculations were carried out for different functions 

f (t), g(t) and h(t). We have chosen the following cases: 
 

Problem 1: A problem of time-dependent thermal 

shock (Ezzat et al. 2015) 

 
2 2 2

sin 0
( ) or ( )

0 otherwise

os

oo

o

o

t
s et

f t f s
s






  
   

   




 

Problem II: A problem for a half-space subjected to 

ramp-type heating (Ezzat and Youssef 2014)

 

 1

1 2

1

0 0

1
( ) 0 or (

 

)

0

ost

o

o o

t

et
g t t t g s

t t s

t








 
 

   







 

Problem III: A problem for a layered medium (Ezzat 

2001) 

1
( ) ( ) or ( )h t H t f s

s
   

For each problem, we apply the following procedure: 

The computations were carried out for one value of time, 

namely t = 0.1 and different values of time-delay, namely, 

 = 0.0, Biot (1956), DCT and   > 0 (new theory) as 

well as the kernel function forms ( )K t  can also be 

chosen freely, such as 1, 1 ( )t   , 1 ( ) /t     

2
( )

1 .
t 



 
 

 

The temperature, stress and displacement 

distributions are obtained and plotted. Problem I is shown in 

Figs. 1-7 and problem II is shown in Figs. 8-11, while 

problem III is shown in Fig. 12-14. In these figures, solid 

lines represent the solution obtained in the frame of Biot 

theory and other lines represent the new theory.  

From these figures, we observe the following: 

• The important phenomenon observed in these figures 

that the solution to all fields considered vanishes 

identically outside a bounded region of space 

surrounding the heat source at a distance from it equal to 

x*(t), say x*(t) is a particular value of x depending only 

on the choice of t and is the location of the wave front. 

This demonstrates clearly the difference between the 

solution corresponding to the classical use of the Fourier 

heat equation and to the use of new generalized case 

( 0  ). In the first and older theory, the waves 

propagate with infinite speeds, so the value of any of the 

functions is not identically zero (though it may be very 

small) for any large value of x. This result is very 

important since the new theory may preserves the 

advantage of the generalized theory, i.e. the response to 

the thermal and mechanical effects does not reach 

infinity instantaneously but remains in the bounded 

region of space that expands with the passing of time. 

• The temperature fields have been affected by the time-

delay , where the increasing of the value of the 

parameter   causes decreasing in temperature fields. 

The thermal waves are continuous functions, smooth 

and reach to steady state depending on the value of 

time-delay , which means that the particles transport 

the heat to the other particles easily and this makes the 

decreasing rate of the temperature greater than the other 

ones. Also, the thermal waves cut x-axis more rapidly 

when   increases. 

545



 

Magdy A. Ezzat, Ahmed S. El Karamany and A.A. El-Bary 

 

 

• The stress and displacement fields have the same 

behavior as the temperature at and the absolute value of 

the maximum stress and displacement decrease. 

• The magnetic field acts to decrease the displacement 

field. This is mainly due to the fact that the magnetic 

field corresponds to a term signifying a positive   

• The temperature and stress fields increase when the 

value of the ramping parameter to decreases.  

• The efficiency of a thermoelectric figure-of-merit is 

proportional to the temperature of the material particles 

(See e.g., Mahan et al. 1997 and Ezzat and Youssef 

2010). 

• The time-delay  and ramping parameter to have 

significant effect on thermoelectric figure-of-merit. As 

they increase the thermoelectric figure-of-merit decrease. 

 

 

8. Conclusions 
 

• The main goal of this work is to introduce a new 

mathematical model for Fourier law of heat conduction 

with memory-dependent derivative and includes the 

thermoelectric figure-of-merit. According to this new 

theory, we have to construct a new classification for 

materials according to a time-delay and kernel function 

where these variables become new indicator of its 

ability to conduct heat in conducting medium. This 

model enables us to improve the efficiency of a 

thermoelectric viscoelastic material figure-of-merit. The 

result provides a motivation to investigate conducting 

thermoelectric materials as a new class of applicable 

thermoelectric viscoelastic materials (Ezzat and El-

Karamany 2012). 

• Owing to the complicated nature of the governing 

equations for the generalized thermo-viscoelasticity, few 

attempts have made to solve different problems in this 

field. These attempts utilized approximate method valid 

for only a specific range of some parameters (See e.g., 

Tschoegl 1997).  

• In this work, a simply method is introduced in the field 

of generalized thermo-viscoelasticity with memory-

dependent derivative and applied to three different 

problems. This method gives exact solutions in the 

Laplace transform domain without any assumed 

restrictions on  either  the temperature or  the 

displacement distributions. A numerical method based  

on a Fourier- series expansion has used for the inversion 

process (Ezzat et al. 2014). 

• The method used in the present work is applicable to a 

wide range of thermo-viscoelasticity problems. It can be  

 

 

 

applied to problems, which are described by the 

linearized Navier-Stokes equations for thermoelectric 

fluid, were the governing equations are coupled (See 

e.g., Ezzat and El-Bary 2016). 

• Representative results for the all functions for 

generalized theory are distinctly different from those 

obtained for the coupled theory. This due to the fact that 

thermal waves in the coupled theory travel with an 

infinite speed of propagation as opposed to finite speed 

in the generalized case. It is clear that for small values 

of time the solution is localized in a finite region. This 

region grows with increasing time and its edge is the 

location of the wave front. This region is determined by 

the values of time t and time-delay. The predictions of 

the new theory are discussed and compared with 

dynamic classical coupled theory. 

 

 

Fig. 1 The variation of temperature for different values of 

time-delay ω and kernel function K(t, ξ)=1 

 

 

Fig. 2 The variation of temperature for time-delay ω =0.1 

and kernel function K(t, ξ)=1-(t-ξ)/ω 

Table 1 Values of the Constants 

mkgρ / 10×2.1= 3  KmJk .sec./ 55.0=  mNxE /10 525= 7  

KkgJxCE ../ 104.1= 3  27 /10×7.453= mNλ  
27 /10×194= mNμ  

KmNγ 24 / 10×210=  26
0 /sec 10×36.3= mη  sec/ 2200=0 mc  

12.0=ε  35.0=0  5-10×13=Tα  
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Fig. 3 The dimensionless figure of merit ZT is plotted as a 

function of temperature for several values of time-delay and 

kernel function K(t, ξ)=1-(t-ξ) 

 
 
 

 

Fig. 4 The variation of stress for different forms of kernel 

function K(t, ξ) and time-delay ω = 0.001 

 
 
 

 

Fig. 5 The variation of stress for different value of time-

delay ω and kernel function K(t, ξ) = 1- (t, ξ) 

 
 

 
 

 

Fig. 6 The variation of temperature for different form of 

kernel function and time-delay ω = 0.001 

 
 
 

 

Fig. 7 The variation of displacement for different value of 

time-delay ω and Kernal function K(t, ξ)=1-(t-ξ) 

 
 
 

 

Fig. 8 The variation of temperature for different value of 

time-delay ω and ramping parameter t0 for K(t, ξ)=[1-(t-

ξ)/ω]
2
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Fig. 9 The dimensionless figure of merit ZT is plotted as a 

function of temperature for several values of time-delay and 

kernel function K(t, ξ)=[1-(t-ξ)/ω]
2
 

 
 

 

Fig. 10 The variation of stress for different values of time-

delay ω and ramping parameter t0 for K(t, ξ)=1.0 

 
 
 

 

Fig. 11 The variation of displacement for different values of 

time-delay ω and kernel function K(t, ξ)=1 

 
 
 

 
 

 

Fig. 12 The variation of temperature for different forms of 

kernel function K(t, ξ) and time-delay ω =0.01 

 
 
 

 

Fig. 13 The variation of stress for different forms of kernel 

function K(t, ξ) and time-delay ω =0.01 

 
 
 

 

Fig. 14 The variation of displacement for different forms of 

kernel function K(t, ξ) and time-delay ω =0.01 
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Thermoelectric viscoelastic materials with memory-dependent derivative 

Nomenclature 
 

 ,  Lame’s constants 

  density 

t time 

EC  specific heat at constant strain 

oK  =  )3/2( , bulk modulus 

k  thermal conductivity 

T temperature 

oT  reference temperature 

o  magnetic permeability 

o  electric permittivity 

o  electric conductivity 

ijS  components of stress deviator tensor 

ij  components of stress tensor 

ije  components of strain deviator tensor 

ije  components of strain deviator tensor 

ijε  components of strain tensor 

iu  components of displacement vector 

oc  
= 1/2( 2 )/   , speed of propagation 

of isothermal elastic waves 

o  = /EC   

  0T T  , such that 
0 ,/ 1T   

qi components of heat flux vector 

Bi components of magnetic field strength 

Ei components of electric field vector 

Ji components electric density vector 

Hi magnetic field intensity 

S, ko Seebeck coefficient 

, o   Peltier coefficient 

e ii , dilatation 

o  
non-dimensional constant for adjusting 

the reference 

Q 
the intensity of applied heat source per 

unit mass 

T  coefficient of linear thermal expansion 

M magnetic field parameter 

  thermoelastic coupling parameter 

  relaxation time 

  fractional order 

  3 o TK   

ij  Kronecker delta 

Γ(.)  Gamma function 
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