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1. Introduction 
 

Fiber reinforced laminated composites are extensively 

used in aerospace, civil, mechanical and wind energy 

engineering structures (Della and Shu 2007). Composite 

laminates are prone to defects such as matrix cracking, 

strength and stiffness degradation due to aging/corrosion, 

and delamination between the plies (Zou, Tong et al. 2000, 

Senthil, Arockiarajan et al. 2013, Pawar and Ganguli 2003, 

Gayathri, Umesh et al. 2010, Umesh and Ganguli 2009). 

Delamination in the composite structure may occur either 

during the manufacturing process or during the service 

period of the structure. Delamination may not be visible or 

barely visible to external inspection as delamination is 

embedded within the composite structures. Delamination 

caused due to highly concentrated free edge stresses results 

in the strength degradation of laminates (Chang and Kutlu 

1989). Embedded delamination caused by impact, 

manufacturing defects, or air entrapment, etc, can cause 

considerable change in the mechanical response of the 

laminates (Chang and Kutlu 1989). However, delamination 

reduces the stiffness of the structure and hence it affects the 

load carrying ability and natural frequencies of the structure 

(Della and Shu 2007). Structural health monitoring of 

composite structures becomes necessary to evaluate the 

integrity and operational limits of the structure in the 

presence of delamination, as failures of structures, 

particularly aircraft structures, often have tragic 

consequences (Zou, Tong et al. 2000, Hakim and Razak 

2014). 

Modeling of composite laminates in the presence of 

delamination has been extensively studied by many  
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researchers and is well documented in review articles by 

Della and Shu (2007), Zou, Tong et al. (2000), Chang and 

Kutlu (1989). Modeling delamination in beams can be 

approached by two methods. The first method is the region 

approach of delamination modeling (Della and Shu 2007). 

The second method is the layer-wise modeling approach 

(Della and Shu 2007). In the region-wise approach of 

delamination modeling, the beam is divided into four span-

wise regions: two undelaminated regions and two regions in 

the delaminated segment above and below the delamination 

interface (Della and Shu 2007). The delaminated region is 

modeled as two separate sub-beams. The delaminated beam 

is analyzed as four interconnected beams with suitable 

boundary conditions at the interface (Della and Shu 2007, 

Zou, Tong et al. 2000). There are two sub-classes of region-

based delamination modeling methods, they are the free 

mode delamination model and the constrained mode 

delamination model. In free mode delamination model, two 

sub-beams in the delaminated region deform independently. 

This leads to impractical elastic curves for certain modes of 

deformation (Della and Shu 2007). Constrained mode 

model resolves this issue (Della and Shu 2007). However, 

these methods of delamination modeling add unnecessary 

complications and have their own limitations. For instance, 

the edge delaminated beams cannot be modeled with the 

above mentioned delamination models. Most of the 

delamination models for beams, mentioned in the literature, 

are for beams with through-width delamination; exceptions, 

which address the issue of beams with partial delamination 

in the width-wise direction, are restricted to cross-sectional 

analysis (Guruprasad 2005, Prasad and Harursampath 2012, 

Venkatesh, Ponnusami et al. 2012). However, the 

delamination model presented by Keshava Kumar et al. 

(Keshava Kumar, Ganguli et al. 2013) allows partial width-

wise delaminations in beams to be modeled and analyzed. 

Nondestructive damage detection methods are 
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categorized into local and global damage identification 

techniques (Fan and Qiao 2010). Local damage 

identification techniques use high frequency waves 

(wavelengths are of the order of thickness of the structure) 

to detect the damage in the structure (Fan and Qiao 2010). 

Global damage identification techniques use vibration 

(wavelengths are of the order of the length of the structure) 

parameters of the structure. While local damage 

identification techniques can only indicate the presence and 

the extent of the damage in the structure, they can seldom 

quantify the change in structural properties caused by 

damage. Global damage identification techniques are 

capable of quantifying the changes in the structural 

properties. Vibration based damage identification 

techniques are categorized into a) Frequency domain, b) 

Time domain, and c) Impedance domain (Zou, Tong et al. 

2000). Frequency domain damage detection method tracks 

the changes in the mode shape, mode shape curvature, and 

frequencies (Hakim and Razak 2014, Xiang et al. 2014, 

Kaveh and Maniat 2015). Time domain damage detection 

methods use response of the structure to detect damage, and 

impedance domain uses change in the model damping to 

detect damage in the structure. Also, vibration based 

damage identification can be broadly classified into model 

based method and response based method (Fan and Qiao 

2010, Rahmatalla, Eun et al. 2012). Model based damage 

detection of structures is one of the popular methods 

available (Della and Shu 2007, Zou, Tong et al. 2000, Fan 

and Qiao, 2010). In model based method of damage 

detection technique, structural model of the healthy as well 

as the damaged structure properties are used for the damage 

identification. The presence of delamination reduces the 

stiffness of the structure, and hence there will be change in 

the modal parameters of the structures. Therefore, the 

essence of model-based delamination detection is to capture 

and amplify the changes in modal parameters of the 

structure using suitable quantification methods. Though 

there is ample literature available on mode shape and mode 

shape curvature based damage detection, there is hardly any 

literature on small and partial delamination detection in 

beams using mode shape data. The main reason for this 

lacuna in the literature is that the delamination causes 

irregularity of mode shape curves; the extent of the 

irregularity of the curve depends on the size of delamination 

(Zou, Tong et al. 2000). Small delaminations hardly 

produce any irregularity in the mode shape (Zou, Tong et al. 

2000). One of the methods to amplify the small change in 

mode shape or mode shape curvature is by using Fractal 

Dimensions(FD). 

Fractal dimensions has been used by researchers for the 

quantification of changes in waveforms. Fractal dimensions 

have wide applications; some of the practical applications 

are discussed in chapter 4 of the book by Jefferson and 

Jarvis (2006). The ways of defining fractals and algorithms 

for fractal dimension estimation are discussed by Theiler 

(1990). Katz fractal dimension estimation of waveforms and 

its usage in detection of waveform anomalies is discussed in 

articles (Katz 1987, Raghavendra and Dutt 2009, 

Hadjileontiadis, Douka et al. 2005, Qiao, Lestari et al. 

2007). Katz fractal dimension and other forms of fractal 

dimensions – in damage detection of beams and two 

dimensional structure is used by some researchers in the 

following articles (Hadjileontiadis, Douka et al. 2005, Fan 

and Qiao 2010, Qiao, Lestari et al. 2007, Bai, Song et al. 

2014, Moustafa and Salamone 2012, Farhidzadeh, 

Dehghan-Niri et al. 2013). Delamination detection in a 

rotating beam using Katz fractal dimension, and 

Generalized Fractal Dimension(GFD) was carried out by 

Keshava Kumar, Ganguli et al. (2013, 2015), respectively. 

Damage detection in plates using Katz fractal dimension is 

carried out by Hadjileontiadis and Douka (2007), Bai, 

Ostachowicz et al. (2014a). Cao, Ostachowicz et al. (2013) 

have used affine transformation on two dimensional 

structural mode shape and Katz fractal dimension for 

damage detection. For mode shapes subjected to noisy data 

Bai, Ostachowicz et al. (2014b) have used scale fractal 

dimensions to detect crack in a beam. However, Katz fractal 

dimension may give misleading information when used on 

higher mode shapes (Wang and Qiao 2007), hence Wang 

and Qiao (2007) have used Generalized Fractal Dimension 

(GFD) to detect damage in beams. However, most of the 

articles detect crack, which is a point phenomenon. A crack 

behaves as a virtual hinge to larger extent and there will be 

extensive change in modal parameters of the structure. 

Hence, detecting the crack will be relatively simpler 

compared to the delamination, as delamination is a 

distributed phenomenon and with the presence of partial 

delamination changes in the modal parameters are abysmal. 

The article by Wang and Qiao (2007) uses full width 

delamination model. The sensitivity of the fractal dimension 

curve for small and partial width delamination is not 

accounted in their study. The width-wise partial 

delamination in beams will lead to coupling to bending-

torsion mode coupling, and the effect this mode shape 

coupling and the effect of different boundary conditions on 

detecting, locating and sizing of the delamination is seldom 

studied. From the literature review on delamination 

detection; it is clear, that the emphasis has been on the full-

width delamination detection. However, width-wise edge 

and partial delamination detection in helicopter rotor blade 

and wind turbine blade is a major concern. Hence, the main 

aim of the article is to study the capability of GFD to 

capture width-wise partial delamination in laminated 

composite beams. 

The contributions of the present article are: to detect 

width-wise partial and length-wise small delamination in 

laminated composite beams; the usage of GFD on first few 

mode shapes to detect and locate delamination; and, explore 

torsional mode shape for delamination detection. Apart 

from the above mentioned major contributions, following 

observations and contributions are made in the article. 

Effect of the boundary conditions and delamination location 

on the fractal dimension curves is analyzed. First natural 

frequency of delaminated beam is found to be higher for 

some boundary conditions, for certain small and partial 

width delaminations. A mathematical explanation for this 

counter intuitive phenomenon is presented in the article. 

Finally, it is shown that the torsional mode shape is best 

suited for partial delamination detection in composite 

beams. 
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2. Kinematics and energy 
 

The composite beam and the co-ordinate system 

considered are shown in Fig. 1. In the figure, L represents 

the length of the beam, B is the width of the beam, and 2h is 

the thickness of the beam. The delamination is located at a 

distance of Xd in the lengthwise direction (X direction) of 

the beam, and the length of the delamination is ld. In the 

widthwise direction of the beam cross section, that is in the 

Y direction, a delamination length of 2b2 to the left of the 

beam cross section (negative Y direction) and a 

delamination length of 2b4 to the right of the beam cross 

section (positive Y direction) are considered as shown in Fig. 

2. The delamination at the left of the beam cross section, 

starts at −Yl
d
 and ends at −Yl

h
, and the delamination on the 

right of the beam cross section, starts at Yr
d
 and exists up to 

the tip of the beam cross section. In the thickness direction 

of the beam cross section, delamination is at a distance of 

Zl
d
 from the mid-plane on the left side, and on the right side 

of the beam the delamination is located at Z = −Zr
d
. The 

delaminated beam cross section is partitioned into sub-

sections 1 to 6, indicated by corresponding encircled 

numbers in Fig. 2, for the ease of energy calculation. The 

local coordinate system for the sections are shown in Fig. 2. 

 

2.1 Assumptions 

 
Following assumptions are made for the displacement-

based formulation of the beam. 

 The plane section normal to the center line of the 

beam, remains plane after deformation (Reddy 

1997). 

 Through-the-thickness deformation and stresses 

are negligible (Jones 1999). 

 Beam bending is predominantly in X −Z plane. 

 The warping in cross-section of the beam is 

ignored. 

 

2.2 Displacement fields 
 

Adopting the displacement field assumed in (Jun, 

Hongxing et al. 2008) and accounting for the displacement 

of material points of the cross-section due to torsion as well, 

the following expressions are obtained 

 

 
Fig. 1 Dimensions and cross section of beam with 

delamination 

 

 
Fig. 2 Delaminated beam cross section and coordinated 

systems 

 

𝑢(𝑋, 𝑌, 𝑍, 𝑡) = ),(),(0 tXZtXu   (1) 

𝑣(𝑋, 𝑌, 𝑍, 𝑡) = −Z ψ(X, t) (2) 

𝑤(𝑋, 𝑌, 𝑍, 𝑡) = ),(0 tXw + Y ψ(X, t) (3) 

Here, w0 is the transverse displacement of material 

points in the mid-plane, u0 is the axial displacement of 

material points in the mid-plane, θ is the rotation of the 

cross-section about Y axis, and ψ is the rotation of cross-

section about X-axis. Independent spatial variables are X, Y, 

and Z, and t is the temporal variable. 

 

2.3 Displacement field in the delaminated region 

 
Partially delaminated beam cross-section considered is 

shown in Fig. 2. The delaminated beam cross-section is 

partitioned into six regions as depicted in Fig. 2. This 

particular configuration of delamination and partitioning of 

the cross-section of the beam is ideal to simulate most of the 

delamination cases arising in beam-like structures. 

The displacement function for u of the delaminated 

cross-sections in the region xd < X < xd +ld of the beam is 

piecewise continuous, and is given by Eq (4). The 

assumptions and reasoning behind arriving at the 

displacement function u in the delaminated region is 

explained by the same authors in article (Keshava Kumar, 

Ganguli et al. 2013). 
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(4) 

The factor mdf ϕ(Y) is a function, which specifies the 

amplification of the displacement in the delaminated region 

due to the delamination, or equivalently the reduction in 

stiffness of the delaminated region due to the delamination. 
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Here m = 1 and n = 2 is used in arriving at the 

delaminated cross-sectional stiffness for beams with 

cantilever and simply supported boundary conditions. 

Trigonometric modification factor of Eq. (5) is used for 

beam subjected to fixed-fixed boundary condition. The 

reason behind using different modification factor functions 

for beams subjected to different boundary conditions is 

explained in the article (Keshava Kumar, Ganguli et al. 

2013). 

The function ϕ(Y) is to be chosen so that the stresses ζx 

and ηxy are continuous at the interface of sections 1−2, 1−3, 

1−4, 1−5, 2−6, and 3−6. The variation of the stress at the 

interface of the healthy and delaminated section in the 

widthwise direction may be something similar to stress 

concentration at the tip of the notch in an isotropic plate. 

Contribution of ϕ(Y2) to the cross-sectional stiffness terms 

will be negligible and hence ϕ(Y2) = 1 can be considered in 

calculating the cross-sectional stiffness; but if the intention 

is to obtain stresses and axial displacement at the interface 

of healthy and delaminated beam segments, then a suitable 

function for ϕ(Y2) has to be assumed or derived. 

Researchers are referred to article (Keshava Kumar, 

Ganguli et al. 2013) for more detailed discussion on ϕ(Y). 

Article by Kornev, Kurguzov et al. (2012) details out - how 

to calculate stresses at the junction of delaminated and 

healthy segment of the beam and the growth of 

delamination based on the stress distribution at the 

delaminated and healthy structure interface. 

 

2.4 Srain, curvature, displacement relation 
 

Non-zero strains in the beam are obtained from the 

above displacement field as 

𝜀𝑥𝑥 =
𝜕𝑢

𝜕𝑋
=
𝜕𝑢0

𝜕𝑋
+ 𝑍

𝜕𝜃

𝜕𝑋

𝛾𝑥𝑧 =
𝜕𝑢

𝜕𝑍
+
𝜕𝑤

𝜕𝑋
=
𝜕𝑤

𝜕𝑋
+ 𝜃

𝛾𝑥𝑦 = −𝑍
𝜕𝜓

𝜕𝑋

 (6) 

Mid-plane strains and curvatures are 

𝜀𝑥𝑥
0 =

𝜕𝑢0

𝜕𝑋

𝜅𝑥 =
𝜕𝜃

𝜕𝑋

𝜅𝑥𝑦 =
𝜕𝜓

𝜕𝑋

 (7) 

 

2.5 Stresses and energy 
 
From classical laminate plate theory (CLPT), the 

stresses in the lamina (Jones 1999) are given by 

 

(8) 

For bending of beams predominantly in X −Z plane, 

resulting from the applied force and moment in X −Z plane, 

the normal stress ζy is equal to zero, while the strain εy in 

composite beam may not be zero due to Poisson effect (Jun, 

Hongxing et al. 2008). 

Thus stresses in a lamina of the beam are 

 

(9) 

where, 𝑄̃11 = 𝑄̅11 − (𝑄̅12)
2 𝑄̅22⁄ , 

𝑄̃16 = 𝑄̅16 − (𝑄̅12 ∗ 𝑄̅26) 𝑄̅22⁄  and  𝑄̃66 = 𝑄̅66 − (𝑄̅26)
2 𝑄̅22⁄ , 

and 𝑄̅𝑖𝑗 ’s are transformed lamina stiffness coefficients 

(Jones 1999). In CLPT, the laminae are assumed to be in a 

state of plane stress and hence the shear stress in the X −Z 

plane is not considered, but in the case of Timoshenko beam 

theory, we do have shear stress in the thickness direction. 

Fortunately, for orthotropic laminae, shear-extension 

coupling coefficients are not present and hence shear stress 

in the X −Z plane is given by 𝜏𝑥𝑧  =  𝑄̅55𝛾𝑥𝑧. 

Torsion induces shear stress ηxy and ηyz in the beam. The 

expression for shear stresses ηxy and ηyz has to be obtained 

using membrane analogy, as discussed by Swanson (1998). 

Contribution of shear stress ηyz towards the torsional rigidity 

of the beam, for thin-walled beams is negligible and hence 

can be neglected (Swanson 1998). Presence of delamination 

in the beam will shift the shear center of the beam cross-

section in the delaminated segment; the shift in the shear 

center of the delaminated beam segment can obtained by 

following the formulation similar to thin-walled beam 

cross-sections as suggested by some researchers (Lee 2001, 

Lee and Kim 2001, Sheik and Thomsen 2008). The cross-

sectional stiffness terms of the delaminated beam segment 

corresponding to torsional rigidity can be obtained by 

means followed by Sheik and Thomsen (2008), Lee and 

Kim (2001). 

The strain energy in the beam is given by 

𝑉 =
1

2
∫ ∫ ∫ *𝜎+𝑇*𝜀+𝑑𝑍 𝑑𝑌 𝑑𝑋

ℎ

−ℎ

𝐵
2⁄

−𝐵 2⁄

𝐿

0

 (10) 

𝑉 =
1

2
{∫ *𝜀+̅𝑇,𝐷-*𝜀+̅ 𝑑𝑋

𝑋𝑑

0

+∫ *𝜀+̅𝑇,𝐷-*𝜀+̅ 𝑑𝑋
(𝑋𝑑+𝑙𝑑)

𝑋𝑑

+∫ *𝜀+̅𝑇,𝐷-*𝜀+̅ 𝑑𝑋 
𝐿

(𝑋𝑑+𝑙𝑑)

} 

(11) 

where 

*𝜎+ = {

𝜎𝑥
𝜏𝑥𝑦
𝜏𝑥𝑧
} ; *𝜀+ = {

𝜀𝑥𝑥
𝛾𝑥𝑦
𝛾𝑥𝑧
} ; *𝜀+̅ = {

𝜀𝑥𝑥
0

𝛾𝑥𝑧
𝜅𝑥
𝜅𝑥𝑦

} (12) 
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Fig. 3 Beam element 
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Here ks is the shear correction factor. 

Kinetic energy of the laminated composite beam is 

𝑇 =
1

2
∫ ∫ 𝜌𝑘 [.

𝜕𝑢

𝜕𝑡
/
2

+ .
𝜕𝑣

𝜕𝑡
/
2

+ .
𝜕𝑤

𝜕𝑡
/
2

] 𝐵𝑑𝑍𝑑𝑋
ℎ

−ℎ

𝐿

0
   

where ρ
k
 is the density of the equivalent homogenized 

material constituting the k
th

 lamina. The delaminated cross 

section stiffness coefficients and complete representation of 

kinetic energy can be referred in article (Keshava Kumar, 

Ganguli et al. 2013). 

 

 

3. Beam element 
 
The finite element model for the composite beam 

consists of two noded and four degrees of freedom (DOF) 

per node element. The DOF at each node are: axial 

displacement u, transverse displacement w, slope θ, and 

twist ψ. C
0
 shape functions are considered for the axial 

displacement and the twist, shape functions for transverse 

displacement and slope are obtained from the Timoshenko 

functions (C
1
 type). C

1
 type shape functions for 

Timoshenko beam element are prone to shear locking 

phenomenon, but by using Timoshenko functions the 

phenomenon of shear locking can be avoided (Lin and 

Zhang 2011). Finite element discretization of the beam is 

shown in Fig. 3. K
e
 mentioned in the figure, denotes the 

healthy composite beam element stiffness matrix, and M
e
 

stands for the mass matrix of the composite beam element. 

𝐾𝑑
𝑒 denotes the delaminated beam element stiffness matrix. 

The mass matrix of the delaminated beam is considered to 

be same as that of healthy beam, as there will be hardly any 

loss of material or any significant changes in the cross-

section due to delamination. 

 

3.1 Shape functions 
 

Shape functions for axial displacements and twist of the 

composite laminated beam are given by Eq. (14), where x is 

the local co-ordinate system and le is the element length. 

𝑁1
𝑢 = 1 −

𝑥

𝑙𝑒

𝑁2
𝑢 =

𝑥

𝑙𝑒

 (14) 

The shape functions for the transverse displacements 

based on the Timoshenko displacement functions (Lin and 

Zhang 2011) or equivalently from the interdependent 

interpolation element of (Reddy 1997) are 

 

 

𝑁1
𝑏 = 1 +

2 𝜇𝑒  𝑥
3

𝑙𝑒
3

−
3 𝜇𝑒  𝑥

2

𝑙𝑒
2

+ (
 𝜇𝑒 − 1

𝑙𝑒
) 𝑥

𝑁2
𝑏 =

 𝜇𝑒  𝑥
3

𝑙𝑒
3

−
(3 𝜇𝑒 + 1)𝑥

2

2𝑙𝑒  
+ (

 𝜇𝑒 + 1

2
) 𝑥

𝑁3
𝑏 = −

2 𝜇𝑒 𝑥
3

𝑙𝑒
3

+
3 𝜇𝑒 𝑥

2

𝑙𝑒
2

− (
 𝜇𝑒 − 1

𝑙𝑒
) 𝑥

𝑁4
𝑏 =

 𝜇𝑒  𝑥
3

𝑙𝑒
3

+
(1 − 3 𝜇𝑒)𝑥

2

2𝑙𝑒  
+ (

 𝜇𝑒 − 1

2
) 𝑥

 (15) 

The shape functions for the rotation based on the 

Timoshenko displacement functions (Lin and Zhang 2011) 

or equivalently from the interdependent interpolation 

element of (Reddy 1997) are 

𝑁1
𝑠 = −

6 𝜇𝑒  

𝑙𝑒
2
+ (

𝑥2

𝑙𝑒
− 𝑥)

𝑁2
𝑠 = −1 −

3 𝜇𝑒𝑥
2

𝑙𝑒
2

+ (
 3𝜇𝑒 + 1

𝑙𝑒
) 𝑥

𝑁3
𝑠 =

6 𝜇𝑒  𝑥
2

𝑙𝑒
3

−
 6𝜇𝑒
𝑙𝑒
2
𝑥

𝑁4
𝑏 = −

3 𝜇𝑒𝑥
2

𝑙𝑒
2

− (
 1 − 3𝜇𝑒

𝑙𝑒
) 𝑥

 (16) 

Here, µe = 1/(1+12 λe) and 𝜆𝑒 =
𝐷̅11

𝐴̅55𝐿
2 where L is the 

length of the beam, B is the width of the beam, le is the 

element length, h is the semi-thickness of the beam, and x is 

the element’s local coordinate. The advantage of the above 

interdependent interpolation shape functions is that by 

considering µe = 1 and shear correction factor ks=0, the 

Timoshenko beam model reduces to Euler-Bernoulli beam 

finite element model. 

The displacements for the composite beam element in 

i 

w i w j 

j 

u i ψ i 

θ i 

u j ψ j 

θ j 

1 2 3 i j n (n-

1) 
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the form of nodal displacements, are now given by 

{
 

 
𝑢0(𝑥)

𝑤0(𝑥)

𝜃(𝑥)

𝜓(𝑥) }
 

 

=

[
 
 
 
𝑁1
𝑢 0 0 0 𝑁2

𝑢 0 0 0

0 𝑁1
𝑏 𝑁2

𝑏 0 0 𝑁3
𝑏 𝑁4

𝑏 0

0
0

𝑁1
𝑠

0
𝑁2
𝑠

0

0
𝑁1
𝑢

0
0

𝑁3
𝑠

0
𝑁4
𝑠

0

0
𝑁2
𝑢]
 
 
 

{
 
 
 

 
 
 
𝑢1
𝑤1
𝜃1
𝜓1
𝑢2
𝑤2
𝜃2
𝜓2}
 
 
 

 
 
 

 

(17) 

The above equation can be represented in compact form 

as, *𝑞̃+ = ,𝑁-*𝑞𝑒+, where [N] is shape function matrix, and 

{qe} is the nodal displacement vector. 

 

 

4. Governing equations 
 

The finite element equations of the system are derived 

by using Hamilton’s principle, which is stated as 

∫ ∑(𝛿𝑇𝑒 − 𝛿𝑉𝑒)𝑑𝑡 = 0 

𝑁

𝑒=1

𝑡2

𝑡1

 (18) 

Where, t1 and t2 are the initial and final times 

respectively, and the variations of displacements at initial 

and final time step is considered to be zero, i.e. δu0 = δw0 = 

δθ = δψ = 0 at t = t1, t2, in the equation derivation. δTe is 

variation in the kinetic energy and δVe is the variation of 

strain energy of the element. 

Finite element equation for the eigenvalue problem is 

obtained as 

Kq = ω2Mq (19) 

There are many methods for solving the above 

eigenvalue problem (Bathe 1982, Chandrupatla and 

Belegundu 2002). The inverse iteration method and 

generalized Jacobi method are the simplest and widely used 

for small number of degree of freedom systems 

(Chandrupatla and Belegundu 2002). Since our problem is a 

simple beam, we have used the above mentioned methods. 

 

 

5. Fractal dimensions and damage detection 
 

Fractal dimension measures the complexity in a signal. 

Fractal dimension gives a non-integer dimension for the 

waveform, which is always greater than one. Fractal 

dimension of the building block of a fractal or waveform; 

and the fractal dimension of the complete waveform or 

fractal, should be the same. Delamination in the structure 

will affect the stiffness of the structure, which in-turn will 

result is slight change in the mode shape. Evaluating fractal 

dimensions on the mode shape data will amplify the slight 

localized changes in the curve and will help in detecting and 

locating the delamination. 

Fractal dimension of a curve as defined by Katz (1987) 

is 

𝐹𝐷 =  
log10(𝑛)

log10 .
𝑑
𝑙
/ + log10(𝑛)

 (20) 

Here, l is the total length of the curve, d is the planar 

extent of the curve and n is the number of steps in the curve 

(Katz 1987). However, Katz fractal dimension when used 

on higher mode shapes may give misleading information 

(Wang and Qiao 2007). To avoid the difficulty caused by 

FD, FD algorithm is modified by introducing a scale 

parameter S, and the modified FD is called generalized 

fractal dimension (Wang and Qiao 2007). 

𝐺𝐹𝐷 = log10(𝑛)

log10 .
𝑑𝑠
𝑙𝑠
/ + log10(𝑛)

 
(21) 

𝑑𝑠 = max
1≤𝑗≤𝑛

√0(𝑦(𝑥𝑖+𝑗) − 𝑦(𝑥1))
2
+ 𝑆2(𝑥𝑖+𝑗 − 𝑥𝑖)

21  

𝑙𝑠 =∑√0(𝑦(𝑥𝑖+𝑗) − 𝑦(𝑥1))
2
+ 𝑆2(𝑥𝑖+𝑗 − 𝑥𝑖)

21

𝑛

𝑗=1

  

Where, xi is the starting node of the window, xi+j 

distance of the (i+ j)
th

 node, and y(xi) is the normalized 

modal displacement at i
th

 node. Fig. 4 illustrates the window, 

nodal co-ordinate nomenclature and node numbering 

scheme used in fractal dimension calculation. Scale 

parameter S can take any value, but S = 100 is used in the 

present article to calculate generalized fractal dimension. 

 

 

6. Results and discussion 
 

 

Fig. 4 Illustration of a fractal dimension window 

 

 

 

Fig. 5 Delamination considered at different interfaces 
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Table 1 Natural frequencies (Hz) for 25.4mm delamination 

length for cantilever beam 

 
Experimental FSDT 

3D  

FEM 
Present 

 
(Shen and Grady  

1992) 

(Shen and Grady  

1992) 
 m=1,n=2 

Healthy 79.88, 79.75, 79.88 82.04 81.46 81.17 

Interface 1 78.38, 79.13, 77.00 80.13 81.43 79.87 

Interface 2 78.38, 76.63, 78.38 81.39 76.04 74.39 

Interface 3 79.63, 80.13, 80.63 81.46 67.37 62.90 

Interface 4 75.32, 75.25, 77.25 81.60 53.65 47.98 

 

 

A cantilever beam made of graphite/epoxy composite 

with stacking sequence [0/90]2s, 0.127 m length, 0.0127 m 

breadth, and 1.016 mm thickness, is considered for the 

numerical simulation for the healthy as well as delaminated 

states of the beam. Each ply has a thickness of 0.127 mm. 

This particular configuration of the beam is used in 

simulation, as experimental, analytical and numerical 

results are available in the literature (Shen and Grady 1992) 

for comparison. This beam is used by many researchers to 

validate their results. Different delamination lengths are 

considered in the simulation. Delamination in the thickness 

direction is considered at different interfaces shown in Fig. 

5. The beam is meshed with equi-sized elements. The 

natural frequency for a cantilevered healthy beam as well as 

for the full-width delaminated states of the beam obtained 

from the delaminated beam element are compared with 

literature (Shen and Grady 1992) and/or with the 3D finite 

element simulation. The results for the beam with 25.4 mm 

delamination length at different interfaces are tabulated in 

Table 1. The results for the beam with 50.8 mm 

delamination length at different interfaces are tabulated in 

Table 2. 

The effect of boundary condition and delamination 

length on the first natural frequency of the beam are 

tabulated in Table 3. In Table 3 acronym ’C’ stands for 

cantilever boundary condition, ’SS’ stands for simply 

supported boundary condition, and ’FF’ stands for fixed-

fixed boundary condition. 

Results in Table 3 show natural frequency of the 

delaminated beam for certain delamination length and 

boundary condition is higher than the natural frequency of 

the healthy beam. This phenomenon is counter intuitive, as 

delamination results in reduction in stiffness, but the natural 

frequency is higher. Delaminated structures in-fact can have 

higher frequency depending on the boundary conditions, 

size of delamination, location of delamination and the mode 

shape under consideration. 

This phenomenon is also observed by the researchers 

Tracy and Pardoen (1989), Hou and Jeronimidis (1999). It 

can also be explained mathematically as follows: 

eigenvalue problem from the FE free vibration context is 

defined as 

 

Table 2 Natural frequencies (Hz) for 50.8mm delamination 

length for cantilever beam 

 
    Experimental      FSDT   FE-FS

DT 

3D  

FEM 
Present 

 (Shen and Grady 1992)  m=1, n=2 

Healthy 79.88, 79.75, 79.88 82.04 82.00 81.46 81.17 

Interface

 1 
74.38, 75.00, 76.75 75.29 76.52 76.04 74.39 

Interface

 2 
75.13, 75.25, 75.00 78.10 77.02 79.11 74.58 

Interface

 3 

79.50 , 81.88, 77.8

8 
79.93 80.56 78.58 77.21 

Interface

 4 
69.38, 68.00, 69.38 80.38 80.64 80.28 77.56 

 

 

Table 3 Effect of delamination at interface 1 on first three 

natural frequencies (Hz) 

ld BC 3D FEM Present m=1, n=2 

 C 81.46 81.17 

Healthy SS 229.10 227.86 

 FF 507.99 516.54 

 C 81.43 79.87 

25.4mm SS 229.14 225.04 

 FF 514.84 521.27 

 C 76.04 74.39 

50.8mm SS 228.44 198.31 

 FF 513.76 509.46 

 

[K]x = λi [M]x (22) 

where, [K] and [M] are nX n stiffness and mass matrices 

respectively, and x is the nX 1 displacement vector. Let, λi be 

the eigenvalues of the system and θi be the mass normalized 

eigenvector of the system. where index i takes values from 

1 to n. 

Considering healthy and delaminated systems, the 

system equations can be written as 

[Kh]θi = λi[M]θi (23) 

,𝐾𝑑-𝜑̃𝑖 = 𝜆𝑖,𝑀-𝜑̃𝑖 (24) 

Since, there is negligible mass loss due to delamination, 

mass matrix of both systems would be same. Subscript h 

stands for healthy system and subscript d stands for the 

delaminated system. Eigenvectors of both the systems are 

mass normalized. Degradation of stiffness due to 

delamination means for any given vector Φ 

ΦT[Kh]Φ > Φ
T
[Kd]Φ (25) 
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Premultiplying the Eq. (23) by θi
T 

and Eq. (24) by 𝜑̃𝑖
𝑇, 

we get 

𝜑𝑖
𝑇,𝐾ℎ-𝜑𝑖 = 𝜆𝑖𝜑𝑖

𝑇,𝑀-𝜑𝑖  (26) 

 

𝜑̃𝑖
𝑇,𝐾𝑑-𝜑̃𝑖 = 𝜆̃𝑖𝜑̃𝑖

𝑇,𝑀-𝜑̃𝑖  (27) 

Dividing Eq. (27) by Eq. (26), we get 

𝜑̃𝑖
𝑇,𝐾𝑑-𝜑̃𝑖

𝜑𝑖
𝑇,𝐾ℎ-𝜑𝑖

=
𝜆̃𝑖
𝜆𝑖
  (28) 

From the above equation, it is clear that for small 

delaminations with favorable eigenvectors, 
𝜆𝑖

𝜆𝑖
 can be 

greater than 1. In short 𝜆̃𝑖 < 𝜆𝑖, if and only if 𝜑𝑖 = 𝜑̃𝑖  and 

𝜑̃𝑖
𝑇,𝐾𝑑-𝜑̃𝑖 < 𝜑𝑖

𝑇,𝐾ℎ-𝜑𝑖, otherwise 𝜆̃𝑖 can be greater than, 

or equal to, or less than λi. This phenomenon of higher first 

natural frequency of the delaminated beam as compared to a 

healthy beam, is also seen in the articles Tracy and Pardoen 

(1989), Hou and Jeronimidis (1999). This phenomenon can 

also be looked at from the perspective of redistribution of 

energy into different mode shapes upon delamination. Upon 

delamination, first mode shape of the delaminated beam 

may share higher energy as compared to that of a healthy 

beam. 

 

 
 
6.1 Fractal dimension of mode shape 
 
Calculation of fractal dimension requires three 

parameters: (1) length of the curve, (2) distance between the 

end points of the curves, and (3) number of segments used 

to represent the curve. The objective here is to locate the 

delamination in the structure. Fractal dimension can be 

calculated for a segment of the curve and this number can 

be assigned to the midpoint of the segment. In a similar 

fashion, fractal dimension for the whole curve is calculated 

in a segment wise fashion.  

To have a better resolution, there will be overlap 

between the neighboring segments, but the overlap will 

always be less than 100 percent. The values of fractal 

dimension calculated are plotted as a curve along the length 

of the beam and delamination presence and location is 

interpreted based on the changes seen in the fractal 

dimension curve. Fractal dimension is calculated for the 

normalized mode shape, by considering a window 

(segment) of five nodes or four elements and the calculated 

fractal dimension is assigned to the mid-node of the 

window (Hadjileontiadis, Douka et al. 2005). This window 

is slid to encompass the next node plus the previous four 

nodes. This process is repeated to cover entire length of the 

beam. The fractal dimension is calculated for each and 

every node of the beam, except for the first and the last two 

nodes of the beam. The selection of four elements in 

calculating fractal dimension is empirical in nature 

 
(a) Delamination near root             (b) Delamination near center          (c) Delamination near tip 

Fig. 6 Effect of full-width delamination location on fractal dimension curve of first bending mode shape, for beam with 

cantilever boundary condition 

 

 
(a) Delamination near root                       (b) Delamination near tip 

Fig. 7 GFD of first bending mode of cantilever beam with partial width delamination 
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(Hadjileontiadis, Douka et al. 2005). Using more number of 

elements in a segment requires either using more elements 

in the total beam length in the simulation, or in experiments 

it requires more sampling points. Using less number of 

elements i.e. less than four elements per window may be 

susceptible to noise if used on experimental data 

(Hadjileontiadis, Douka et al. 2005). 

 

6.2 Cantilever boundary condition 
 
In this section, we investigate the use of generalized  

fractal dimension for full width and partial width 

delamination detection. 

 

6.2.1 Full width delamination 
Fractal dimension curve obtained using mode shape data 

of the full width delaminated beam with fixed-free 

(cantilever) boundary condition is plotted in Fig. 6. The 

delamination length considered for simulation is 25.4 mm. 

Horizontal line in Fig. 6 is the length and location of 

delamination. The change in the fractal dimensions due to 

shift in delamination location in the thickness direction i.e. 

at different interfaces (refer Fig. 5) is plotted in Fig. 6. 

Though there is a difference in the values of fractal 

dimension for delamination at different interfaces, we 

cannot conclusively say what value of fractal dimension 

refers to location of delamination in the thickness direction.  

 

 

 

 

 

However, we can conclusively locate the presence of 

delamination in the laminate, in the length-wise direction. 

Though the fractal dimension values at the root of the beam 

are higher than the fractal dimension values at the 

delamination location of the beam, but the variation in 

fractal dimension curve at delamination location is a clear 

indicative of presence of delamination. 

The effect of change in the location of the delamination 

in the length-wise direction on fractal dimension is plotted 

in Figs. 6(a) to 6(c). The location of the delamination in the 

beam is shown by a horizontal line in the figures. 

 

6.2.2 Partial width delamination 
Full-width delamination in beams could be detected 

using fractal dimension method by using first mode shape 

data. The stiffness degradation of partially delaminated 

beam is meager when compared to full width delaminated 

beam. The capability of fractal dimension to detect partial 

delamination in beams is evaluated in this section. Fig. 7 is 

the fractal dimension plot for 12.5 mm length delamination 

and 50 percentage of width delamination, location of 

delamination in the length-wise direction is shown in the 

Fig. 7 by a horizontal line. Presence of delamination near 

the root can be detected as there is variation in the curve, 

but for the delamination location near the tip the curve blip 

is not conclusive enough (refer Fig. 7(b)). 

Fractal dimension curve for the first bending mode 

shape of the partial delaminated cantilever beam did not 

yield conclusive evidence for the presence of delamination  

 

(a) Root delamination                                (b) Tip delamination 

Fig. 8 GFD of first torsional mode of cantilever beam with partial width delamination 

 

 
(a) Delamination near root         (b) Delamination near center         (c) Delamination near tip 

Fig. 9 Effect of simply supported boundary condition for full-width delamination, on the fractal dimension curve of first 

bending mode shape 

G

F
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at the tip of beam. Hence to detect partial delamination in 

the beam, higher mode shape data is used. Torsional mode 

shapes are sensitive to delamination and for the present 

beam configuration and delamination, third mode shape of 

the beam corresponds to the torsional mode shape of the 

beam. Torsional mode shape data is now used for the 

calculation of fractal dimension curve. Fig. 8 is the fractal 

dimension plot for 12.5 mm length delamination and 50 

percentage of width delamination, location of delamination 

in the length-wise direction is shown in the Fig. 8 by a 

horizontal line. The presence of the delamination can be  

 

 

 

 

clearly identified by looking at the peaks in the fractal 

dimension curves. Torsional mode shape fractal dimension 

curves are conclusive enough to detect partial width 

delamination at different locations of delamination along 

the length of the beam. 

 
6.3 Simply supported boundary condition 
 
The effect of simply supported boundary condition and 

the location of the delamination on the fractal dimension 

curve is analyzed in this section. Beam with 25.4 mm  

 
(a) Delamination at the center               (b) Delamination near the end 

Fig. 10 GFD of first bending mode for partial width delamination in simply supported beam 

  
                 (a) Delamination at the center (b) Delamination near the end 

Fig. 11 GFD of first torsion mode for simply supported beam 

 
    (a) Delamination near root       (b) Delamination near center        (c) Delamination near tip 

Fig. 12 Effect of full width delamination on the generalized dimension curve of first bending mode for fixed-fixed boundary 

condition 
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delamination length and full-width delamination in the 

width-wise direction is considered for the analysis. The 

fractal dimension curve has a peak at the location of 

delamination, as seen in Fig. 9. 

The effect of change in location of the delamination for 

simply supported boundary condition on fractal dimension 

curve is shown in Figs. 9(a) to 9(c). Horizontal line in the 

figure represents the location and size of delamination in 

the beam. 

Full width delamination in simply supported beam can 

be detected from the fractal dimension curve. The effect of 

partial width and simply supported boundary condition on 

the fractal dimension curve is shown in Fig. 10. Since the 

simply supported boundary condition problem is symmetric 

in nature, only two figures corresponding to end and mid 

delamination location is plotted. Though the location of 

delamination can be detected from the fractal dimension 

curve, however, fractal dimension curve for the torsional 

mode shape may yield better results. Hence, the fractal 

dimension curve for torsional mode shape data of a simply 

supported beam is shown in Fig. 11. Partial delamination 

length of 12.5 mm and 50% width delamination is 

considered for the simulation. 

 
6.4 Fixed-fixed boundary condition 

 

Effect of delamination location and fixed-fixed 

boundary condition on the fractal dimension curve is shown 

in Fig. 12. Delamination length of 25.4 mm and width-wise 

full width delaminated beam is considered for simulations.  

From Fig. 12(a), by looking at the change in fractal 

dimension curve at the end of delamination, we can predict 

the presence of delamination, but we cannot say if the  

delamination is located to the left or right of the sudden 

change encounter in the fractal dimension curve; same 

holds true for the Fig. 12(c). In the case of centrally located 

delamination for the fixed-fixed beam boundary condition, 

we can confirm the presence of delamination, as there is a 

drastic change in the fractal dimension curve of the 

delaminated beams when compared to the healthy beam  

 

 

fractal dimension curve.  

Torsional mode shape of the strip like delaminated 

beams is affected more, as torsional rigidity reduces 

drastically in the presence of delamination. Since, the 

bending mode shape result for fixed-fixed beam is not 

advantageous for the delamination detection, torsional 

mode shape may be adopted in detecting the partial 

delamination in the beam. From the Fig. 13 it is clear that 

the torsional mode shape can be utilized to detect partial 

delamination of length 12.5 mm and 50% width 

delamination in the fixed-fixed beam. The location of the 

delamination is shown by a horizontal line in the figure. 

From the plots it is clear that fractal dimension can be 

used to detect the delamination in the beam, either by using 

the first bending mode or the first torsional mode, 

depending on the size and location of the delamination. 

 

 

7. Conclusions 
 

A finite element approach is used to study detection of 

full and partial width delamination in composite beam. An 

explanation to first natural frequency of delaminated beam 

being higher than that of the healthy beam for certain 

delamination lengths and boundary conditions is elaborated. 

Caution should be exercised if frequency is used as a 

damage indicator; as also seen in articles Tracy and Pardoen 

(1989), Hou and Jeronimidis (1999) Detection of 

delamination in beams using generalized fractal dimension 

of the mode shape is evaluated. Effect of delamination 

location on the fractal dimension curve is analyzed for the 

first bending and the first torsion mode. 

The limitations of using generalized fractal dimension 

for delamination detection are discussed. Delamination in 

the beam structure can be detected using generalized fractal 

dimension method using the first few mode shapes. 

Generalized fractal dimension curve using first bending 

mode shape data is sufficient to detect delaminations in 

beams subjected to cantilever boundary conditions. Where 

as for the beams with simply supported and fixed-fixed 

 

 0 0.02 0.04 0.06 0.08 0.1 0.12 0 0.02 0.04 0.06 0.08 0.1 0.12 

  X (in m)                                                     X (in m) 

(a) Delamination near root                       (b) Delamination at center 

Fig. 13 Effect of the partial width on generalized fractal dimension on torsion mode for fixed-fixed boundary condition 
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boundary conditions, it is better to use the first torsion mode 

shape data to calculate generalized fractal dimension curve 

for successful damage detection. 

Fractal dimension method of delamination detection can 

be used as an efficient way of detecting delamination and 

can complement other approaches such as those based on 

wave and NDT methods. 
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