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1. Introduction 
 

The vibration control for engineering structures 

subjected to strong and micro disturbance excitations is a 

significant research subject. Smart materials such as 

magneto-rheological liquid have been applied to the 

structural vibration suppression by semi-active control. 

Magneto-rheological dampers were installed on structures 

for vibration control (Dyke, Spencer et al. 1996, Spencer 

and Nagarajaiah 2003, Casciati, Rodellar et al. 2012, 

Zapateiro, Karimi et al. 2010, Cha, Zhang et al. 2013, 

Hernández, Marichal et al. 2015, Wang, Li et al. 2015, etc.). 

The control forces act on structures as external inputs,  
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and then the control law can be designed based on the 

control strategy such as linear quadratic control or linear 

quadratic Gaussian control. In addition, the vibration 

characteristics of sandwich beams with magneto-

rheological liquid were studied (Rajamohan, Rakheja et al. 

2010). 

In recent years, magneto-rheological visco-elastomer 

(MRVE) has been fabricated and applied to the structural 

vibration control (Carlson and Jolly 2000, Ying, Ni et al. 

2013, etc.). The MRVE based tunable vibration isolators, 

absorbers and dampers have been designed and tested 

(York, Wang et al. 2007, Jung, Eem et al. 2011). On the 

other hand, the MRVE is used to construct composite 

structures for mitigating vibration by optimizing dynamic 

characteristics. The vibration analysis of sandwich beams 

with uncontrollable viscoelastic damping has been given 

out early (Ditaranto 1965, Mead and Markus 1969, Yan and 

Dowell 1972, Frostig and Baruch 1994). The recent study 

on MRVE sandwich beams or plates has been presented, 

including the adjustable stiffness (Zhou and Wang 2006), 

frequency-response characteristics (Choi, Xiong et al. 

2010), periodic vibration analysis using the finite element 
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method (Yeh 2013), dynamic stability under periodic axial 

loads (Dwivedy, Mahendra et al. 2009, Nayak, Dwivedy et 

al. 2011) and micro-vibration response (Ni, Ying et al. 

2011, Ying, Ni et al. 2015b, c). In these studies, the MRVE 

was considered as passive control under a deterministic 

magnetic field. 

The periodic and stochastic vibrations of MRVE 

composite structures can be reduced by the area energy 

dissipation. However, the passive control effectiveness of 

the structural vibrations depends fully on the MRVE 

dynamic characteristics and then is confined, because the 

MRVE properties such as adjustable stiffness and damping 

are restricted within certain limits. The optimal adjustment 

of MRVE composite structures based on the dynamical 

programming principle can exert complete MRVE 

properties and achieve further vibration control 

effectiveness. However, the MRVE stiffness and damping 

adjustable by applied magnetic fields are represented as 

composite structure parameters (Ni, Ying et al. 2011, Ying, 

Ni et al. 2015b, c, etc.). The parametric control design 

differs from the non-parametric control design. In general, 

the non-parametric control is a structural external action 

such as external force, and the parametric control is a 

structural state-dependent action such as stiffness 

parameter. The linear quadratic Gaussian control is an 

optimal strategy for linear stochastic systems with external 

controls, but it is not an optimal strategy for the systems 

with parametric controls, that is, the linear quadratic 

Gaussian control cannot satisfy the dynamical programming 

principle for the parametric control and is unsuitable for use 

(Stengel 1994, Yong and Zhou 1999, Ying, Ni et al. 2015a). 

Therefore, the study on the optimal parametric control of 

MRVE composite structures, in particular, under stochastic 

excitation is necessary for further vibration suppression. 

The parametric control adjustment of MRVE composite 

structures is bounded, because the controllable MRVE 

modulus has certain limits due to the magnetic-mechanical 

saturation. The bang-bang control is a simple and feasible 

bounded control with better effectiveness. The deterministic 

and stochastic bang-bang control strategy and its 

application have been presented for dynamic systems with 

external control inputs (Wu and Soong 1996, Lim, Chung et 

al. 2003, Dimentberg, Iourtchenko et al. 2000, Bratus, 

Dimentberg et al. 2000). Recently, the bang-bang 

parametric control of single degree-of-freedom dynamic 

systems has been studied (Dimentberg and Bratus 2000, 

Liu, Waters et al. 2005, Potter, Neild et al. 2010, Ying, Ni et 

al. 2015a). However, the optimal bounded parametric 

control of multi-degree-of-freedom dynamic systems such 

as MRVE composite structures is lack of research. As 

mentioned above, the control strategy used generally such 

as linear quadratic Gaussian control is unsuitable for MRVE 

composite structures with parametric controls. The optimal 

parametric control can exert complete MRVE properties and 

achieve better vibration control effectiveness. Thus the 

optimal bounded parametric control of MRVE composite 

structures such as sandwich beams with multi-mode 

coupling vibration under stochastic excitations and the 

stochastic vibration suppression capability of the nonlinear 

bounded parametric controlled structures need to be studied 

further. 

In this paper, the optimal bounded parametric control of 

an MRVE sandwich beam with supported mass under 

stochastic and deterministic support motion excitations is 

designed, and the stochastic and shock vibration 

suppression capability of the beam with multi-mode 

coupling by using the optimal control is studied. Firstly, the 

partial differential equations for horizontal and vertical 

coupling motions of the sandwich beam in the time domain 

are obtained based on the dynamic equilibrium, constitutive 

and geometric relations. The dynamic behavior of the 

MRVE core is described by the visco-elastic Kelvin-Voigt 

model with a controllable parameter dependent on applied 

magnetic fields. The Galerkin method is applied to convert 

the partial differential equations into the multi-mode 

coupling vibration equations with bounded nonlinear 

parametric control. Secondly, the dynamical programming 

principle is applied to the optimal control problem 

described by the vibration equations and performance index 

for obtaining a dynamical programming equation. By the 

functional minimization in the programming equation with 

the bounded control constraint, the optimal bounded 

parametric control law is designed and determined finally 

by solving the value function equation. With the 

substitution of the optimal bounded control, the vibration 

equations of the optimally controlled sandwich beam under 

support excitations are obtained and solved to determine the 

controlled displacement responses which are used for 

evaluating the vibration suppression capability. Finally, 

numerical results on the displacement responses of the 

MRVE sandwich beam under stochastic and shock 

excitations by using the proposed optimal bounded 

parametric control are shown and compared with those of 

the passively controlled beam to illustrate the remarkable 

vibration suppression effectiveness of the proposed control. 

The results on the control parameter influence are given to 

illustrate the improvement of the stochastic vibration 

suppression capability through the reasonable design of the 

sandwich beam including MRVE properties. 

 

 

2. Differential equations of motion of MRVE 
sandwich beam with supported mass 

 

The MRVE with controllable dynamic characteristics is 

applied to construct a sandwich beam for vibration control. 

For example, to control the stochastic vibration of a 

vibration-sensitive instrument supported on a beam, the 

beam is designed as a sandwich structure with MRVE core 

and the instrument is modeled as a concentrated mass. The 

MRVE has dynamic properties such as stiffness and 

damping adjustable by applied magnetic fields. The 

horizontal MRVE sandwich beam with a supported 

concentrated mass is shown in Fig. 1, which is subjected to 

vertical support motion excitations. The length and width of 

the sandwich beam are L and b, respectively. The two non-

magnetic facial layers are linearly elastic and have the 

identical elastic modulus of E1, mass density of 1 and 

thickness of h1. The MRVE core layer is soft compared with 

the facial layers and has the shear modulus operator of G2, 
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mass density of 2 and thickness of h2. The supported mass 

is fixed on the beam and has the mass of mbb, which size 

is small compared with the beam length and can be 

neglected. The supports have the identical vertical 

displacement of w0, which is a deterministic or stochastic 

disturbance excitation. 

The MRVE has the dynamic characteristics controllable 

by the applied magnetic field which is vertical and covers 

entire MRVE. Its shear strain depends linearly on the 

applied shear stress for finite deformation. Under certain 

magnetic field, the MRVE as visco-elastic material has the 

viscous and elastic combined properties, and then the shear 

stress can be divided equivalently into two corresponding 

parts (Ward and Sweeney 2013). Based on the Kelvin-Voigt 

model, the dynamic shear modulus G2 can be expressed by 

differential operator in the time domain a 

)1(2
t

GG



   (1) 

where G is the equivalent real shear modulus,  is the 

equivalent damping ratio, and t is the time variable. The 

damping ratio is regarded as a constant. The shear modulus 

G is controllable by the applied magnetic field and 

considered as the parametric control with certain limits. 

Before the magnetic saturation, the effect of the high-order 

nonlinear terms of the magnetic field intensity on the shear 

modulus is small and neglected. The shear modulus can be 

approximated to (Ying, Ni et al. 2013) 

2
m2m10 BBG    (2) 

where i (i=0, 1, 2) are constants, and Bm is the magnetic 

field intensity. The values of i and magnetic saturation 

intensity are determined by the MRVE properties. The 

magnetic field intensity Bm corresponding to the shear 

modulus G or parametric control can be calculated by using 

Eq. (2). 

For the sandwich beam, it is assumed that: (1) the two 

elastic facial layers and MRVE core layer are respectively 

homogeneous and continuous; and the facial layer materials 

are isotropic while the core material is transversely isotropic 

under an applied magnetic field along z-axis; (2) the normal 

stress of the core layer is relatively small and neglected; (3) 

the normal stresses of the facial layers in the direction of z-

axis are relatively small and neglected; (4) the vertical 

displacement of the sandwich beam is invariant along the 

thickness; (5) the cross section of each facial layer is 

perpendicular to its axis line in deformation; and the cross 

section of the core layer is a plane in deformation; (6) the 

longitudinal and rotational inertias of the beam are 

relatively small and neglected; (7) the interfaces between 

the facial layers and core layer are continuous all the time 

(Ni, Ying et al. 2011, Mead and Markus 1969, Yan and 

Dowell 1972). 

Based on the above assumptions, the displacements and 

shear stresses on the interfaces between the facial layers and 

core layer are continuous. The vertical displacement of the 

beam relative to the supports is w=w(x,t), where x is the 

horizontal coordinate. The horizontal displacements of the 

facial layers are expressed as 

x
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where u10 and u30 are respectively the horizontal 

displacements of the upper and lower facial mid layers, z1 

and z3 are the vertical local coordinates of the two facial 

layers. The horizontal displacements on the two interfaces 

between the facial layers and core layer are 
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Then the shear strain of the MRVE core layer is given 

by 
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where ha=h1+h2. By using the shear modulus Eq. (1), the 

shear stress of the MRVE core layer is obtained as 
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where tuu  /1010
 , tuu  /3030

 , and tww  / . 

The horizontal normal strains i of the two facial layers 

can be derived from the derivatives of displacements given 

in Eq. (3). The corresponding normal stresses of the facial 

layers are 
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By using the stress equilibrium equation of an element 

in the direction of x-axis, the shear stresses of the facial 

layers are obtained as 
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Based on the continuity conditions of shear stresses on 

the interfaces between the facial layers and core layer, the 

differential equation for the horizontal displacements of the 

sandwich beam is obtained as 
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where u=u10=u30. With considering the vertical inertia, the 

dynamic equilibrium equation of a sandwich beam element 

with supported mass in the direction of z-axis yields 
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where =(21h1+2h2)/ht and ht=2h1+h2, 
22 / tww  , 

2

0

2

0 / tww  , () is the Dirac delta function, and x0 is 

the horizontal coordinate of the mass. By substituting shear 

stresses Eqs. (6) and (8) into Eq. (10), the differential 

equation for the vertical displacement of the beam is 

obtained as 
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Fig. 1 Sandwich beam with MRVE core and supported 

mass 
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The partial differential Eqs. (9) and (11) describe the 

horizontal and vertical coupling motions of the sandwich 

beam with supported mass under support motion 

excitations. The MRVE shear modulus G controllable by 

applied magnetic field appears in the parameters and then 

acts as the parametric control. For the simply supported 

beam, the boundary conditions of displacements obtained 

are (Mead and Markus 1969, Ni, Ying et al. 2011) 
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Eqs. (9) and (11) for the MRVE sandwich beam with the 

boundary conditions Eq. (12) can be rewritten in the 

dimensionless form as follows 
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where  /ww ,  /uu , 22 /  ww , 
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0 /  ww , the amplitude of the support motion w0 is 

Wa, the dimensionless coordinates, time and displacements 
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3. Multi-mode coupling vibration equations with 
parametric control 

 

The vibration displacements of the MRVE sandwich 

beam can be expanded into series in the modal space. Under 

the homogeneous boundary conditions given in Eq. (15), 

the expanded expressions are 


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where pj() and qj() are functions of dimensionless time , 
and N is an integer. According to the Galerkin method, 

substituting dimensionless displacements Eqs. (17) and (18) 

into Eqs. (13) and (14), multiplying the equations 

respectively by sin(2i1)y and cos(2i1)y, and 

integrating them with respect to y yield ordinary differential 

equations for pj and qj. By neglecting less longitudinal beam 

damping and eliminating modal displacement pj, the 

ordinary differential equations for modal displacement qj 

corresponding to the dimensionless vertical displacement of 

the beam can be obtained and rewritten in the following 

matrix form 
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where modal displacement vector Q=[q1, q2, …, qN]
T
, 

d/dQQ  , 22 d/d QQ  , modal mass matrix M, 

damping matrix C, stiffness matrix K and excitation vector 

F have elements as follows 
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Eq. (19) represents a multi-degree-of-freedom control 

system derived from the MRVE sandwich beam with 

supported mass, which has the damping C and stiffness K 

dependent on the parametric control G. By separating the 

control G from the damping and stiffness, Eq. (19) becomes 

)())(( 110 FQKQCgQKQM   G  (21) 

where control matrix g(G)=diag[g1, g2, …, gN], the elements 

of matrices K0, K1 and C1 are K0ij, K1ij and C1ij, respectively. 

To apply the dynamical programming principle and 

determining the optimal control, Eq. (21) is rewritten 

further as the state equation 
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)()( WZBAZZ  G  (22) 

where d/dZZ  , state vector Z, coefficient matrix A, 

control matrix B and excitation vector W are 
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in which I is the identity matrix. 

 
 
4. Optimal bounded parametric control law and 
controlled response of MRVE sandwich beam 
 

The vibration control of the MRVE sandwich beam or 

system given in Eq. (22) can be performed by actively 

adjusting the MRVE modulus G as a system parameter, and 

the system is a parametric control system. The parametric 

control G is bounded due to the applied magnetic field 

limits and MRVE magnetic-mechanical saturation, and then 

system given in Eq. (22) becomes a bounded parametric 

control system. The bounded control constraint is given by 

hl GGG   (24) 

where Gl and Gh are positive constants. Under the stochastic 

support motion excitation such as Gaussian white noise, the 

sandwich beam response is a stochastic process. The 

optimal bounded control of system given in Eq. (22) is to 

minimize a mean performance index related to the system 

response which is expressed as 
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where E[] is the expectation operator, Sc is a semi-positive 

definite symmetric weight matrix, (f) is a terminal cost 

and f is the terminal time. For the deterministic support 

motion excitation, the system response control has the 

performance index given in Eq. (25) without the 

expectation operation. 

Eqs. (22), (24) and (25) construct a stochastic optimal 

bounded parametric feedback control problem. Based on the 

stochastic dynamical programming principle (Stengel 1994, 

Yong and Zhou 1999), the dynamical programming 

equation can be derived from system Eq. (22) with index 

Eq. (25). The equation obtained is 
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where V(Z,) is the value function, tr() is the trace operator, 

and Dw is the intensity matrix of stochastic excitation W. 

The minimization of the left side of Eq. (26) is equated with 

the maximization of [B(G)Z]
T
V/Z. The bounded 

parametric control G can be obtained by the maximization 

with the control constraint given in Eq. (24). Then the 

optimal bounded parametric control law is determined and 

expressed as 

],[},/])(max{[

*
T

hl GGGVG
GG




ZZB
 (27) 

It is obtained from Eqs. (20) and (23) that the control G 

is a nonlinear parameter of system given in Eq. (22) and the 

B(G) is a nonlinear function of G. In general, the G
*
 

corresponding to the maximum of [B(G)Z]
T
V/Z may not 

be the bound Gh or Gl. In the case that G is much smaller 

than E1, the [B(G)Z]
T
V/Z is approximate to 
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Substituting the optimal bounded control Eq. (27) into 

Eq. (26) yields the value function equation 
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By solving Eq. (29), V can be obtained and 

[B(G)Z]
T
V/Z can be calculated to determine the 

condition in expression Eq. (27). Eq. (29) has a quadratic 

stationary solution V=Z
T
PcZ, where Pc is the positive 

definite symmetric matrix determined by 

0)]([)]([ *T*  GG ccc BAPPBAS  (30) 

The optimal bounded parametric control G
*
 is obtained 

consequently by solving Eqs. (30) and (27). For the 

deterministic support motion excitation, the dynamical 

programming equation (26) has not the second term. 

However, the optimal bounded parametric control G
*
 has 

the same expression as given in Eq. (27) and the quadratic 

stationary value function V can be obtained with the same 

equation as Eq. (30). Substituting the optimal control G
*
 

into Eq. (22) yields the optimally controlled system 

equation 

)()( * WZBAZZ  G  (31) 

The controlled system response Z can be obtained by 

solving Eq. (31), and then the displacement of the 

controlled MRVE sandwich beam under support motion 

excitations can be calculated by the following expression 





N

j

j yjqyw
1

π)12cos()(),(   (32) 

The displacement response at the midpoint of the beam 

relative to the supports can be obtained by using Eq. (32) 

with y=0. The response statistics such as standard deviation 

of the stochastic beam vibration can be estimated by using 

the response. 

 

 

5. Numerical results 
 
To show the optimal bounded parametric control 

effectiveness, consider an MRVE sandwich beam with 

supported mass under stochastic and shock support motion 
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excitations, which has basic parameter values: L=5 m, 

h1=10 cm, h2=20 cm, 1=3000 kg/m
3
, 2=1200 kg/m

3
, 

E1=10 GPa, Gl=0.2 MPa, Gh=1.0 MPa, =0.005, x0=0, and 

mb/L=80 kg/m
2
. The optimal control weight is Sc=diag[0, 0, 

0, 5, 4, 3]. The control bounds Gl and Gh are determined 

based on the MRVE properties used. For comparison, the 

passively controlled system given in Eq. (22) is considered 

which has a constant control G. The passive parametric 

control is chosen as G=0.6 MPa which is the mean value of 

bounds Gl and Gh. The passive control cost is the 

approximate mean cost of the optimal control as given in 

the following results. Numerical results on the 

dimensionless displacement responses at the midpoint of 

the MRVE sandwich beam by using the proposed optimal 

control are obtained and shown in Figs. 2-17. 

 

5.1 Optimal control for MRVE sandwich beam unde
r shock excitation 

 
Firstly, the MRVE sandwich beam is subjected to an 

initial shock excitation with unit amplitude and duration 

=0.04. Fig. 2 illustrates that the optimally controlled and 

passively controlled displacement responses w  of the 

MRVE sandwich beam under the shock excitation vary with 

the dimensionless time . 
 

 
 

Fig. 2 Optimally controlled and passively controlled 

displacement responses of MRVE sandwich beam and 

displacement response of the beam without MRVE under 

shock excitation (dotted line: without MRVE; dashed 

line: passively controlled; solid line: optimally 

controlled) 

 

 

 
 

Fig. 3 Optimal bounded parametric control varying with 

time for shock excitation 

Also the displacement response of the beam without 

MRVE is shown in Fig. 2. It is seen that the vibration 

response to the shock excitation is controlled effectively by 

using the proposed optimal bounded parametric control. 

The maximum dimensionless displacement is reduced from 

0.0136 to 0.0080 by using the optimal control and from 

0.0136 to 0.0107 by using the passive control. For the 

optimal control with time =14.9, the displacement 

response decreases to 0.00012, and to 0.0062 for the passive 

control with =14.8. The corresponding optimal bounded 

control G
*
 varying with time is shown in Fig. 3. The mean 

value of the optimal control is 0.63 MPa which 

approximates to the passive control of 0.6 MPa. Thus the 

proposed optimal bounded parametric control can achieve 

the remarkable control effectiveness and make better use of 

the MRVE than the passive control for the vibration 

suppression of the sandwich beam. 

Fig. 4 shows the optimally controlled displacement 

responses of the MRVE sandwich beam under the shock 

excitation for different control bounds Gh. The optimal 

control bounds are Gh=0.8 MPa, 1.0 MPa, 1.4 MPa and the  

corresponding mean values are 0.52 MPa, 0.63 MPa, 0.84 

MPa, respectively. It is seen that the vibration response is 

reduced with the increase of the control bound Gh, and 

however, the response decrement decreases nonlinearly 

with the bound increase. Fig. 5 illustrates that the optimal 

control time , in which the dimensionless displacement 

response is reduced from the maximum value of 0.0136 to 

the value smaller than 0.0001 and the dimensionless 

velocity response is reduced from 0.0591 to the value 

smaller than 0.0005, is shortened nonlinearly with the 

increase of the control bound Gh. The mean value of the 

corresponding optimal bounded control G
*
 increases 

linearly with the bound Gh as shown in Fig. 6. Therefore, 

the control effectiveness can be improved by enlarging the 

control bound greatly for small bound Gh and slightly for 

large bound Gh. Then the control bound can be chosen 

according to certain control effectiveness and MRVE 

fabrication. 
 

 

 
 

Fig. 4 Optimally controlled displacement responses of 

MRVE sandwich beam under shock excitation for 

different control bounds (dotted line: Gh=0.8 MPa; 

dashed line: Gh=1.0 MPa; solid line: Gh=1.4 MPa) 

 

Time  

D
is

p
la

ce
m

en
t 

Time  

D
is

p
la

ce
m

en
t 

Time  

C
o

n
tr

o
l 

G
*
 (

P
a)

 

26



 

Stochastic vibration suppression analysis of an optimal bounded controlled sandwich beam… 

 
 

Fig. 5 Optimal control time  versus control bound Gh of 

MRVE sandwich beam under shock excitation (dashed 

line: controlled velocity response w <0.0005; solid line: 

controlled displacement response w <0.0001) 

 

 

 
 

Fig. 6 Mean optimal control versus control bound Gh for 

shock excitation 

 

 

5.2 Optimal control for MRVE sandwich beam under 
stochastic excitation 

 

Secondly, the MRVE sandwich beam is subjected to a 

stochastic excitation of Guassian white noise with unit 

intensity as shown in Fig. 7. Fig. 8 illustrates that the 

optimally controlled and passively controlled displacement 

responses w  of the MRVE sandwich beam under the 

stochastic excitation vary with the dimensionless time . 
Also the displacement response of the beam without MRVE 

is shown in Fig. 8. It is seen that the vibration response to 

the stochastic excitation is controlled effectively by using 

the proposed optimal bounded parametric control. The 

maximum dimensionless displacement is reduced from 

0.4913 without MRVE to 0.0976 by using the optimal 

control and from 0.4913 to 0.1907 by using the passive 

control. The standard derivation of the displacement 

response is reduced from 0.2510 without MRVE to 

optimally controlled 0.0342 and passively controlled 

0.0842, respectively. The relative reductions in the standard 

derivations of the optimally and passively controlled 

displacement responses (that is, the ratio of absolute 

difference of controlled and uncontrolled response standard 

derivations to uncontrolled response standard derivation) 

are 86.4% and 66.4%, respectively. A sample of the 

corresponding optimal bounded control G
*
 varying with 

time is shown in Fig. 9. The mean value of the optimal 

control is 0.62 MPa which approximates to the passive 

control of 0.6 MPa. Thus it is obtained again that the 

proposed optimal bounded parametric control can achieve 

the remarkable control effectiveness and make better use of 

the MRVE than the passive control for the stochastic 

vibration suppression of the sandwich beam. 

 

 

 
 

Fig. 7 Gaussian white noise excitation 0w
 

 

 
 

Fig. 8 Optimally controlled and passively controlled 

displacement responses of MRVE sandwich beam and 

displacement response of the beam without MRVE under 

stochastic excitation (dotted line: without MRVE; dashed 

line: passively controlled; solid line: optimally 

controlled) 

 

 

 
 

Fig. 9 Sample of optimal bounded parametric control 

varying with time for stochastic excitation 
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Fig. 10 Optimally controlled displacement responses of 

MRVE sandwich beam under stochastic excitation for 

different control bounds (dotted line: Gh=1.0 MPa; solid 

line: Gh=3.0 MPa) 

 

 
 

Fig. 11 Standard deviations of optimally controlled 

responses of MRVE sandwich beam under stochastic 

excitation versus control bound Gh (Gl=0.2 MPa) (solid 

line: displacement w ; dashed line: velocity w ) 

 

 

 
 

Fig. 12 Relative reductions in standard deviations of 

optimally controlled responses of MRVE sandwich beam 

under stochastic excitation versus control bound Gh 

(Gl=0.2 MPa) (solid line: displacement w ; dashed line: 

velocity w ) 

 

 
 

Fig. 13 Mean optimal control versus control bound Gh 

for stochastic excitation 

 

 

The effects of the control bounds (Gh and Gl) on the 

displacement and velocity responses of the optimally 

controlled sandwich beam under the stochastic excitation 

are shown in Figs. 10-15. Fig. 10 shows the optimally 

controlled displacement responses of the MRVE sandwich 

beam for different control upper bounds Gh. With the 

bound Gh=1.0 MPa to  3.0 MPa ,  t he maximum 

dimensionless displacement is reduced from 0.0976 to 

0.0660. The corresponding standard derivation of the 

displacement response is reduced from 0.0342 to 0.0176, 

and the relative reductions of the standard derivations are 

86.4% and 93.0%, respectively. The mean values of the 

optimal controls are 0.62 MPa and 1.65 MPa corresponding 

to the bounds Gh=1.0 MPa and 3.0 MPa, respectively. Fig. 

11 illustrates that the standard deviations of the optimally 

controlled displacement and velocity responses are reduced 

nonlinearly with the increase of the upper bound Gh (Gl=0.2 

MPa). The standard deviations of the vibration responses 

decrease with enlarging the upper bound greatly for small 

bound Gh and slightly for large bound Gh. For example, the 

further decrease of the vibration response is relatively small 

for the bound Gh>2.5 MPa. The optimal control G
*
 is a 

nonlinear parameter of the controlled system and then the 

optimally controlled response depends nonlinearly on the 

control. As the control upper bound Gh increases, the mean 

control with its mean square value is heightened 

correspondingly and then the optimally controlled response 

or response standard deviation is reduced nonlinearly. Fig. 

12 illustrates that the relative reductions in the standard 

deviations of the displacement and velocity responses 

increase with the upper bound. The further increase of the 

relative response reduction (that is, the relative reduction 

of the response standard deviations )  requires a larger 

increment of the control bound. The mean value of the 

corresponding optimal bounded control G
*
 increases 

linearly with the bound Gh as shown in Fig. 13. 

Fig. 14 illustrates that the standard derivations of the 

optimally controlled displacement and velocity responses 

vary with the lower bound Gl (Gh=1.5 MPa). Fig. 15 

illustrates that the relative reductions in the standard 
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derivations of the displacement and velocity responses vary 

with the lower bound. It is seen that the standard derivations 

of the displacement and velocity responses are reduced 

slightly with the lower bound Gl and the relative response 

reductions (that is, the relative reduction of the response 

standard deviations) have a small increase. Although the 

lower bound reduction enlarges the control domain of G, 

the average MRVE stiffness and damping are reduced. The 

mean value of the corresponding optimal bounded control 

G
*
 decreases linearly with the lower bound Gl. It is obtained 

by comparing Figs. 11 with 14 that the control effectiveness 

is better by increasing the upper bound Gh than decreasing 

the lower bound Gl of the optimal bounded parametric 

control. 

The effect of the damping ratio  on the displacement 

and velocity responses of the optimally controlled sandwich 

beam under the stochastic excitation is shown in Figs. 16 

and 17. Fig. 16 illustrates that the standard deviations of the 

optimally controlled displacement and velocity responses 

are reduced with the increase of the damping ratio. Fig. 17 

illustrates that the relative reductions in the standard 

deviations of the displacement and velocity responses 

increase with the damping ratio. The mean value of the 

corresponding optimal bounded control G
*
 varies slightly 

with the damping ratio, for example, from 0.62 MPa for 

=0.01 to 0.63 MPa for =0.05. However, the control 

effectiveness improved by enlarging the upper control 

bound is generally better than that by heightening the 

damping ratio based on the comparison of Figs. 11 with 16. 

The optimal feedback control for the beam vibration can 

produce larger artificial damping than the material damping. 

In consequence, the proposed optimal bounded parametric 

control can achieve the remarkable effectiveness of the 

vibration suppression of the MRVE sandwich beam with 

supported mass under the stochastic support motion 

excitation, and the stochastic vibration suppression 

capability of the MRVE sandwich beam is improved further. 

 

 

6. Conclusions 
 
The optimal bounded parametric control of MRVE 

sandwich beams with supported mass under stochastic and 

deterministic excitations, and the response mitigation 

capability of the stochastic and shock multi-mode coupling 

vibration by using the optimal control have been studied to 

illustrate the further vibration control effectiveness.  

The partial differential equations for the horizontal and 

vertical coupling motions of the sandwich beam in the time 

domain have been obtained, and then converted into the 

multi-mode coupling vibration equations with the bounded 

nonlinear parametric control by using the Galerkin method. 

The dynamical programming equation for the optimal 

vibration control of the beam under the stochastic excitation 

has been obtained based on the dynamical programming 

principle. 

 
 

Fig. 14 Standard deviations of optimally controlled 

responses of MRVE sandwich beam under stochastic 

excitation versus control bound Gl (Gh=1.5 MPa) (solid 

line: displacement w ; dashed line: velocity w ). 

 

 
 

Fig. 15 Relative reductions in standard deviations of 

optimally controlled responses of MRVE sandwich beam 

under stochastic excitation versus control bound Gl 

(Gh=1.5 MPa) (solid line: displacement w ; dashed line: 

velocity w ) 

 

 
 

Fig. 16 Standard deviations of optimally controlled 

responses of MRVE sandwich beam under stochastic 

excitation versus damping ratio  (solid line: 

displacement w ; dashed line: velocity w ) 
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Fig. 17 Relative reductions in standard deviations of 

optimally controlled responses of MRVE sandwich beam 

under stochastic excitation versus damping ratio  (solid 

line: displacement w ; dashed line: velocity w ) 

 

 

The optimal bounded parametric control law has been 

determined by the functional minimization in the 

programming equation with the bounded control constraint. 

Then the optimally controlled vibration responses of the 

MRVE sandwich beam with supported mass under support 

motion excitations have been analyzed and calculated to 

evaluate the vibration suppression capability. The developed 

optimal bounded parametric control strategy is applicable to 

smart visco-elastic composite structures with bounded 

parametric controls under deterministic and stochastic 

excitations for improving vibration control effectiveness. 

Numerical results illustrate that (1) the vibration responses 

of the MRVE sandwich beam under stochastic and shock 

excitations can be suppressed greatly by using the proposed 

optimal bounded parametric control; (2) the optimal 

bounded parametric control effectiveness of the MRVE 

sandwich beam under stochastic and shock excitations is 

better than the corresponding passive control effectiveness, 

and the controllable MRVE characteristics can be used 

completely by the optimal control; (3) the optimal bounded 

parametric control effectiveness can be improved further by 

heightening the upper bound of the controllable stiffness or 

MRVE modulus, and be influenced slightly by the damping 

ratio. The above results are valuable for the vibration 

control design of MRVE composite structures and the 

MRVE fabrication based on application. 
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