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1. Introduction  
 

Many civil infrastructure, especially high-rise buildings 

and long-span bridges built after World War II, are facing 

the problem of deterioration and need measures to evaluate 

their safety. With recent advances of sensing techniques, 

structural health monitoring (SHM) are thus emerging as an 

enabling mean to monitor the operational performance and 

health conditions of important civil structures, newly built 

or old ones (Li, Li et al. 2004, Farrar and Worden 2012). 

Among many evaluation techniques, vibration-based 

damage detection is a promising field in SHM (Doebling, 

Farrar et al. 1998, Fan and Qiao 2011). The basic principle 

is that damage changes structural properties and structural 

damage can thus be inversely determined through the 

monitoring of those changes of structural properties. Such 

structural property changes, usually termed as damage 

feature in the field of damage identification or SHM, can be 

alterations of structural natural frequencies, mode shapes, 

modal damping, mode strain energy, and frequency 

response functions, etc. Many vibration-based damage 

detection methods have been proposed and interested 

readers may consult excellent references (Sohn, Farrar et al.  
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2004, Carden and Fanning 2004). In general, these methods 

can be characterized by the fact that whether a theoretical 

analytical model is involved or not as model-based methods 

and non-model based methods. For model-based damage 

detection methods, changes of structure parameters are 

identified by comparing actual measured data with 

corresponding ones calculated from a theoretical model. A 

significant advantage of model-based methods is their 

ability to identify damage location and extent 

simultaneously. Wang (2009) extended cross-model cross-

mode (CMCM) model updating method proposed by Hu, Li 

et al. (2007) to damage detection area. Excellent damage 

detection results were shown for a benchmark model and an 

offshore jacket platform structure when theoretical models 

were precisely established and test modal information were 

identified accurately. However, it is, in many cases, difficult 

or even impossible to establish a precise theoretical model 

for an actual structure, which hinders wide application of 

model-based damage detection methods. On the other hand, 

non-model based damage detection techniques are gaining 

popularity among researchers since these techniques do not 

need theoretical models and are more practical for existing 

structures than model-based approaches. Among the non-

model based detection methods, those based on modal 

parameters are widely used since modal parameters are 

inherent characteristics of a structure and will not change 

with external excitation levels. Pandey, Biswas et al. (1991) 

proposed mode shape curvature as a sensitive parameter for 
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damage localization. Mode shape curvature was calculated 

using the central difference approximation and then utilized 

for damage localization of a simulated beam discretized into 

a number of finite elements. Sampaio, Maia et al. (1999) 

extended the idea of Pandey, Biswas et al. (1991) by 

applying the curvature-based method to frequency response 

function and demonstrated the potential of their approach 

with actually measured data. Tomaszewska (2010) applied a 

flexibility-based approach and a mode shape curvature-

based approach on a simulated beam and a real historical 

tower building to study the effect of statistical errors. Zhu, 

Li et al. (2011) demonstrated the efficacy of the change in 

the slope of the fundamental mode shape as a damage 

indication feature by performing a numerical study on an 

eight-story shear building and conducting experiments on a 

three-story building model. An iterative scheme was 

developed to locate structural damage and the magnitude of 

damage was quantified using the proposed mode shape 

slope-based feature. Also, a mathematical basis was 

provided by Roy and Ray-Chaudhuri (2013) to show the 

correlation between structural damage and a change in the 

fundamental mode shape, as well as its derivatives, such as 

shape slope, shape curvature and flexibility. Many of these 

methods require certain transformations of measured data to 

get a more sensitive feature for damage identification. As is 

well known, data transformations or derivative computation 

are more sensitive to noise contamination. Moreover, many 

methods still remain at the level of damage presence or 

location detection.  

In order to overcome these disadvantages, some 

innovative approaches have been proposed by researchers. 

Among them, the restoring force method proposed by 

Masri, Bekey et al. (1982) is one verified and feasible 

damage identification approach for shear buildings (Masri, 

Bekey et al. 1982, Worden and Tomlinson 1989, 

Hernandez-Garcia, Masri et al. 2010). Based on the 

restoring force method, Hernandez-Garcia, Masri et al. 

(2010) proposed a data-driven non-parametric identification 

technique for uncertain MDOF chain-like systems, in which 

the variation value of corresponding restoring force 

coefficients between health and test conditions was 

regarded as a damage detection feature. The technique 

could detect the presence of structural changes, locate the 

structural section where changes occur, and provide an 

accurate estimate of actual level of “changes”. However, the 

floor mass ratios in this approach are required to be 

presumed in advance. Moreover, how to reconstruct the 

relative displacements and velocities between neighboring 

floors is also debatable.  

In this paper, a concept of structural element mass-

stiffness vector (SEMV) is introduced and a new data-

driven non-parametric identification technique is proposed 

for structural change detection. The proposed damage 

detection approach combines the SEMV with the cross-

model cross-mode (CMCM) model updating method and 

thus has the advantages of model-based and output-only 

non-parametric based damage identification methods 

mentioned above：(1) no physical parameters of actual 

structure are needed but a few of structural modes identified 

from the measured acceleration signals in health and 

damage conditions; (2) not only structural element stiffness 

decrease but also element mass change can be identified. (3) 

both damage location and extent can be accurately detected 

and evaluated. 

In what follows, the CMCM method and the concept of 

SEMV are introduced briefly. Then the theoretical 

formulation of the proposed method is presented followed 

with a numerical simulation example. Finally, experimental 

data from a test-bed structure tested at the Los Alamos 

National Laboratory are employed to validate the proposed 

approach. Both the simulation and experiment results show 

that the proposed method could detect the presence of 

structural damage, locate damage and determine damage 

severity.  

 

 

2. Fundamentals of cross-model cross-mode 
method 

 

Cross-model cross-mode (CMCM) method was 

originally developed by Hu, Li et al. (2007) as one physical 

property adjustment approach for model updating, and was 

later generalized to damage detection. An attractive feature 

of the CMCM method is that it requires only a few 

measured modes of the damaged structure and the measured 

modes do not require to pair or scale (mass-normalize) with 

the analytical modes. In this section, the theoretical 

background and rationale of the CMCM method are 

presented. The material is well known and expounded here 

repeatedly for the sake of clarity and the derivation of our 

improvement in section three. 

In the CMCM method, it is assumed that the stiffness 

and mass matrices of a structure, denoted by K and M, 

respectively, are already obtained from a finite-element 

model. The stiffness matrix K
*
 and mass matrix M

* 
of the 

experimental model are assumed to be a modification of K 

and M of the theoretical model and can be formulated as 
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where Kn
e
, Mn

e
 are the stiffness and mass matrix 

corresponding to the nth element; Ne is number of elements; 

αn and βn are the nth element stiffness and mass correction 

factors to be determined, respectively. In the CMCM 

method, It is intended to „„correct‟‟ or “update‟‟ the stiffness 

and mass matrices by modal measurements, including a few 

mode shapes and corresponding frequencies. So the 

structural updating equation using the CMCM method can 

be expressed as 
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where 𝚽𝑖  means the ith eigenvector of initial finite-element 

model, Φ𝑗
∗ and 𝜆𝑗

∗  denote the jth eigenvector and 

eigenvalue of the to-be-updated structure, respectively. 

When Ni reliable modes are available from the finite-

element model, and Nj modes are measured from the 

corresponding real structure, totally Nm=Ni×Nj  CMCM 

equations can be formed in Eq. (2). Using a new index m to 

replace ij, Eq. (2) becomes 

, ,

1 1

Ne Ne

n n m n n m m

n n

C E f 
 

    (4) 

written in a matrix form, one has 

G f  (5) 

where G = [C  E], 𝛄 = [𝜶, 𝜷]
T 

, in which C and E are 

Nm×Ne matrix; α and β are column vector of size Ne; and f is 

a column vector of size Nm. If Nm is greater than 2Ne —more 

equations are available than unknowns, one would expect 

that a least-squares solution for γ can be taken.
 

One feature associated with the formulation of Eq. (1) is 

that all the non-zero coefficients of M
*
 and K

*
 are allowed 

to change upon varying the correction factors α and β. This 

particular situation can be termed as a complete-updating 

case, in contrast to a partial-updating case that one or more 

non-zero coefficients of M
*
 and K

*
are not allowed to vary 

(Wang 2009). If the updated matrices M
*
 and K

*
 in Eq. (1) 

are replaced by aM
*
 and aK

*
 where a is an arbitrary 

positive constant not equal to 1, it would correspond to a 

different set of correction factors. While these two dynamic 

systems, characterized by (M
*
, K

*
) and (aM

*
, aK

*
), 

respectively, are different in spatial domain, they are 

identical in the modal space, i.e., they possess the same 

eigenvalues 𝜆𝑗
∗ and 𝚽𝑗

∗. Since the CMCM equations in Eq. 

(2) are derived based on the usage of 𝜆𝑗
∗  and 𝚽𝑗

∗，the 

corresponding solutions for the correction factors should 

apply to both dynamic systems. From the above 

observations, one concludes that multiple sets of solutions 

for the correction factors exist for a complete-updating case. 

In theory, to gain a unique solution for the correction 

factors, at least an additional constraint equation must be 

imposed. For instance, a particular mass or stiffness element 

is predetermined, or the total mass of the system is known, 

etc. 

 
 

3. Damage identification for shear buildings 
 
3.1 Typical characteristics of shear buildings 

 
A typical shear building is shown in Fig. 1. Denote the 

lateral stiffness of the ith story by ki , the element stiffness 

matrix of the ith element that connects the (i-1)th and ith 

floor is given as ki
e
 , Then the system stiffness matrix K for 

the n-story shear building can be assembled as 
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Fig. 1 Diagram of an n-story shear building 

 

 

where Ki
e
 denotes the corresponding element stiffness 

matrix ki
e
 in the global coordinates. Let the mass of the ith 

floor be mi , the corresponding system mass matrix M is 

written as M = ∑ 𝐌𝑖
𝑒𝑛

𝑖=1 = diag(m1, m2, ⋯, mn-1, mn), where 

Mi
e
 denotes the corresponding mi in the global coordinates.  

The eigenvalue λ and eigenvector Φ could be computed 

by eigenvalue decomposition of structure mass matrix M 

and stiffness matrix K, which are established by the mass 

vector m = [m1, m2, ⋯, mn] and stiffness vector k = [k1, k2, 

⋯, kn] in the way mentioned above. 

 

3.2 Structural element mass-stiffness vector for shear 
buildings  

 

According to section two, only one constraint is required 

to realize complete model updating for all the mass and 

stiffness parameters using the CMCM method for shear 

buildings. It is assumed here that m1 is known as the 

necessary constraint. The mass and stiffness vectors can 

thus be written as 

 1 2 3
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 (7) 

where �̂� i, �̂� i (i=1,2,⋯,n) denote the mass and stiffness 

values of the initial to-be-updated model, respectively. 

If this to-be-updated model exists, all the structural 

parameters, including corresponding mass matrix �̂� , 

stiffness matrix �̂�, element mass and stiffness matrix �̂�i
e
, 

�̂� i
e
 (i=1,2,⋯,n) denoted in the global coordinates, 

eigenvalue λ ̂ and eigenvector �̂�  of the given to-be-

updated model, could be obtained as shown in section 3.1. 

Consequently, all the stiffness and mass correction factors 

�̂�, �̂� of the to-be-updated model could be calculated.  

The updated mass and stiffness of the model can be 

given by 
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where mi and ki denote the updated element mass and 

stiffness, respectively, which equal to actual structural 

physical parameters. Thus, a conclusion could be drawn 

from above theoretical analysis: although given initial 

models may differ in their spatial and modal properties (�̂�, 

�̂� , �̂� it, �̂� it,  �̂� , λ ̂ ), corresponding stiffness and mass 

correction factors �̂�, �̂�, the final updated model is the same 

(K, M, Knt, Mnt, Φ, λ) which must agree with actual modal 

measurements, i.e. no matter what the initial given model is, 

the physical parameters of an actual structure could be 

obtained after model updating according to Eq. (8). 

Therefore, the final updated model is less susceptible to the 

assumed values of initial �̂�i ,�̂�i and the given model could 

finally be corrected or updated to true structural element 

mass and stiffness using the CMCM method.  

According to the above analysis, a convenient approach 

is adopted in the work. If all the element mass and stiffness 

of a given to-be-updated model equal to m1 (denoted by �̂�i 

= m1,�̂�i = m1), then the updated mass and stiffness, denoted 

as the vector form Z=[m1, m2,⋯, mn , k1, k2,⋯, kn], can be 

written as 

1 1mmZ V
 

(9) 

where 
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(10) 

The vector Vm1 can also be interpreted as the 

normalization of vector Z at the location of m1, i.e. 

1+�̅�𝑖=mi/m1,1+α̅j=kj/m1 (i=2,3,⋯,n , j=1,2,3,⋯,n). At the 

same time, It is worth noting that the calculation of the 

vector 𝐕𝑚1 is based on the assumption that m1 has been 

predetermined, however, the final value of 𝐕𝑚1has nothing 

to do with m1 since 𝐕𝑚1is normalized at that location. The 

vector 𝐕𝑚1 in Eq. (10) can be termed as m1-normalized 

structural element mass-stiffness vector (SEMV). The 

SEMV vector 𝐕𝑚1, which represents the mass and stiffness 

distribution in certain sequence, is the inherent property of 

an actual structure and can be used for damage detection.  

If only the SEMV 𝐕𝑚1 is concerned, m1 can be any 

positive constant for a given to-be-updated model in which 

�̂�i = m1, �̂�i = m1 according to the procedures mentioned 

above. A SEMV is then obtained by substituting the 

correction factors �̅�, �̅� of the to-be-updated model into Eq. 

(10) with the CMCM method. Likewise, if it is assumed 

that another parameter has been predetermined (such as k1), 

the same is true for all the previous theoretical analysis and 

conclusion. The only difference is that the element value 

corresponding to k1 changes to 1 in the k1-normalized 

SEMV. 

 

3.3 Damage identification using SEMV 
 

As analyzed in section 3.2, a SEMV represents the 

inherent mass and stiffness distribution property of a 

structure and can thus be used for structural damage 

detection. Assume that the SEMV of a structure in health 

condition is expressed as 
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Likewise, the SEMV of a structure in damage condition 

is 
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Dividing Eq. (12) by Eq. (11) element by element, one 

obtains 
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(14) 

Wm1 is the relative mass and stiffness ratio between the 

health and damage condition of a structure and can be 

regarded as a damage detection feature. There are three 

possible cases for Wm1, 

(1) No damage occurs: no change happens and all the 

physical parameters remain constant. In this case, 

all the components of the damage detection vector 

Wm1 in Eq. (13) equal to 1. 

(2) Damage occurs (other structural element 

parameters may change but m1): for example when 

only k1 decreases, all the components of the vector 

Wm1 will not change and equal to one but wn+1. 

wn+1, corresponding to k1, indicates the location of 

damage. Moreover, wn+1= 𝑘1
∗ 𝑘⁄ 1 shows the 

magnitude of the damage, i.e., the stiffness change 

ratio of the 1st element between two conditions. 

(3) Damage occurs (m1 changes): all the components 

of the vector Wm1 change and don‟t equal to one 

because of 𝑚1 𝑚1
∗⁄ ≠1 in Eq. (14).  

In general, structure damage is considered to be caused 

by few structural element changes relative to the initial 

condition. Therefore, the solution in case 3 cannot represent 

the true condition of a structure when the change of all 

structural elements occurs and is regarded as “abnormal”. In 

this case, the solution fails to indicate structural damage. In 

order to overcome this problem and to obtain “true 

solution” and correctly detect damage location and extent, 

the SEMV Z in health condition and test condition will both 

be normalized to all the mass and stiffness parameters 

m1~mn, k1~kn one by one. Consequently, the damage 

detection feature vectors W can be calculated and formed 

into a matrix as 

1 2 , 1 2, , , , , ,m m mn k k k n
   U W W W W W W  (15) 

When an element mass mi or stiffness ki changes, only 

the vector Wmi or Wki in the damage detection matrix U will 

appear as “abnormal”. The other vectors in the matrix U, 

which are normalized to those undamaged structural 

elements, remain consistent and are termed as “normal 
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solutions”. Few of vectors in matrix U appear “abnormal” 

and most vectors in the matrix U are “normal” because of 

the fact that damage is, in many cases, a local phenomenon. 

In addition, “abnormal solutions” are obviously different 

and can be easily distinguished from “normal solutions” 

when they are drawn in one figure. 

Consequently, a simple damage detection method based 

on the SEMV can be established given that actual modal 

measurements (mode shape Φ and frequency f ) in health 

condition and in test condition (mode shape Φ
*
 and 

frequency f
*
) have been provided. The main procedures can 

be summarized as follows, 

(1) Updating model with given measurements. Following 

the process of section 3.2, a virtual to-be-updated 

model is established, in which m1 is chosen randomly 

(here 1 is chosen only for the convenience of 

demonstration purpose) and other parameters equal to 

m1 consistently (�̂�i = m1,�̂�i = m1). The corresponding 

parameters of this model (�̂�, �̂�, �̂�i
e
, �̂�i

e
, �̂�, λ ̂) are 

constructed and calculated.   

(2) SEMV calculation. Update the given model with modal 

measurements (mode shape Φ and frequency f) 

according to section two with the CMCM method, and 

an updated model (K, M, Kn
e
, Mn

e
, Φ, f) can be 

obtained. The correction factors α, β and the SEMV 

VH,m1 in Eq. (11) can be calculated and obtained. 

Likewise, the vector VD,m1 in the test condition can also 

be calculated. 

(3) SEMV normalization. Normalize the SEMV ratio 

vector Wm1 with m1 as Eq. (13). 

(4) Damage detection feature extraction. Assume the mass 

and stiffness parameters m1~mn, k1~kn to equal to 1 

sequentially and repeat steps (1) ~ (3), and form the 

damage detection feature matrix U in Eq. (15). 

(5) Damage identification. All the vectors in the matrix U 

are drawn in one figure in column wise and “abnormal 

solutions” are eliminated. “Normal solutions” are thus 

averaged and used to detect damage presence, location 

and extent. 

 

 

4. Numerical simulation 
 

In this section, a four-story shear building is studied as a 

numerical example to demonstrate the detailed procedures 

of the proposed damage detection method in section three. 

  

4.1 Model description 
 

For a four-story shear building (as shown in Fig. 2), a 

uniform mass and inter-story stiffness distribution along the 

height of the building is considered, i.e., m1 = m2 = m3 = m4 

=1.0×10
5 
kg and k1 = k2 = k3 = k4 = 2.04×10

8
 N/m. The preset 

damping ratio for each floor is 0.02. Each floor can only 

move horizontally. In this research, several damage 

scenarios are designed to investigate the effectiveness of the 

proposed approach by increasing the story masses or 

decreasing the inter-story stiffness relative to initial values, 

as shown in Table 1. State 1 is the baseline of the structure 

without damage. In state 2, the 1
st
 inter-story stiffness, k1, 

has a reduction of 20 percent, which is used to simulate that 

a single location of damage exists in the building. In state 3, 

the 1
st
 and 3

rd
 inter-story stiffness are reduced by 20 and 40 

percent, respectively, to simulate multiple locations of 

structural damage. In state 4, the mass of the 2
nd

 floor is 

increased by 20 percent to simulate that the building is 

healthy but under operating conditions with appended 

loading mass. State 5 is for considering that the building is 

under operational conditions and that multiple damage 

occurs. This is achieved by a 20 percent mass increase of 

the 2
nd

 floor and 40 percent reduction of 3
rd

 inter-story 

stiffness, respectively. 

 

4.2 Modal parameters identification 
 

For this structure, four uncorrelated band-limited white 

noise, whose bandwidth is from 0 Hz to 50 Hz, were 

applied to each floor slab to simulate ambient excitations. 

The maximum of the white noise equal 1. At the same time, 

four accelerometers are attached to each floor slab to 

measure the acceleration signals of the building under 

ambient excitations, as shown in Fig. 2. In this study, the 

dynamic responses, i.e., accelerations, were simulated from 

the discrete-time state space model, which was discretized 

from the continuous state space model of the structure by a 

zero-order hold (Juang 1994) in which the applied forces 

are regards to remain constant in each of the sampling 

periods. The structure was sampled at 3.125 ms intervals 

corresponding to a sampling frequency of 320 Hz. Each test 

lasted 25.6s, i.e., 8192 samples were recorded in each test. 

Fig. 3 presents the applied forces and the measured 

accelerations in a certain test under baseline condition. The 

left column shows the applied force on each floor slab, and 

the right column corresponds to the “measured” 

acceleration signal of each accelerometer. In practical 

applications, measured signal is inevitable to be exposed to 

immeasurable noise contamination. For testing the 

robustness of the proposed approach, white noise with 5 

percent Signal-to-Noise Ratios (SNRs), i.e., SNR = 5%, is 

mixed into the measured acceleration signals. 

 

 

Fig. 2 Model for the numerical simulation 
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Fig. 3 Loads and measured accelerations in a certain test. 

Left column: applied ambient force on each floor slab; right 

column: measured acceleration signal of each accelerometer 

 

 

Table 1 Summary of structure state conditions 

State Description State condition 

State#1 Baseline Undamaged 

State#2 k1(-20%) Damaged 

State#3 k1(-20%)、k3(-40%) Damaged 

State#4 m2(+20%) Damaged 

State#5 m2(+20%)、k3(-40%) Damaged 

 

 

Table 2 Modal parameters of the five states 

Conditions Order 

Theoretic 

frequency 
(Hz) 

LMS modal identification result 

(SNR = 5%) 

Frequency 

(Hz) 

Mode 

shape 

(MAC) 

Damping 

ratio (%) 

State#1 

1 2.50 2.48 1.00 0.24 

2 7.19 7.21 1.00 1.11 

3 11.01 11.05 1.00 2.16 

State#2 

1 2.37 2.37 1.00 2.77 

2 6.93 6.98 1.00 1.89 

3 10.82 10.85 1.00 1.28 

State#3 

1 2.25 2.26 1.00 0.70 

2 6.24 6.27 1.00 0.99 

3 10.71 10.72 1.00 0.93 

State#4 

1 2.45 2.43 1.00 1.25 

2 6.96 6.95 1.00 0.65 

3 10.96 10.96 1.00 2.25 

State#5 

1 2.32 2.33 1.00 0.98 

2 6.25 6.21 1.00 0.98 

3 10.81 10.81 1.00 1.01 

 

 

After the acceleration signals of each floor were 

measured, the structural modal parameters (frequency and 

mode shape) for different test conditions can be identified 

by various existing modal parameter identification 

algorithm. In our study, a commercial modal analysis 

software, LMS test Lab. (Zhang, Jiang et al. 2008), was 

employed here to identify the structural modal parameters. 

For this software, the core modal parameter identification 

algorithm is called PloyMax, which is an non-iterative 

frequency-domain parameters estimation method and 

presents very good stability, accuracy of the estimated 

modal parameters and quality of the frequency response 

function synthesis compared with classical Experimental 

Modal Analysis (EMA) methods (Petters, Lowet et al. 

2004a, Petters, Van der Auweraer et al. 2014b). Therefore, 

the modal identification results for five test scenarios in this 

section can be achieved, as shown in Table 2, in which the 

modal assurance criterion (MAC) was calculated to 

evaluate the similarity for the identified mode shape and 

theoretical mode shape obtained from eigenvalue analysis. 

Fig. 4 shows the identified mode shapes of the five test 

conditions for the numerical model. All the identification 

results demonstrate that the test modal parameters of the 

structure can be extracted accurately using the LMS test lab. 

software even under noisy environment (SNR = 5%). 

 

4.3 Damage identification 
 

When all the modal parameters (frequency and mode 

shape) for the baseline and damage conditions were 

achieved, according to Eq. (4) in the CMCM method, seven 

unknown correction factors of the four-story shear building 

can be calculated and ascertained just from two measured 

modes, which could derive eight equations. But in practical 

applications, multiple sets of solutions for the correction 

factors will appear just based on two measured modes 

because of the effect of noise. Therefore, the first three 

mode shapes and corresponding frequencies are adopted to 

compute the solution in this study, which will enhance the 

ability of noise robustness and the accuracy of the solution. 

Fig. 5 shows the solutions. It is easy to distinguish 

“abnormal solutions” denoted with red from “normal 

solutions” denoted with blue. The “normal solutions” 

vectors keep consistent and maintain around the value of 1 

at the locations of undamaged elements, however, large 

fluctuation appears near the location of damaged elements. 

Fig. 6 shows the average values of “normal solutions” after 

eliminating “abnormal solutions”, and presents more 

obvious damage identification results than Fig. 5. The 

location and extent of damage is accurately demonstrated in 

Fig. 6. 

To evaluate the effect of noise contamination to the 

proposed method, the noise level is then increased from 5 

percent to 10 percent and damage detection result is shown 

in Figs. 7 and 8. The vectors in the SEMV solution matrix 

U does not appear more obviously dispersed under the 10 

percent noise level in Fig. 7, and “normal solutions” can 

still be clearly distinguished from “abnormal solutions”. 

The damage identification result is consistent with that of 

the 5 percent noise level. To further examine the effects of 

noise, 20 percent noise is added in the mode shapes. In this 

case, the damage element can still be located although the 

solution matrix U is much more dispersed. However, it 

becomes difficult to evaluate the damage extent because 

“abnormal solutions” and “normal solutions” have been 

mixed and could not be easily separated from each other. As 

space is limited, the detection result will not be listed. 

All the detection results demonstrate that the 
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consistency of normal solutions decreases and relative 

structural changes tend to be overwhelmed with the increase 

of SNRs. However, the identified results are still reliable, 

even when a 10 percent proportional white noise is being 

mixed. The strong robust ability of the proposed method 

may be attributed to the outstanding advantage of the 

CMCM model updating algorithm employed in this 

numerical study, three measured modes were attended to the 

calculative procedure and could provide twelve equations, 

which was considered enough to solute the seven unknown 

correction factors, the remaining solution equations could 

enhance the ability of noise robustness and the accuracy of 

the solution. 

 

 
Fig. 4 Identified mode shapes for five test conditions of the 

numerical model 

 

 
Fig. 5 SEMV solution matrix U for four damage states 

under noisy environment (SNR = 5%) 

 

 
Fig. 6 Damage detection for four states under noisy 

environment (SNR = 5%) 

 

 
Fig. 7 SEMV solution matrix U for four damage states 

under noisy environment (SNR = 10%) 

 

 
Fig. 8 Damage detection result for four states under noisy 

environment (SNR = 10%) 

 

 

5. Lanl test-bed structure 
 

In this section, experimental tests at the Los Alamos 

National Laboratory (LANL) are used to validate the 

damage detection ability and to illustrate the application of 

the proposed method. 

 

5.1 Model description 
 

The LANL three-story shear-building is shown in Fig. 9. 

It consists of four aluminum plates (30.5×30.5×2.5 cm) 

connected by bolted joints to four aluminum columns 

(17.7×2.5×0.6 cm) at each floor (Figueiredo, Park et al. 

2009). An additional element (15×2.5×2.5 cm) attached to 

the top floor and an adjustable bumper mounted on the 

second floor can be used to introduce a gap nonlinearity in 

the system. The gap distance can be modified by adjusting 

the position of the bumper to vary the level of the 

nonlinearity. The whole structure is mounted on two rails to 

allow the system to slide only in one direction. An electro-

dynamic shaker was used to provide a band-limited random 

base excitation (20-150 Hz) to the test structure. 

The deployed sensor network consists of four 

accelerometers and a force transducer with nominal 

sensitivities of 1000 mV/g and 2.2 mV/N, respectively. The 

accelerometers were attached to each aluminum plate along 

a vertical center line to measure the dynamic response of 
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the 4DOF lab structure. The force transducer was connected 

to the tip of the stinger to gauge the input force generated 

by the shaker. The sensor‟s measurements were recorded at 

a sampling frequency of 322.58 Hz by a data acquisition 

system. Full details concerning the LANL test setup are 

documented in (Figueiredo, Park et al. 2009). 

The structural changes in the system were physically 

simulated through variations in either the mass or stiffness 

of the reference structure. The mass of the system was 

modified by attaching a 1.2 kg concentrated mass 

(approximately 19.1% of the total mass of each floor) to the 

aluminum plates. The changes in stiffness were introduced 

by reducing one or more columns‟ stiffness by 87.5%. This 

process was done by replacing the corresponded column 

with another one with half the cross-section thickness in the 

direction of shaking. The five structural state configurations 

considered in this study are summarized in Table 3. 

 

 

Table 3 Summary of structural state conditions 

Label Condition Description 

State#1 Reference condition —— 

State#2 
19.1% 1st-story mass 

increment 

1.2kg additional mass 

on the 1st-story 

State#3 
21.8% 1st-story 

stiffness reduction 

Exchange one columns 

on the 1st-story 

State#4 
21.8% 3rd-story 

stiffness reduction 

Exchange one columns 

on the 3rd-story 

State#5 
43.7% 3rd-story 

stiffness reduction 

Exchange two columns 

on the 3rd-story 

 

 

Table 4 Identified mode frequencies and damping ratios of 

five states 

 Order State#
1 

State#
2 

State#
3 

State#
4 

State#
5 

Frequency 
(Hz) 

1 30.92 30.98 30.39 29.74 28.67 

2 54.80 53.78 51.61 51.41 47.56 

3 71.64 69.15 70.06 70.10 69.24 

Damping 

(%) 

1 2.92 2.56 2.83 2.47 2.56 

2 0.74 1.41 0.79 0.86 1.11 

3 0.55 0.44 0.31 0.42 0.40 

 

 

 

Fig. 9 LANL-4 DOF test-bed structure experiment 

 

 

Fig. 10 Experimental mode shape for five test conditions 

 

 

Although the test-bed structure had an adjustable 

nonlinear gap in the third floor, it was set to keep the system 

within the linear range during the dynamic tests conducted 

in this study. The modal frequencies and damping of five 

structural states identified using ERA algorithm (Juang 

1994) are summarized in Table 4. Fig. 10 shows the 

identified mode shapes for the five test states. It should be 

noted that only the lower three mode shapes and 

frequencies from the experimental study are used. 

 

5.2 Damage identification result 
 

The identification results of the four damage states using 

the proposed method are shown in Figs. 11 and 12. For the 

LANL experiments, the “abnormal solutions” in the SEMV 

solution matrix U corresponding to four damage conditions 

can be distinguished from “normal solutions” conveniently, 

as shown in Fig. 11. The “normal solutions” keep consistent 

and clearly show the location of damage, where the “normal 

solutions” have valleys. After eliminating “abnormal 

solutions”, the average values of the “normal solutions” can 

locate and quantify structural damage more obviously and 

accurately as shown in Fig. 12. Thus, the ability of the 

proposed approach for damage identification is 

convincingly verified by the LANL experiments.  

 

 

Fig. 11 SEMV solution matrix U in four damage states 
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Fig. 12 Damage identification result in four damage 

conditions 

 

 

6. Conclusions 
 

A new damage detection approach is proposed based on 

the structural element mass-stiffness vector (SEMV). First, 

a virtual model is assumed and then updated with the 

CMCM method. The SEMV ratio is then extracted as a 

damage detection feature by comparing the SEMV in health 

condition with damage condition, and finally the “normal 

solutions” of the SEMV ratio solution matrix U are 

averaged after eliminating “abnormal solutions”. The 

averaged SEMV ratio “normal solutions” show the location 

and extent of structural damage. 

The proposed approach has been validated by a 

numerical simulation example and the LANL experiments 

of a three-story structure. Both the results demonstrate that 

the proposed approach is able to detect the presence of 

structural change, locate the structural section where the 

change occurred, and provide an accurate estimation of 

actual level of “changes”. The proposed method coalesces 

two kinds of damage identification methods based on model 

and measured data, and takes full advantages of both kinds 

of methods: (1) no physical parameters (the element mass 

and stiffness) of actual structure are needed but the 

measured acceleration signals in health and damage 

conditions; (2) not only structural element stiffness decrease 

but also element mass change can be identified. (3) both 

damage location and extent can be accurately detected and 

evaluated. 

 

 

Acknowledgements 
 

The authors are indebted to Professor Sami F. Masri for 

the introduction of the chain-like method. Furthermore, this 

work was partially supported by the Major State Basic 

Research Development Program of China (973 Program, 

grant number 2015CB057704), National Natural Science 

Foundation of China (Grant number 51121005 and 

51578107), and Chinese Scholarship Council (CSC). The 

authors would like to thank for them for their financial 

support. 

 

 

 

References 
 

Carden, E.P., and Fanning, P. (2004), “Vibration based condition 

monitoring: a review”, Struct. Health Monit., 3(4), 355-377.  

Doebling, S.W., Farrar, C.R.. and Prime, M.B. (1998), “A 

summary review of vibration-based damage identification 

methods”, Shock Vib. Digest, 30(2), 91-105.  

Fan, W. and Qiao, P. (2011), “Vibration-based damage 

identification methods: a review and comparative study”, Struct. 

Health Monit., 10(1), 83-111.  

Farrar, C.R., and Worden, K. (2012), Structural health monitoring: 

A machine learning perspective, John Wiley & Sons, Chichester, 

West Sussex, U.K. 

Figueiredo, E., Park, G., Figueiras, J., Farrar, C. and Worden, K. 

(2009), “Structural health monitoring algorithm comparisons 

using standard data sets”, Research Report No. LA-14393; Los 

Alamos National Laboratory (LANL), Los Alamos, NM (United 

States). 

Hernandez-Garcia, M.R., Masri, S.F., Ghanem, R., Figueiredo, E. 

and Farrar, C.R. (2010), “An experimental investigation of 

change detection in uncertain chain-like systems”, J. Sound Vib., 

329(12), 2395-2409.  

Hu, S.L.J., Li, H. and Wang, S. (2007), “Cross-model cross-mode 

method for model updating”, Mech. Syst. Signal Pr., 21(4), 

1690-1703.  

Juang, J.N. (1994), Applied system identification, Prentice Hall, 

Englewood Cliffs, New Jersey, USA 

Li, H.N., Li, D.S. and Song, G.B. (2004), “Recent applications of 

fiber optic sensors to health monitoring in civil engineering”, 

Eng. Struct., 26(11), 1647-1657.  

Masri, S., Bekey, G., Sassi, H. and Caughey, T. (1982), “Non‐
parametric identification of a class of nonlinear multidegree 

dynamic systems”, Earthq. Eng. Struct. D., 10(1), 1-30.  

Pandey, A., Biswas, M. and Samman, M. (1991), “Damage 

detection from changes in curvature mode shapes”, J. Sound 

Vib., 145(2), 321-332. 

Peeters, B., Lowet, G., Van der Auweraer, H. and Leuridan, J. 

(2004), “A new procedure for modal parameter estimation”, 

J. Sound Vib., 38(1), 24-29. 

Peeters, B., Van der Auweraer, H., Guillaume, P. and Leuridan, J. 

(2004), “The PolyMAX frequency-domain method: a new 

standard for modal parameter estimation”, J. Shock Vib., 11(3-4), 

395-409. 

Roy, K. and Ray-Chaudhuri, S. (2013), “Fundamental mode shape 

and its derivatives in structural damage localization”, J. Sound 

Vib., 332(21), 5584-5593.  

Sampaio, R., Maia, N. and Silva, J. (1999), “Damage detection 

using the frequency-response-function curvature method”, J. 

Sound Vib., 226(5), 1029-1042.  

Sohn, H., Farrar, C.R., Hemez, F.M., Shunk, D.D., Stinemates, 

D.W., Nadler, B.R. and Czarnecki, J.J. (2004), A review of 

structural health monitoring literature: 1996-2001: Los Alamos 

National Laboratory Los Alamos, NM. 

Tomaszewska, A. (2010), “Influence of statistical errors on 

damage detection based on structural flexibility and mode shape 

curvature”, Comput. Struct., 88(3), 154-164.  

Wang, J. (2009), “Study on damage detection and model updating 

for offshore platform structures”, Ph.D, Dissertation, Ocean 

University of China, Qingdao. (in Chinese)    

Worden, K. and Tomlinson, G. (1989), “Application of the 

restoring force surface method to nonlinear elements”, 

Processings of the 7th International Modal Analysis Conference, 

Las Vegas, NV. 

Zhang, C. and Song, G.Q. (2012), “Bridge damage identification 

m1 m2 m3 k1 k2 k3 

-0.4

-0.2

0

0.2

0.4

State2

D
am

ag
e 

d
eg

re
e

 

 

m1 m2 m3 k1 k2 k3 

-0.4

-0.2

0

0.2

0.4

State3

D
am

ag
e 

d
eg

re
e

 

 

m1 m2 m3 k1 k2 k3 

-0.4

-0.2

0

0.2

0.4

State4

D
am

ag
e 

d
eg

re
e

 

 

preset estimated

m1 m2 m3 k1 k2 k3 

-0.4

-0.2

0

0.2

0.4

State5
D

am
ag

e 
d

eg
re

e

 

 

19



 

Yabin Liang, Dongsheng Li, Gangbing Song and Chao Zhan 

by finite element model updating with Tikhonov regularization 

and wavelet denoising”, J. Vib. Eng., 25(1), 98-102.  

Zhang, L., Jiang, F., Wang, Y. and Zhang, X. (2008), 

“Measurement and analysis of vibration of small 

agriculturalmachinery based on LMS Test. Lab”, Transactions 

of the Chinese Society of Agricultural Engineering, 24(5),100-

104.  

Zhu, H., Li, L. and He, X.Q. (2011), “Damage detection method 

for shear buildings using the changes in the first mode shape 

slopes”, Comput. Struct., 89(9), 733-743. 
 

 

BS 

 

 

 

 

 
  

20




