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Abstract.  The present study aims at proposing an analytical method for semi-active structural control by 
using block pulse functions. The performance of the resulting controlled system and the requirements of the 
control devices are highly dependent on the control algorithm employed. In control problems, it is important 
to devise an accurate analytical method with less computational expenses. Block pulse functions (BPFs) set 
proved to be the most fundamental and it enjoyed immense popularity in different applications in the area of 
numerical analysis in systems science and control. This work focused on the application of BPFs in the 
control algorithm concerning decrease the computational expenses. Variable orifice dampers (VODs) are one 
of the common semi-active devices that can be used to control the response of civil Structures during 
seismic loads. To prove the efficiency of the proposed method, numerical simulations for a 10-story shear 
building frame equipped with VODs are presented. The controlled response of the frame was compared with 
results obtained by controlling the frame by the classical clipped-optimal control method based on linear 
quadratic regulator theory. The simulation results of this investigation indicated the proposed method had an 
acceptable accuracy with minor computational expenses and it can be advantageous in reducing seismic 
responses. 
 

Keywords: semi-active control; variable orifice damper (VOD); block pulse function (BPF); 
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1. Introduction 
 

Safety of structural systems against critical loads, including seismic excitations and wind force 

is one of the most important matters in the life cycle of a building. Current limitations on structural 

design, such as low materials, damping and vulnerability against dynamic excitations because of 

the fixed properties, made researchers to find new strategies for designing structures. Among the 

various strategies, passive, active and semi-active control seem to be better methods of preventing 

damage in structures subjected to dynamic loads (Casciati, Rodellar et al. 2012). Therefore, over 

the last four decades, extensive research has been targeted by control researchers from both 

theoretical and experimental points of view. Structural control strategies are materialized by 

special devices which are added to the structure to reduce the structural response and fulfill 

multiple objectives. The concept of employing structural control to minimize structural vibration 
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instead of the conventional techniques of strengthening the structural members was first suggested 

in the 1960‟s and 1970‟s (Kobori and Minai 1960, Yao 1972).  Passive control system devices 

usually dissipate energy by means of friction, viscosity and may also stiffen the building, hence 

reducing the inter-story drifts (Cimellaro, Lavan et al. 2009). Passive control devices are 

inadequately compatible to ever-changing external excitation since they do not sense excitation 

and response, so that in many cases active and semi-active control have been considered for 

structural applications. Numerous active and semi-active devices have been proposed and studied 

by researchers (Cha, Zhang et al. 2013). Active control systems promise to effectively minimize 

structural responses. This control system relies on external power sources to operate actuators 

generating control forces and require routine maintenance (Ghaffarzadeh 2013). Semi-active 

control systems are fully-fledged passive control systems that are intelligent and adaptable to 

variations of dynamic loads. Besides, in semi-actively controlled systems, external energy is not 

applied into the system as active systems. Therefore, they do not require a large power source, and 

semi-active devices always assure control stability when inserted into structures. As a conclusion 

semi-active control devices provide some of the best features of both the passive and active control 

systems. Many of this control system devices can be operated by a battery when the main power 

system fails during the seismic events (Bitaraf, Barroso et al. 2010). Among many semi-active 

control devices, the variable orifice damper is the common hydraulic device which may be utilized 

within the lateral bracing of a building. It provides an adaptable damping force by changing the 

size of the orifice through which a viscous fluid flows when a piston moves in a hydraulic cylinder 

(Ghaffarzadeh, Dehroud et al. 2013). A full-scale VOD in a semi-active variable stiffness system 

was implemented to investigate semi-active control at the Kobori research complex (Kamagata 

and Kobori 1994). Spencer and Nagarajaiah (2003) report that near 800 semi-active variable 

orifice fluid dampers have been installed in building structures in Japan. Block Pulse Functions 

(BPFs) have been widely studied and used as a basic set of functions for signal characterizations in 

controlled systems (Bouafoura, Moussi et al. 2011). They have been proved to be the most 

fundamental set and have gained much popularity in diverse applications in the area of control 

systems. In structural active control a new method proposed based on BP functions evolves 

minimizing computational costs of analytical approaches (Ghaffarzadeh and Younespour 2014). 

Optimal control of distributed parameter systems via BP transform where discussed by Zhu and Lu 

(1988). Ghaffarzadeh and Younespour (2015) proposed an equivalent linearization method for 

deterministic excitation based on BP transform. In comparison with other basic functions or 

polynomials, the BPFs can result more readily to recursive computation in order to solve specific 

problems. It is important to develop efficient control force schemes for optimizing the 

performance of the variable damper to work effectively. A variety of semi-active control 

algorithms have been proposed for control of semi-active devices such as the clipped-optimal 

algorithm (Dyke, Spencer et al. 1996), optimal controllers (Yoshida, Dyke et al. 2002), 

decentralized bang-bang, maximum energy dissipation (Jansen and Dyke 2000) and others. These 

mathematical-based analytical methods are much more reliable schemes to determine the control 

forces that are generated for reducing seismic hazard.  

The main objective of this study is the implementation of BPFs in semi-active vibration control 

of structures. The BPFs and their attributes are then presented in order to discuss formulation of 

BPFs for structural control. For detecting the required control forces during an earthquake, the 

feedback gain matrix is needed. The analytical proposed method for calculating feedback gain 

matrix by BPFs is presented. The moral of this story is that to propose an analytical control 

scheme for semi-active control based on BPFs to reach minor computational expenses. The 
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feasibility of the proposed method is verified by numerical simulations for a building frame 

equipped with VODs. The uncontrolled and controlled responses of the structural system are 

obtained by the proposed method and compared to clipped-optimal control method results. 

Simulation results show that the newly proposed method is effective in reducing seismic responses 

of the building for selected earthquakes. Additionally, the effectiveness of the proposed method of 

response reduction in earthquake excitation is evaluated by comparing the controlled response 

against the results obtained from the uncontrolled case. 

 

 

2. Variable orifice damper 

 
 Control strategies based on semi-active devices appear to combine the best features of both 

passive and active control systems. More attention received in this area in recent years can be 

attributed to the fact that semi-active control devices offer the adaptability of active control 

devices without requiring the associated large power sources. In fact, many of semi-active devices 

can operate on battery power, which is critical when a seismic load apply and the main power 

source to the structure may fail. One means of achieving a semi-active damping device is to use a 

controllable, electromechanical, variable orifice valve to alter the resistance to flow of a 

conventional hydraulic fluid damper. The variable orifice damper consists of a fluid viscous 

damper combined with a variable orifice on a bypass pipe containing a valve in order to control the 

reaction force of the device. A schematic of VOD is given in Fig. 1. The damping characteristics of 

a variable orifice can be controlled between two damping values (The device provides low 

damping when the secondary orifice is completely opened and the damping capacity of the damper 

is maximized when it is completely closed) by varying the amount of flow passing through the 

bypass pipe from one chamber of the piston in the other. In the intermediate positions of the valve 

opening process, the device produces a specific damping dissipation. The adjustment of the valve 

can be made usually electromechanically. 

Sack and Patten (1993) conducted experiments in which a hydraulic actuator with a 

controllable orifice was implemented in a bridge to dissipate the energy induced by vehicle traffic, 

followed by a full-scale experiment conducted on a bridge to demonstrate this technology (Patten, 

Sun et al. 1999). 

 

 

 

Fig. 1 Schematic of Variable-Orifice Damper 
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A case study of variable orifice dampers for seismic protection of structures was studied by 

Luca and Pastia (2009). They concluded that the variable orifice damper is more effective in 

reducing the displacement response of a SDOF system more in comparison to the response with a 

passive control fluid device.  

 

 

3. Block pulse functions 
 

BPFs are a set of orthogonal functions with piecewise constant values and are usually applied 

as a useful tool within the analysis, identification and other problems of systems science. Also 

BPFs can be used in control system engineering for analysis and synthesis of dynamic systems. 

Studies show that BPFs may have definite advantages for problems due to their explicit expression 

and their simple formulations. Because the BPFs are orthonormal function, in comparison with 

other basis functions, the block pulse functions can lead more easily to recursive computations to 

solve concrete problems (Jiang and Schaufelberger 1992).  

A set of BPF on a unit time interval [0, 1) is defined as (Babolian and Masouri 2008) 
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where 1,...,2,1,0  mi  with a positive integer value for m and i  is the ith BPF.  

BPFs possess disparate properties, the most salient characteristics are disjointness, 

orthogonality and completeness. The disjointness property can be clearly obtained from the 

definition of BPFs 
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where 1,...,1,0,  mji .  

The other property is orthogonality, which can be stated as follows 
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4. Clipped-optimal control strategy of VOD based on linear quadratic regulator 
 

The force in the variable orifice damper is expressed as 
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)sgn()()(

α
xxtCtfd
  (6) 

where x  is the velocity of the piston rod, )(tC is regulated damping coefficient. This coefficient 

can be varied from a minimum value, 
minC , to a maximum value,

maxC , and is the velocity 

exponent within the values of 0.1 to 1.0, which are commonly used in seismic applications. In the 

design process of an LQR control algorithm, the equations of motion of a structure controlled with 

dampers can be written as 

   
)(δ)(Λ(t))()( txtfKxtxCtxM g

   (7) 

where CM , and K  are n-dimensional matrices of mass, damping, and stiffness of the building 

structure, n  is the number of building stories. Respectively; )(tx is an n-dimensional vector of 

floor displacements and )(tf  is an r-dimensional vector of measured control forces of VODs, r

is the number of VODs that used in the structure. Respectively; Λ is a rn  location matrix of 

control forces of VODs; and δ is a n-dimensional vector of the coefficient vector for earthquake 

ground acceleration )(txg
 . This equation can be written in state space form as 
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A  is a 2n-domensional matrix called system matrix. B is a rn2  control location matrix 

and E is a 2n-domensional excitation influence vector. )(tz is a 2n-domensional state vector. 

On–off clipping control is used concerning design the semi-active strategy. The following rule is 

usually adopted for this control algorithm: if the magnitude of the force, df , produced by the 

device is smaller than the magnitude of the desired optimal force, cf , and the two forces have the 

same sign, the voltage applied to the current driver is increased to the maximum level so as to 

increase the force produced by the damper to match the desired control force. Otherwise, the 

commanded voltage is set to zero to provide the minimum damping. The command signal based 

on LQR theory is described by the following 

    
}){(max ddc fffHVv   (11) 

where v  is the command signal, maxV is the maximum voltage applicable on the semi-active 

device such as VOD to obtain the maximum damping, H  is the Heaviside step function, df  is 

the measured control forces and cf  is the required control force. Unknown variables of state and 

control force vectors make the differential Eq. (8) unsolvable owing to the r  additional unknown 

variables of control forces vector. Consequently, same as number of used VODs, extra equation is 

needed to solve the problem. The control is accomplished by measuring the actual relative velocity 

of the floor structure. The required control force is given by 
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)()()( txtKtfc

  (12) 

where )(tK  is control gain matrix calculated by LQR theory. Control gain is determined by 

minimizing the following quadratic objective function 

        
T

TT dttRututQtJ
0

))()()()(( zz  (13) 

where Q  and R  are the positive semi-definite constant matrices. Based on optimal control 

theory the control gain matrix is determined as 

       
)()( 1 tPBRtK T  (14) 

where )(tP  is the Riccati matrix obtained from the following Riccati equation 

       
0)()()()( 1   QtPBBtPRAtPtPA TT

 (15) 

 

 

5. Application of block pulse functions in semi-active control problems 
 

The active and semi-active control devices performance are highly dependent on the control 

algorithm employed. Rather than relying on non-analytical methods for control problems such as 

fuzzy based or neural network methods, due to owing reliability and trustworthiness, the analytical 

methods are often used. One of the most challenging components of active and semi-active control 

is the development of an accurate analytical approach with minor computational expenses. Using 

orthogonal basis functions can be a useful tool in a numerical analysis. The predominant family of 

these functions is known as BPFs. Besides, These functions are orthonormal. In the proposed 

method, BPFs are used as an approximation tool to reduce computational difficulties. 

The n-dimensional adjoint variable )(tP  satisfies the canonical equation (Bryson and Ho 1975) 
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under the two-point boundary values 0)0( zz   and 0)( TP . In this canonical equation, the 

coefficient matrix F is 
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To avoid this two-point boundary value problem in solving Eq. (15) to find )(tP , we set the 

2n-dimensional transition matrix of Eq. (17) as 
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where all the submatrices ),(11 tT , ),(12 tT , ),(21 tT  and ),(22 tT  are n-dimensional. 
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and 0)( TP , we have 
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1
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The main problem is finding gain matrix )(tK . 

With the gain matrix 

      
),(),()( 21

1

22

1 tTtTBRtK T    (21) 

In applying block pulse functions in this problem, a suboptimal solution with piecewise constant 

feedback gains can be obtained (Jiang and Schaufelberger 1992) 
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since the block pulse coefficients of the transition matrix ),...,2,1( mii  can be computed 

iteratively from this series 
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6. A comparative numerical study 
 

In order to compare the effectiveness of the semi-active control method described in the 

previous Section with other control method, numerical examples are used. The simulation consists 

of a 10-story building. Where the mass and stiffness parameters for each floor are listed in Table 1. 

The Mass and stiffness matrices are formed as follows 
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Table 1 Mass and stiffness values of test structure 

Story Mass Stiffness 

1-3 105,000 kg 1700× 105N/m 

4-6 95,000 kg 1600× 105 N/m 

7-9 90,000 kg 1400× 105 N/m 

10 85,000 kg 1100× 105 N/m 

 

 
Table 2 Properties of selected ground motions 

Earthquake Station PGA (g) PGV (cm/s) PGD (cm) 

Tabas 9101 Tabas 0.836 97.8 36.92 

Northridge 24436 Tarzana 1.024 75.4 20.05 

Duzce Duzce 0.348 60.0 42.09 

 

 

 

Fig. 2 Results of roof displacement time history in controlled structure (Tabas g=0.836) 
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The Rayleigh damping matrix is constructed using 3% modal damping for the first and second 

modes. It is assumed that one VOD dampers are in each floors. The velocity exponent parameter 

of VOD dampers is considered to be 0.8. The damping coefficient of dampers varies from a 

minimum value of Cmin=200 N.s/mm, while the valve is fully opened, to a maximum value of 

Cmax=1000 N.s/mm, when the valve is fully closed. 

The structure is subjected to the Tabas (1978), Northridge (1994), Duzce (1999) earthquakes to 

evaluate the performance of the proposed analytical method in reducing the structural responses 

under seismic loading. Table 2 lists basic characteristics of the earthquake recorded motions.  

Fig. 2 shows time histories of the roof displacement for the uncontrolled structure compared 

with proposed method based on BPFs and proposed method compared with clipped-optimal 

control method under the Tabas earthquake.  

 

 

Fig. 3 Results of roof displacement time history in controlled structure (Tabas g=0.836) 

 

 

 

Fig. 4 Results of roof displacement time history in controlled structure (Duzce g=0.348) 
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Displacement response spectra of uncontrolled and controlled responses using the proposed 

method of comparsion to clipped- optimal control method for Tabas, and Duzce earthquakes are 

presented in Figs. 3 and 4. It can be seen that the proposed method is as efficient as 

clipped-optimal control method. 

Figs. 5-7 are shown the same control trajectories of clipped-optimal and proposed semi-active 

control method based on BPFs.  

Furthermore, the following indices to evaluate the control system performance are considered. 

These sets of performance indices compare the controlled response against the results obtained 

from the uncontrolled cases. There are different sets of evaluation criteria which are used in 

structural control to evaluate the performance of the control system applied to the buildings. The 

set of evaluation criteria used in this study to compare the performance of the structure are defined 

based on both maximum and normed responses (Ohtori, Christenson et al. 2004). The first 

evaluation criteria for the proposed method pertain to its ability to reduce inter-story drift. The 

second and third evaluation criteria relate to the ability of the proposed method to reduce the 

maximum displacement and acceleration of the floor. The fourth one relates to the ability of the 

new method to reduce the maximum force of the floor. 

 

 

Fig. 5 Trajectory of proposed and clipped-optimal semi-active control method (Tabas g=0.836) 

 

 

Fig. 6 Trajectory of proposed and clipped-optimal semi-active control method (Northridge g=1.024) 
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Fig. 7 Trajectory of proposed and clipped-optimal semi-active control method (Duzce g= 0.348) 
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The evaluation criteria for the normed based forms control effort requirements of the method 

are given by the following criteria 
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The last one is related to the control devices 

    W

(t)f
J

l
t,l
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9   (36) 

Where )(txi  is displacement of i-th story, )(td i
is drift of i-th story, )(txi

 is acceleration of i-th 

story,  (t)f l
 is control force produced by l-th device, 𝑚𝑖 is mass of  i-th story, ih is height of 

i-th story and 𝑊 is seismic weight of building. The term „c‟ and „u‟ refer to the controlled system 

and uncontrolled system. The norm u , is computed using the following equation 
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t
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 (37) 

The performance of the system according to set of evaluation criteria for seismic records are 

presented in Fig. 8 for both proposed and clipped-optimal control algorithms. By comparison, 

between the results of evaluation criteria for ground motions it can be concluded the proposed 

control method based on BPFs is very close to clipped-optimal control algorithm. 
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Fig. 8 Evaluation of performance criteria 

 

 

7. Conclusions 
 

This paper applied the idea of block pulse functions in the semi-active control problem. An 

approach based on BPFs is presented for the semi-active structural control. The results of the 

proposed method and clipped optimal control method were compared. The numerical simulation 

results illustrated that the proposed method gives satisfactory conclusions in the effectiveness of 

performance responses and feasibility of the proposed approach. The control trajectories for the 

clipped-optimal control method and the proposed method depicted the same performance for each 

approach. Also the proposed method exhibited satisfactory control performance for the evaluation 

criteria and the values of evaluation criteria revealed very competent control performance. The 

comparsion results depicted the present method is able to approximate the behavior of controlled 

system and is in agreement with other methods.  
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