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Abstract.  In this research, the nonlinear free vibration analysis of boron-nitride micro ribbon (BNMR) on 
the Pasternak elastic foundation under electrical, mechanical and thermal loadings using modified strain 
gradient theory (MSGT) is studied. Employing the von Kármán nonlinear geometry theory, the nonlinear 
equations of motion for the graphene micro ribbon (GMR) using Euler-Bernoulli beam model with 
considering attached mass and size effects based on Hamilton’s principle is obtained. These equations are 
converted into the nonlinear ordinary differential equations by elimination of the time variable using 
Kantorovich time-averaging method. To determine nonlinear frequency of GMR under various boundary 
conditions, and considering mass effect, differential quadrature element method (DQEM) is used. Based on 
modified strain MSGT, the results of the current model are compared with the obtained results by classical 
and modified couple stress theories (CT and MCST). Furthermore, the effect of various parameters such as 
material length scale parameter, attached mass, temperature change, piezoelectric coefficient, two 
parameters of elastic foundations on the natural frequencies of BNMR is investigated. The results show that 
for all boundary conditions, by increasing the mass intensity in a fixed position, the linear and nonlinear 
natural frequency of the GMR reduces. In addition, with increasing of material length scale parameter, the 
frequency ratio decreases. This results can be used to design and control nano/micro devices and nano 
electronics to avoid resonance phenomenon. 
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1. Introduction 
 

The graphene micro ribbon (GMR) is one of the most common structures that at micro and 

nano-dimensions in micro sensors, biosensors, mass sensors, micro accelerometers and micro 

electro-mechanical systems are used. The existence of mass in a structure would have important 

effect on its vibration behavior and it is obvious that the rate of this effect is depend on location 

and quantity of mass, therefore, it is one of the most important issues that is considered in the 

fields of engineering recently. The size dependent effect has an important role at micro scale. Fleck 

and Hutchinson (1993, 1997, 2001) extended and reformulated the classical couple stress theory 

and renamed it as the strain gradient theory (SGT), in which for homogeneous isotropic and 

incompressible materials, three additional higher-order material length scale parameters are 
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introduced. Lam, Yang et al. (2013) proposed a modified strain gradient elasticity theory (MSGT) 

in which a new additional equilibrium equations to govern the behavior of higher-order stresses, 

the equilibrium of moments of couples is introduced, in addition to the classical equilibrium 

equations of forces and moments of forces. Meanwhile, there are only three independent 

higher-order materials length scale parameters for isotropic linear elastic materials in the present 

theory. So far, many researches about buckling and vibration of structures at micro and nano scales 

are carried out. Kahrobaiyan, Asghari et al. (2013) examined longitudinal behavior of a micro bar 

using SGT. They used Hamilton’s principle to obtain equilibrium equations and showed that there 

is a good coincidence between finite element method (FEM) and analytical method. They showed 

that the microbars modeled by the SGT are stiffer than those modeled by the classical theory (CT), 

the strain gradient bars have greater natural frequencies and smaller static deformations compared 

to the classical bars. Narender, Ravinder et al. (2012) presented strain gradient torsional vibration 

analysis of micro/nano rods. They derived the governing equation and both the classical and the 

non-classical boundary conditions by employing the Hamilton’s principle. A numerical method to 

solve the differential equations is the differential quadrature method (DQM) which initially 

introduced by Bellman, Kashef et al. (1972), in which this method can employ only for continuous 

problems. Recently, differential quadrature element method (DQEM) has appeared as a numerical 

technique to analyze the structures with some local discontinuities in loading, attached mass, 

material properties, and geometry. Thus, this method is used to solve many problems especially in 

the vibration analysis. Ghorbanpour Arani, Atabakhshian et al. (2012) studied nonlinear vibration 

of boron nitride nanotube. Based on the von Kármán nonlinear geometry and nonlocal elasticity 

theories, they used Timoshenko beam theory, and finally they obtained high-order equations using 

Hamilton’s principle and solved them using DQM. They examined the effect of length scale 

parameter, elastic coefficients of foundation, electrical potential amplitude and thermal changes on 

the natural frequency of boron nitride nano-beam. Ghayesh, Amabili et al. (2013) investigated 

nonlinear forced vibrations of a micro beam based on SGT, and they used Hamilton’s principle to 

obtain equations and employed Galerkin method to solve them. In addition, they studied the effect 

of various values of damping coefficient on the curve of frequency response of system and found 

that for high values of viscosity, resonance domain decreases. Li, Feng et al. (2014) presented 

bending and free vibration of functionally graded piezoelectric micro beam based on MSGT. They 

considered material properties in the form of power function and variable in direction of thickness. 

Their results showed that by increasing variable factor of functionally graded material, the 

electrical potential decreases and vice versa for natural frequency. Shi, Ni et al. (2011) illustrated 

the buckling analysis of a double layer graphene nano ribbons. They used the nonlocal elasticity 

theory and plotted the buckling modes shapes for two states of in-phase and anti-phase. Their 

results indicated that the nonlocal effect is an inverse relationship with the buckling load, and the 

nonlocal effect decreases with increasing aspect ratio of double layer graphene nano ribbons 

(DLGNRs). Ke, Wang et al. (2012) analyzed the nonlinear vibration of a piezoelectric nano beam 

based on the nonlocal elasticity theory. They used Hamilton’s principle and Timoshenko beam 

model to obtain the equations of motion subjected to voltage and uniform heat, also solved 

governing equations using DQM. Their results showed that a change in the external electric 

voltage from a positive value to a negative value leads to the decrease of the nonlinear frequency 

ratio. Mohammadimehr, Saidi et al. (2011) studied the buckling analysis of double walled carbon 

nanotubes (DWCNTs). They employed the nonlocal elasticity theory and Timoshenko beam model. 

Their results showed that the local beam model over estimates the critical buckling load if the 

small scale parameter for long nanotubes is overlooked. Reddy (2007) investigated the bending, 
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buckling and free vibration analysis of beam using the nonlocal elasticity theory. He obtained 

analytical solution for the deflection, critical buckling load, and natural frequency and he 

examined the influence of small scale parameter on mentioned parameters. He showed that the 

considering nonlocal effect leads to increase deflections and decrease buckling loads and natural 

frequencies. Wang, Zhang et al. (2007) studied free vibration analysis of nano beam based on the 

nonlocal elasticity theory for Timoshenko beam model. They extracted governing equations and 

boundary conditions using Hamilton’s principle and solved these equations for the natural 

frequencies of beam and various boundary conditions. The exact nonlocal Timoshenko beam 

solutions provided by them should be useful to engineers who are designing micro 

electromechanical and nano electromechanical devices. Chowdhury, Adhikari et al. (2009) 

examined ability the carbon nonotubes as a mass sensor and showed that new sensor equations are 

used for biosensors with acceptable accuracy. Using nonlocal elasticity theory, Murmu and 

Pradhan (2009) presented vibration response of a nano cantilever considering non-uniformity in 

cross section. They solved the governing equations by DQM. Khalili, Jafari et al. (2010) indicated 

a combined method to examine dynamic behavior of functionally graded beams under moving 

load. They extracted the governing equations using Euler Bernoulli beam theory and Lagrange 

method and they discrete existing derivatives using Ritz-DQ method. Comparing other 

single-phase methods such as Newmark and Wilson, their method had more accuracy even with 

large time distances. They found that the inertia effect of the moving load on the axial vibrations of 

the beam is more crucial than the corresponding one on the transverse vibrations of the beam. Xia, 

Wang et al. (2010) illustrated bending, post buckling and the nonlinear free vibration of a micro 

beam. They used non-classical continuum mechanics introducing length scale parameter. Marinaki, 

Marinakis et al. (2011) designed a mechanism to control vibration for a piezoelectric beam on 

which attached a particle swarm having sensor rule. They performed mechanical simulation 

system based on classical motion theory and they used FEM to solve it. They tested three different 

variants of the particle swarm optimization (PSO) and finally, showed that for different loadings, 

the PSO is very satisfactory. Kahrobaiyan, Asghari et al. (2011) presented a formulation of 

nonlinear Euler-Bernoulli beam based on SGT. They considered central plate extension as 

nonlinear terms in beam behavior. Their results showed that the difference between the obtained 

frequencies by the non-classical beam theories and those predicted by the classical beam theories 

is significant when the ratio of the beam thickness to the length scale parameter is low. Rahmati 

and Mohammadimehr (2014) studied the free vibrations of non-uniform Boron nitride nano rod on 

elastic foundation under electrical, thermal and mechanical loads. They used DQM to solve the 

governing equations; also they examined connected mass effects on natural frequencies. They 

showed that boundary conditions are effective on sensitivity of boron nitride nano rod to 

connected mass. Their results indicated that the non-dimensional frequency ratio of non-uniform 

and non-homogeneous boron nitride nano rods (BNNRs) decreases with an increase in the small 

scale parameter. Lei, He et al. (2013a) analyzed a new size dependent model for functionally 

graded beam using strain gradient elasticity theory and sinusoidal shear strain theory. They used 

Navier’s type solution for simply supported boundary conditions and investigated the effect of 

various parameters such as length scale parameter and shear strain on free vibration of system. 

Their results showed that the dimensionless frequencies of the functionally graded (FG) micro 

beams larger than those of the metal micro beams and smaller than the ceramic micro beams. Lei, 

Murmu et al. (2013b) investigated dynamic behavior of nonlocal beams with viscoelastic damping 

and to obtain governing equations and viscoelastic modeling, they used Kelvin-voigt model for 

Euler-Bernoulli beam. They also presented a closed solution to analyze free vibration of beam 
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using transition function method (TFM) and they studied nonlinear effects and viscoelastic 

coefficient on natural frequencies of system. Their results demonstrated that for the Kelvin-Voigt 

model, the imaginary part of the complex natural frequency increases almost linearly with the 

viscoelastic parameter. There is only a small dependence of the viscoelastic parameter on the real 

of the complex natural frequencies. Murmu and Adhikari (2013) examined vibration analysis of a 

single-layer graphene sheet considering the nonlocal elasticity theory. They introduced a 

mathematical framework for this problem and considered small scale effects. They observed that 

the performance of the sensor depends on the spatial distribution of the attached mass on the 

graphene sheet with and without nonlocal effects. Mohammadi and Mahzoon (2013) studied 

thermal effects on post buckling micro beam based on modified strain gradient theory. They 

presented a nonlinear model considered small scale effects and Poisson's ratio. They could 

examine analytically postbuckling behavior for various boundary conditions. Akgöz and Civalek 

(2011) illustrated stability of micro beams based on modified couple stress theory under various 

boundary conditions and effect of length scale parameters. Arefi and Allam (2015) investigated 

nonlinear analysis of an arbitrary functionally graded circular plate integrated with two 

functionally graded piezoelectric layers resting on the Winkler-Pasternak foundation. They showed 

the effect of different parameters such as parameters of foundation, non-homogenous index and 

boundary conditions on the mechanical and electrical results of the system. Akgöz and Civalek 

(2013) presented the vibration response of inhomogeneous and non-uniform micro beams based on 

Euler-Bernoulli beam theory and modified couple stress theory (MCST). They used Rayleigh-Ritz 

method to solve equations and examined effect of material properties on natural frequencies of 

functionally graded micro beam. Their results indicated that the dimensionless natural frequencies 

predicted by CT are always smaller than those obtained by MCST and also the values of material 

properties and tapered ratios are significant influences on vibration response of axially functionally 

graded (AFG) tapered micro beams. Wang, Lin et al. (2013) studied nonlinear free vibration 

analysis of micro beam based on Euler-Bernoulli beam theory, MCST, and von Kármán nonlinear 

theory. They transformed partial differential equations of problem to ordinary differential 

equations with eliminating of time variable using Kantorovich method. They showed that the 

natural frequency based on MCST is more than CT and the size effect on the nonlinear free 

vibration characteristics is only significant when the ratio of the beam height to material length 

scale is relatively small, it diminishes as this ratio increases. Tounsi et al. (2015) examined size 

effect on vibration and bending of micro beam made of functionally graded materials. They used 

MCST for considering size effect and Mori–Tanaka method to simulation of functionally graded 

material. They found that considering size effect and resulting structure’s hardness, leads to 

decrease vertical displacement and increase the natural frequency. Torabi, Al-Basyouni et al. (2013) 

investigated free vibrations of non-uniform Timoshenko beam considering several concentrated 

mass on it. They used DQEM to solve the governing equations. They examined effect of number, 

intensity and location of mass on system’s natural frequency. They found that by increasing of 

mass intensity and mass number, the natural frequency of beam decreases. In another work, Torabi, 

Afshari et al. (2014a) studied transverse vibrations of non-uniform Timoshenko beam with several 

crack under various boundary conditions using DQEM. Simsek (2014) presented nonlinear 

Euler-Bernoulli micro beam on nonlinear elastic foundation using MCST. He used Hamilton’s 

principle to obtain equations of motion and boundary conditions. He transformed nonlinear partial 

differential equations to ordinary differential equations using Galerkin method and he obtained 

system’s natural frequencies using variational method. He inferred that with an increase in the 

length scale parameters lead to decrease in the nonlinear frequency ratio although the linear and 
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the nonlinear vibration frequencies increase with considering length scale parameters. Amiri 

Moghadam, Kouzani et al. (2015) investigated an effective modeling strategy for nonlinear large 

deformation (small strains and moderate rotations) dynamic analysis of polymer actuators. 

Mohammadimehr, Monajemi et al. (2015) studied free vibrations of viscoelastic micro rod with 

variable section on visco-Pasternak foundation using strain gradient theory. They used DQM to 

solve the equations of motion and they obtained natural frequencies for various boundary 

conditions. Their results showed that for higher modes, difference between non-dimensional 

natural frequencies related to MCST and SGT is more sensible than lower modes. Ying, Ni et al. 

(2015) investigated a micro-vibration response of the sandwich plate with magneto-rheological 

visco-elastomer (MRVE) core and supported mass under stochastic support motion excitations. 

Chen (2001) investigated the vibration of non-uniform shear deformable axisymmetric orthotropic 

circular plates. He used the DQEM to solve these equations. In other work, Chen (2002) 

considered free vibration analysis of non-prismatic beams resting on elastic foundations using the 

DQEM. He developed numerical algorithm to analyze the related pressure vessel and piping 

structures. Torabi, Afshari et al. (2014b) studied free vibration analysis of a rotating non-uniform 

blade with multiple open cracks using DQEM. They indicated that the damage is the highest effect 

on a natural frequency when the crack is located at a point that has maximum value of curvature in 

the corresponding normal mode. Chen (2005) presented DQEM analysis of in-plane vibration of 

curved beam structures. In the other work, Chen (2008) analyzed out-of-plane vibration of 

non-prismatic curved beam structures with considering the effect of shear deformation using 

DQEM. Malekzadeh, Karami et al. (2004) investigated semi-analytical free vibration analysis of 

thick plates with two opposite edges simply supported using DQEM. They achieved that reducing 

the thickness ratio, the fundamental natural frequencies are reduced. This is due to the fact that the 

stiffness of the plate reduces.  

In this research, the nonlinear vibrations analysis of boron-nitride micro ribbon (BNMR) based 

on the modified strain gradient elasticity theory (MSGT) is studied. At micro and nano scales, the 

influences of temperature change, attached mass, piezoelectric coefficient, elastic foundation 

moduli and various boundary conditions on natural frequency of this system are investigated. 

Nonlinear equations of motion are solved using Kantorovich time averaging method and 

differential quadrature element method (DQEM). The results of this research compared with other 

methods and as can see there is a very good accordance with the other work. Finally, a comparison 

between various size dependent effect such as MSGT, modified couple stress theory (MCST), and 

classical theory (CT) is presented. 

 

 

2. Basic equations 

 

GMR is a strip made of graphene crystal, with limited width, that used in micro and nano 

systems because of its good electrical, thermal and mechanical properties. Fig. 1 shows a GMR 

with length of L and cross section b×h and height h in Cartesian coordination. x, y, and z 

coordinate axes are in length, width, and thickness (height) directions of GMR. In a GMR, the 

total displacements of 
1

u , 
2

u , and 
3

u  are assumed to be the functions of only the x, and z 

coordinates. 

where mx
 

and m in Fig. 1 indicates location and mass of the attached mass, respectively. 
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2.1 Modified strain gradient theory 
 

When dimensions of material are at micro and nano scales, classical elasticity theory cannot 

predicts behavior of materials. Therefore, it is necessary to use non-classical elasticity theories, 

which can consider of small-scale effects up to micro and nano meters and inherent discontinuity 

of nano structures. Among the nonclassical theories with respect of size effect, it can be point to 

the Eringen's nonlocal elasticity theory (Eringen and Edelen 1972), couple stress theory (CST) 

(Ejike 1969), modified couple stress theory (MCST) (Yang, Chong et al. 2002, Mohammadimehr 

et al. 2015, 2016a, b) and strain gradient theory (SGT) (Lam, Yang et al. 2003). One of the most 

appropriate nonclassical forms which have been presented is modified strain gradient theory 

(MSGT), containing three length scale parameters (l) in basic equations. The length scale 

parameters in the MSGT, shows that the behavior of material at micro scale is depend on 

dimensions of material length scale parameter. In MSGT, a new stress tensor is introduced, which 

is different from Cauchy stress tensor, and it can be used as general stress tensor in momentum 

equation. Considering MSGT suggested by (Lam, Yang et al. 2003), the strain energy U in linear 

elastic isotropic materials on area   with small deformations is explained by Eq. (1). 

1

2
ij ij i i ijk ijk ij ij i iU P m D E d     


       

                 (1)
 

where ij , ijk , ij , i , and iE are the strain tensor, deviatoric stretch gradient tensor, 

symmetric rotation gradient tensor, dilatation gradient vector and electrical field, respectively 

(Lam, Yang et al. 2003). 

1

2

ji k k
ij

j i i j

uu u u

x x x x


   
   

                               (2)

 

, , , , , , ,

, ,

1 1 1
2 2

3 15 15

1
2

15

ijk jk i ki j ij k ij mm k mk m jk mm i mi m

ki mm j mj m

         

  

               

   
          (3)

 

,i mm i 
                              (4)

 

 
1

2
i i

u  
                          (5)

 

, ,

1

2
ij i j j i     

                          (6)
 

,m iE  
                           (7)

 

where ϕ is the electrical potential. 

ij , ip , ijk , and ijm  the classical and higher order stress tensors, can be written as the 

following from (Lam, Yang et al. 2003). 

ij ijkl kl kij k ijC e E T     
                       (8)
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2

02i iP Gl 
                               (9)

 

2

12ijk ijkGl 
                             (10)

 

2

22ij ijm Gl 
                              (11)

 

where ekij and ΔT are the piezoelectric coefficient and temperature change, respectively. Also, in 

Eq. (8), λij is equal to Cijkl αkl  that Cijkl and αkl are fourth-order elastic modulus tensor of the 

classical isotropic elasticity and the thermal expansion coefficients, respectively. l0 ,l1 and l2 are 

independent material length parameters related to dilatation gradients, deviatoric stretch gradients 

and symmetry rotation gradients, respectively. Also, G and  denote shear modulus and rotation 

vector, respectively. 

Electric displacement relation based on the piezoelasticity theory can be expressed as the 

following form 

i imn mn im mD e E 
                         (12)

 

where iD  and im  denote electric displacement and the dielectric permittivity constant, 

respectively. 

 

2.2 Displacement fields and the constitutive equations 
 
Based on the Euler-Bernoulli beam theory, the displacement field of GMR in x, y and z 

directions can be written as 

1

2

3

( , )
( , , ) ( , )

( , , ) 0

( , , ) ( , )

W x t
u x z t U x t z

x

u x z t

u x z t W x t


 





                       (13)

 

The components of the von Kármán strain tensor is used to obtain nonlinear 

strain-displacement relations. Therefore by substituting Eq. (13) into Eq. (2), the nonlinear 

strain-displacement relations are expressed as follows 

     
2 22

1
11 2

12 13 22 23 33

( , , ) 1 (x, t) 1
, , ,

2 2

0

u x z t U
x t x t x t

x x
W z W W

x x x


    

      
    

  

 
   

 

  

 



  





    (14)

 

The components of dilatation gradient vector, deviatoric stretch gradient tensor and symmetric 

rotation gradient tensor are obtained by substituting Eqs. (13) and (14) into Eqs. (3)-(6). 

       

 

2 3 2

1 2 3 2

2

2

3 2

, , , ,

0

,

U x t z W x t W x t W x t
x x x x

W x t
x







       
      
       



 
  

             (15)
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       

 

   
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2 3 2
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2
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2 3
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2

2

2 2 2 2
η   , , , ,

5 ? 5 5

4 4
 ε ,

15 ? 5

1 1 1
 ε , ,

5 ? 5

1
, ,

5

U x t z W x t W x t W x t
x x x x x

W x t
z x

U x t z W x t
x x x

W x t W x t
x x


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  

        
       

        

 
    

 

   
        

   

  
  
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2

2

2
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2
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1
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5

1
,

5

1
,
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0

U x t z W x t
x x x

W x t W x t
x x

W x t
x

W x t
x
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

  

         

 
 
 

   
        

   

   
   

   







  


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 
2

12 21 2

11 13 22 23 33

1
,

2

0

W x t
x

 

    


  



                              (17)

 

Substituting Eqs. (14)-(17) into Eqs. (8)-(11), the components of Cauchy stress tensors and 

higher ordered stress tensors are determined as 

 11 1 11 1ζ ε αE e
x

T


  



                        (18)

 

where α and   in Eq. (18) are the thermal expansion coefficient and the electrical potential, 

respectively. 

       
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3. Equations of motion for GMR 
 

The governing equations of the GMR in an elastic-Pasternak foundation for free vibration can 

be obtained using Hamilton’s principle. 

0
0 ( ) 0

t

U K dt                             (22)
 

where U, K and Ω are the strain energy, kinetic energy and the work caused by external forces, 

respectively. 

 

3.1 Strain energy of boron nitride GMR 
 
The strain energy of GMR based on the modified strain gradient theory is defined by 

substituting the Eqs. (14)-(21) into Eq. (1) as follows 

 (23) 

 

E is Young modulus and I is the moment of inertia of GMR’s cross section. 
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3.2 Kinetic energy of GMR 
 

Considering the displacement of the beam (U,W) in two directions x and z, the kinetic energy is 

an expression based on the following equation 

2 2 231 2

0

22 2 2

0

1
( ) ( ) ( )

2

1 (x, t) (x, t) (x, t)

2

L

A

L

uu u
K dAdx

t t t

U W W
A A I dx

t t x t



  

  
   

   

        
       

          

 


           (24)

 

 

3.3 The work done by elastic foundation 
 
The external work due to Winkler-Pasternak foundation can be calculated as the following from 

2

0

1
( (x, t) (x, t)). (x, t)

2

l

w Gk W k W W dx    
                  (25)

 

where kw and kG are the Winkler and shear moduli of the elastic medium, respectively. To simplify 

the equations of motion GMR, the dimensionless parameters are defined as follows 
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
     

    (26)

 

where M  is the dimensionless attached mass. Substituting Eqs. (23)-(25) into Eq. (22), and 

using part-by-part integration technique, then making non-dimensional relations, the governing 

equations of motion GMR and boundary conditions are obtained as follows 
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4. The semi-analytical and numerical methods 

 

For solving engineering problems, analytical methods with high accuracy are more interested, 

but in many cases, these methods are faced by limitations such as a complex geometry, existing 

discontinuity in the range of problem analyses or complexity of the boundary conditions. This 

issue caused to advent of semi-analytical and numerical methods, so that today, there are different 

numerical methods to solve engineering problems available. 

 

 
4.1 Kantorovich time averaging method 
 
In this study, the equations of motion for GMR are the coupled partial differential equations 

with nonlinear effects, that there are not known analytical solution to these equations. So, it should 

be used the semi-analytical to solve the equations. For this aim, the displacements of the GMR in 

the case of harmonic vibrations are expressed as Eq. (32). In this method, a time functions 

assumed and eliminated from the governing equations using the Kantorovich method (Wang et al. 

2008). For an unbuckled GMR, in order to eliminate time variable, it is assumed that the essential 

vibration can be closely approximated by the following expressions (Wang et al. 2008) 

2( , ) ( )cos ( )

w( , ) ( )cos( )

u U

W

   

   




 (32)

 

If u and w are considered as the square and linear of cosωτ based on Kantorovich time 

averaging method, then the time variable is omitted from the Eqs. (27)-(31). On the other hands, 

with considering the above approximations (Eq. (32)), there is only a location term ( ) in the 

governing equations of motion for GMR (Eqs. (33)-(37)). Moreover, with this approximation (Eq. 

(32)), the partial differential equations (Eqs. (27)-(31)) are converted to the ordinary differential 

equations (Eqs. (33)-(37)). Finally, the nonlinear governing equations of GMR (Eqs. (33)-(37) that 

have only a location term (  )) are analyzed using differential quadrature element method 

(DQEM). 

In Eq. (32), ω is the dimensionless natural frequency and U(ζ) and W(ζ) are the undetermined 

mode shapes of a nonlinear vibration of the GMR (Wang, Lin et al. 2013). Substituting Eq. (32) 
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into Eqs. (27)-(31) and the Kantorovich time averaging method is applied to this equations, finally 

the governing equations of the GMR and boundary conditions are obtained as follows 
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4.2 Differential quadrature method 
 

In this research, the governing equation of motion for boron-nitride micro ribbon is obtained by 

using differential quadrature method (DQM). Based on DQM, the derivative of the function with 

any order at any arbitrary point like (x,y)=(xi,yi) can be written in terms of function values in all of 

the range. 
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where 

 ,ij i jf f x y
                              (39)
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And also, 
 r

A is the matrix of weighting coefficients, which are defined as follows 
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A well-accepted set of the grid points is the Chebyshev–Gauss–Lobatto (CGL) points that these 

points for interval [0, 1] are given by 

1 ( 1) 1 ( 1)
1 cos[ ] 1 cos[ ]

2 ( 1) 2 ( 1)
i j

i j
x y

N M

     
      

                    (41)

 

A numerical method to solve the differential equations is the differential quadrature method 

(DQM) in which this method can employ only for continuous problems. Recently, differential 

quadrature element method (DQEM) has appeared as a numerical technique to analyze the 

structures with some local discontinuities including attached mass, loading, material properties, 

and geometry. Thus, this method is used to solve many problems especially in the vibration 

analysis. Thus in this research, the DQEM is used for linear and nonlinear vibration analysis of 

micro ribbon. In this analysis, the attached mass as a local discontinuity on the micro ribbon is 

considered. We assume, at the coordinates (ζ=ζm) a discontinuity in the parameters of micro ribbon 

is created. Thus, the compatibility conditions for the discontinuity of the attached mass can be 

explained as follows 

   

   

   

   

   

   

2

2

2

2

m m

m m

m m

m m

m m

m m

U U

u
N N m

t

W W

dW dW

d d

M M

w
V V m

t

 

 

 

 

 

 

 

 

 

 

 

 

 




 










 

                          (42)

 

In this equation, m represents concentrated mass inertia and N, M and V are axial force, the 

bending moment and shear force, respectively. Based on DQEM, solving points should be divided 

to three categories of boundary points, common areas between sub-beams at discontinuities and 

domain points, and then by applying compatibility conditions and boundary conditions to 
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equations of motion GMR, the natural frequency of the system is achieved which has been 

described for linear and nonlinear states of GMR with details in Appendices A and B, respectively. 

 

 

5. Numerical results 
 

In this section, the numerical results are presented to investigate the nonlinear free vibration of 

boron-nitride micro ribbon based mass sensor using MSGT. The effect of the material length scale 

parameters, attached mass, temperature change, piezoelectric coefficient and two parameters of 

elastic foundations on natural frequencies of the system are investigated. Also, if the all material 

length scale parameters are equal to zero ( 0l = 1l = 2l = 0), then this theory is named CT, while with 

considering 0l = 1l = 0 and 2l = l , the equation of motions are reduced to those corresponding to the 

ribbon modelled based on the MCST. When all of the material length scale parameters (l0, l1, l2) in 

the equations of motion are exist, this theory is named MSGT ( 0 1 2l l l l   ). Therefore the results 

from the MSGT are compared with the obtained results of MCST and CT. 

Mechanical and geometrical properties of the GMR as follows 

6

1.44 17.6 20 2

1.2 10 1/

E GPa l m L h b h

c



 

   

              (43)

 

where h is considered as a fraction of l. 
In Table 1, there is the slightly difference between the obtained present results (DQM) and 

Reddy (2011) (analytical solution) for linear frequencies, these differences are because the type of 

solution method. Thus in Table 1, the numerical results of this research based on DQM are 

compared with the obtained results by Reddy (2011) based on analytical solutions. He analyzed 

the linear vibration analysis of a micro beam with a simply supported using a MCST and analytical 

solution. Two methods have a good agreement together; while in Table 2 for nonlinear vibration, 

the method of solution in the present results and Wang et al. (2013) is the same in which DQM is 

used both them. They analyzed nonlinear vibrations of a micro beam with simply supported 

boundary conditions using the MCST and CT based on DQM. Thus two DQ methods have an 

excellent agreement. 

 

 

 
Table 1 First three linear natural frequency of micro beam with simply supported and modified couple stress 

theory 

h/ℓ 
𝜔1̅̅̅̅  𝜔2̅̅̅̅  𝜔3̅̅̅̅  

Present work  Reddy, 2011 Present work Reddy, 2011 Present work Reddy, 2011 

1 22.8004 22.80 90.9222 90.92 203.5397 203.54 

5 10.6825 10.68 42.5989 42.60 95.3611 95.36 

CT 9.8595 9.86 39.3170 39.32 88.0143 88.02 
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Table 2 First nonlinear natural frequency of micro beam with simply supported boundary condition, CT, and 

MCST 

W(0.5,0)*10 

h/ℓ=1 h/ℓ=3 CT 

Present work 
Wang et al. 

2013 
Present work Wang et al. 2013 Present work 

Wang et al. 

2013 

0.1 1.0084 1.0084 1.0299 1.0299 1.0440 1.0440 

0.2 1.0330 1.0330 1.1147 1.1147 1.1661 1.1661 

0.3 1.0729 1.0727 1.2433 1.2433 1.3452 1.3452 

0.4 1.1263 1.1259 1.4036 1.4036 1.5617 1.5617 

0.5 1.1915 1.1915 1.5860 1.5860 1.8022 1.8022 

 

 
Table 3 First three linear natural frequency of GMR with simply supported boundary condition and different 

mass intensity ( M ) in 0.5m 
 
for MSGT

 
( 0 1 2 17.6l l l l m    ) and MCST ( 0 1 20, 17.6l l l l m    ) 

h/ℓ mode 

0M   0.01M   0.05M   0.1M   

MCST MSGT MCST MSGT MCST MSGT MCST MSGT 

1 

𝜔1̅̅̅̅  22.8004 39.9124 22.5761 39.5193 21.7400  38.0536 20.8131 36.4290 

𝜔2̅̅̅̅  90.9222 159.5248 90.9222 159.5248 90.9222 159.5248 90.9222 159.5248 

𝜔3̅̅̅̅  203.5397 358.4696 201.6012 355.0091 194.8925 343.0434 188.3211 331.3380 

2 

𝜔1̅̅̅̅  14.2433 21.7062 14.1032 21.4924 13.5809 20.6955 13.0018 19.8121 

𝜔2̅̅̅̅  56.7986 86.7261 56.7986 86.7261 56.7986 86.7261 56.7986 86.7261 

𝜔3̅̅̅̅  127.1503 194.7696 125.9393 192.8933 121.7484 186.4046 117.6432 180.0557 

3 

𝜔1̅̅̅̅  12.0071 16.2299 11.8890 16.0701 11.4487 15.4743 10.9605 14.8140 

𝜔2̅̅̅̅  47.8812 64.8201 47.8812 64.8201 47.8812 64.8201 47.8812 64.8201 

𝜔3̅̅̅̅  107.1876 145.4780 106.1667 144.0798 102.6338 139.2438 99.1732 134.5110 

Continued- 
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4 

𝜔1̅̅̅̅  11.1187 13.8093 11.0093 13.6734  10.6016 13.1666 10.1496 12.6048 

𝜔2̅̅̅̅  44.3384 55.1337 44.3384 55.1337 44.3384 55.1337 44.3384 55.1337 

𝜔3̅̅̅̅  99.2566 123.6684 98.3113 122.4823 95.0398 118.3790 91.8352 114.3625 

5 

𝜔1̅̅̅̅  10.6825 12.5316 10.5774 12.4083 10.1857 11.9485 9.7514 11.4387 

𝜔2̅̅̅̅  42.5990 50.0192 42.5990 50.0192 42.5990 50.0192 42.5990 50.0192 

𝜔3̅̅̅̅  95.3627 112.1469 94.4544 111.0729 91.3113 107.3574 88.2324 103.7199 

 

 
Table 4 frequency ratio (ωNL/ωL) of GMR with simply supported boundary condition and different mass 

intensity ( M ) in 0.5m 
 
for MSGT

 
( 0 1 2 17.6l l l l m    ) and MCST ( 0 1 20, 17.6l l l l m    ) 

h/ℓ W(0.5,0)*10 
0M   0.05M   0.1M   0.2M   

MCST MSGT MCST MSGT MCST MSGT MCST MSGT 

2 

0.3 1.1780 1.0802 1.1774 1.0800 1.1769 1.0797 1.1760 1.0794 

0.5 1.4411 1.2096 1.4393 1.2089 1.4377 1.2083 1.4350 1.2073 

0.7 1.7632 1.3810 1.7599 1.3796 1.7567 1.3783 1.7494 1.3762 

3 

0.3 1.2433 1.1395 1.2424 1.1391 1.2417 1.1387 1.2404 1.1381 

0.5 1.5860 1.3524 1.5835 1.3511 1.5812 1.3499 1.5772 1.3479 

0.7 1.9920 1.6198 1.9878 1.6172 1.9801 1.6148 1.9714 1.6097 

4 

0.3 1.2793 1.1885 1.2782 1.1879 1.2773 1.1873 1.2758 1.1864 

0.5 1.6635 1.4647 1.6606 1.4628 1.6579 1.4611 1.6521 1.4582 

0.7 2.1123 1.8010 2.1077 1.7975 2.0980 1.7941 2.0876 1.7861 

5 

0.3 1.2998 1.2251 1.2987 1.2244 1.2977 1.2237 1.2961 1.2225 

0.5 1.7072 1.5463 1.7041 1.5440 1.7012 1.5419 1.6947 1.5383 

0.7 2.1795 1.9300 2.1709 1.9259 2.1637 1.9192 2.1524 1.9113 
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In Tables 3 and 4, the effects of various parameters such as material length scale parameter for 

various theories such as MSGT ( 0 1 2 17.6l l l l m    ) and MCST ( 0 1 20, 17.6l l l l m    ), mass 

intensity and dimensionless amplitude on linear and nonlinear natural frequencies of GMR 

considering mass effect for the MCST and MSGT are investigated. By increasing mass intensity, 

the dimensionless natural frequency decreases. 

The effect of the numbers of grid points on the accuracy and convergence of boron-nitride 

micro ribbon based mass sensor for first three dimensionless natural frequencies is shown in Fig. 

2. Based on the convergence plots, the numbers of grid points according to the first three 

dimensionless natural frequencies (N) are equal to 15. 

 

 

 

Fig. 2 The effect of the numbers of grid points on the accuracy and convergence of boron-nitride micro 

ribbon based mass sensor for first three dimensionless natural frequencies 

 

  
(a) Winkler foundation (b) Pasternak foundation 

Fig. 3 The effect of Winkler and Pasternak coefficient and dimensionless amplitude on frequency ratio of 

GMR based on MSGT ( 0 1 2 17.6l l l l m    ) and / 2h l   
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Fig. 4 The effect of temperature change on the frequency ratio of GMR versus dimensionless amplitude 

based on MSGT ( 0 1 2 17.6l l l l m    ) and / 2h l   

 

 

Fig. 3(a) depicts the effect of Winkler elastic medium coefficient and dimensionless amplitude 

(Wmax) on nonlinear frequency ratio of GMR. It can be seen that by increasing Winkler elastic 

medium coefficient, the frequency ratio (the nonlinear natural frequency to the linear natural 

frequency ratio) decreases. It should be noted that the increase of Winkler coefficient causes an 

increase in rigidity of the GMR and an increase in linear and nonlinear frequencies. However, the 

rate of increase in linear frequencies is much more that increase in nonlinear frequency and this 

matter causes to reduce the frequency ratio. Fig. 3(b) shows that with an increase in Pasternak 

coefficient, the frequency ratio of GMR decreases. At this state, with an increase in Pasternak 

coefficient causes to decrease in linear and nonlinear frequencies. 

The effect of temperature change on the frequency ratio of GMR is examined in Fig. 4. In this 

figure is obvious that with an increase in the temperature change, both linear and nonlinear 

frequencies of the GMR reduce. This phenomenon leads to increase flexibility of GMR with 

increasing the temperature change. However, the decreasing linear natural frequency is more than 

the nonlinear natural frequency. Moreover, the frequencies ratio increases with an increase in the 

temperature. 

 

 

Fig. 5 The effect of dimensionless material length scale parameter on the frequency ratio of GMR with 

dimensionless amplitude for / 2h l   
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Fig. 6 The nonlinear natural frequency versus dimensionless amplitude at different piezoelectric coefficients 

based on MSGT ( 0 1 2 17.6l l l l m    )and / 2h l   

 

 

 

Fig. 5 displays the influence of the material length scale parameters on the nonlinear frequency 

ratio. As can be seen, by increasing dimensionless amplitude (Wmax), the frequency ratio increases. 

Also, by increasing the material length scale parameter, the frequency ratio decreases. However, 

we know that by increasing the material length scale parameter, rigidity of the GMR increases and 

therefore, linear and nonlinear natural frequencies of system increases, but the increase in the 

linear natural frequency is larger than the nonlinear frequency. 

Fig. 6 shows the influence of the piezoelectric coefficients on the nonlinear frequency of GMR. 

As can be seen, the nonlinear frequency of GMR increases with increasing of piezoelectric 

coefficient. In other words, if the selected material has higher piezoelectric coefficient, the 

nonlinear frequency of GMR increases. 

 

 

 

Fig. 7 The frequency ratio of GMR versus dimensionless amplitude for various theories of size dependent 

effect 
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Fig. 8 The linear natural frequency of GMR under different boundary conditions and location mass intensity 

based on MSGT ( 0 1 2 17.6l l l l m    ) and / 3h l   

S-

S 

S-S 

C-

S 

C-

S 

1050



 

 

 

 

 

 

Nonlinear vibration analysis of MSGT boron-nitride micro ribbon based mass sensor… 

 

The frequency ratio of GMR in various theories is inspected in Fig. 7. As can be seen, 

considering size effects and increasing rigidity of GMR, linear and nonlinear frequencies of 

system increase, but the increase of linear natural frequency is much more than nonlinear natural 

frequency and therefore, frequency ratio decreases. In CT, we observe the highest frequency ratio 

and in the MSGT, we see the lowest frequency ratio. 

 

 

 

 

 

Fig. 9 The first nonlinear frequency of GMR with various boundary conditions versus different location 

mass intensity based on MSGT ( 0 1 2 17.6l l l l m    ), / 3h l  , and 
max 0.01W   
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Fig. 10 The frequency ratio of GMR versus different dimensionless amplitude for various boundary 

conditions based on MSGT, / 3h l   , 0.5m  and 0.05M   

 

 

 

In Fig. 8, ω1 and ω2 are the first and second dimensionless natural frequency of micro ribbon. 

Figs. 8 indicated the effect of location mass (ζm) and mass intensity ( M ) on the linear natural 

frequency of the GMR under different boundary conditions. These figures are shown at various 

boundary conditions such as simply-simply (S-S), and clamped-simply (C-S) boundary conditions, 

by increasing the mass intensity in a fixed position, the linear natural frequency of GMR is 

reduced. There are some points in any natural frequency that with any mass intensity in those 

points will not have any effect on the natural frequency; these points actually are corresponding 

inflection points of mode shape curve in which bending moment equals zero. There are also some 

points that mass intensity in those points will have the most effect on the natural frequency. 

Actually, these points are the points in which corresponding mode shape curve are maximum 

curvature, and bending moment is optimized value at these points. 

The influence of location mass (ζm) and mass intensity on nonlinear frequency of GMR under 

various boundary conditions showed in Figs. 9. For all boundary conditions such as S-S, C-S and 

clamped-clamped (C-C) by increasing the mass intensity in a fixed position, the nonlinear 

frequency of the GMR is reduced. 

Fig. 10 illustrates the effect of various boundary conditions on the frequency ratio of GMR. In 

the dimensionless linear natural frequency state, the natural frequency for C-C boundary 

conditions leads to an increase in the stiffness of GMR at the edges that the effect of this boundary 

condition is more than the other boundary conditions. Such a behavior is because the higher 

constraints at the edges increase the flexural rigidity of the GMR, leading to a higher 

dimensionless linear natural frequency; while to obtain the dimensionless nonlinear natural 

frequency, this frequency is dependent to Wmax . Thus, C-C boundary conditions cause structure 

that is more constrained so the value of Wmax with respect to the other boundary conditions is 

lower, and leads to decrease the dimensionless nonlinear natural frequency. According to the Fig. 

9, the frequency ratio (the dimensionless nonlinear natural frequency to the dimensionless linear 

natural frequency ratio) for C-C boundary conditions is less than the other boundary conditions. 
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6. Conclusions 
 
The nonlinear free vibrations of boron-nitride micro ribbon (BNMR) on the elastic Pasternak 

foundation under electrical, mechanical and thermal loadings are studied based on modified strain 

gradient theory (MSGT). A differential quadrature element method (DQEM) is developed to obtain 

the frequency ratio of GMR under different boundary conditions with considering the attached 

mass. The effects of various parameters such as material length scale parameters, attached mass, 

temperature change, piezoelectric coefficient, two parameters of elastic foundations on the 

frequency ratio of BNMR are investigated. This results can be used to design and control 

nano/micro devices and nanoelectronics to avoid resonance phenomenon. The following 

conclusions can be listed from present research: 

 The linear and nonlinear natural frequency of GMR decreases with an increase in the mass 

intensity in a fixed position for various boundary conditions. 

 With increasing Winkler and Pasternak modulli decreases the frequency ratio. The increase 

of Winkler and Pasternak coefficients lead to an increase in rigidity of the GMR and an 

increase in linear and nonlinear frequencies. However, the rate of increase in linear 

frequencies is much more that of nonlinear frequency and this matter cause to reduce the 

frequency ratio. 

 The nonlinear frequency of GMR increases with increasing of piezoelectric coefficient. 

 With an increase in the temperature change, both linear and nonlinear frequencies of the 

GMR decrease. This phenomenon leads to increase the flexibility of GMR with increasing 

the temperature change. However the decreasing linear natural frequency is more than the 

nonlinear natural frequency. Moreover, the frequencies ratio increases with an increase in 

the temperature change. 

 The highest and lowest frequency ratio is related to CT and MSGT, respectively. 

 By increasing dimensionless amplitude, the frequency ratio increases. Also, by increasing 

the material length scale parameter, the frequency ratio decreases. However, we know that 

by increasing the material length scale parameter, the rigidity of the GMR increases and 

therefore, linear and nonlinear natural frequencies of system increase, but the increase in 

the linear natural frequency is larger than the nonlinear frequency. 

 In the dimensionless linear natural frequency state, the natural frequency for C-C boundary 

conditions leads to an increase in the stiffness of GMR at the edges that the effect of this 

boundary condition is more than the others. Such a behavior is because the higher 

constraints at the edges increase the flexural rigidity of the GMR, leading to a higher 

dimensionless linear natural frequency, while to obtain the dimensionless nonlinear natural 

frequency, this frequency is dependent to Wmax. Thus, C-C boundary conditions cause 

structure that is more constrained so the value of Wmax with respect to the other boundary 

conditions is lower, and leads to decrease the dimensionless nonlinear natural frequency. 

According to the results, the frequency ratio for C-C boundary conditions is less than the 

other boundary conditions. 
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Appendix A 

 

In this Appendix, for linear state of GMR, if there is the discontinuity because an attached mass, 

the compatibility conditions in Eq. (42) can apply into Eqs. (35)-(37) which is described as 

follows: 

We have the axial, and shear forces and the bending moment as the following form 

(A-1) 
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Substituting Eq. (A-1) into Eq. (42) yields the following relations 
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Eqs. (A-2) after simplifying can be written as 
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(A-3) 
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By using m
M

AL
  and Eq. (32), and applying them in Eq. (A-3), the following equations 

can be rewritten as follows 
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Appendix B 

 
In Appendix B, for nonlinear state of GMR, if there is the discontinuity because an attached 

mass, the compatibility conditions in Eq. (42) can apply into Eqs. (35)-(37) which is described as 

follows: 

For nonlinear state of GMR, the axial, and shear forces and the bending moment are considered 

as the following form 
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By substituting Eq. (B-1) into Eq. (42), one can be obtained the following equations: 
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(B-2) 

   

   

   

   

       

 

1 0 0 1 2

1 0

1

4 2

4 2

2
2 2

2 2

4

0 1 24 0

2 2 8
1 2

5 15

1 1
3

5 2

2 2 8
1 2

5 15

m m

m m

m m

m m

m m m m

m

U U

W W

dW dW

d d

W W

U W W W

W

 

 

 



    

 





 

  

   

   



 
   

 

 

 

 

   



 
 








    
        

    

     
     

       

   
      






 

 

       

   

   

1 0

1

2

2

2
2 2

2 2

0 1

2
2

21

3

0

3

1 1
3

5 2

3 3 1

4 4

3 1

4

1 1 1
1 3

5 2 2

3 1 1
1 3

8 2 5

m

m m m m

m m

m m

W

U

U U
T

W W

W W

W
 

 
  

 

 
 







   

   

 



 



   

 

 

 
 
 

 
   

 

     
      






     
     

       

   
   

 

      

 

 


 



   

   

       

3

3

3

3

2 3

2 3

2 2

2

1 0 1

2

2

2

0 1

4

3 1 1 1
1 3

5 2 2

3 1 1
1 3

8

3 1

4 4

3

2 5

1

4

m m

m m

m m m m

W

W

m

W

U U

L EI U
L

EI A

T

W W W

L

 

 

 
  

 

  

 





 


 

   

 

 

   

 

 

 
   

 

       
             

 
 
 
 

   
    

  

 
     

  
 











 

 

 

 

 

 

 

 

 

 

 

 

 

 

1060



 

 

 

 

 

 

Nonlinear vibration analysis of MSGT boron-nitride micro ribbon based mass sensor… 

 

 

(B-3) 
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Applying m
M

AL
  and Eq. (32) into Eqs. (B-2) and (B-3), the following equations can be 

rewritten as follows 

(B-4) 
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