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Abstract.  The quality of vibration pattern reproduction of elastic structures by the modal expansion 
method is influenced by the modal expansion method and the sensor placement as well as the accuracy of 
measured natural modes and the total number of vibration sensors. In this context, this paper presents an 
improved numerical method for reproducing the vibration patterns by introducing a block-wise modal 
expansion method (BMEM), together with the genetic algorithm (GA). For a given number of vibration 
sensors, the sensor positions are determined by an evolutionary optimization using GA and the modal 
assurance criterion (MAC). Meanwhile, for the proposed block-wise modal expansion, a whole frequency 
range of interest is divided into several overlapped frequency blocks and the vibration field reproduction is 
made block by block with different natural modes and different modal participation factors. A hollow 
cylindrical tank is taken to illustrate the proposed improved modal expansion method. Through the 
numerical experiments, the proposed method is compared with several conventional methods to justify that 
the proposed method provides the improved results. 
 

Keywords: vibration pattern reproduction; block-wise modal expansion method (BMEM); sensor 
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1. Introduction 
 

The structural vibration response of an elastic structure subject to the external excitation is 

expressed by a linear combination of the natural modes (i.e., the mode superposition), where the 

contribution of each natural mode is influenced by the frequency response characteristic of 

external excitation. Thus, the acquisition of natural modes becomes a first and most important step 

for the vibration analysis of structural dynamic systems. In fact, the structural modal identification 

plays an important role in the structural model updating, vibration pattern visualization, structural 

health monitoring and the optimum control of structural systems (Jiménez and De Frutos 2005, Yi 

et al. 2012). The natural frequencies and natural modes, called the modal parameters for the 

structural modal identification, could be obtained either by the vibration test or by the finite 

element modal analysis (Friswell and Mottershead 1995). But, since a real structure under external 

excitation exhibits a quite distinct vibration behavior point by point and direction by direction, the 
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reliability of the modal identification is substantially influenced by the quality of measured modal 

parameters. 

In reality, the acquisition of modal parameters is always incomplete owing to the limited 

number of exciters and sensors, the measurement error in vibration test and the limitation of finite 

element models (McConnell 1995, Papadimitriou 2004). Here, the term incomplete means that not 

only the number of measured natural modes is finite but the error is included in the measured data. 

In this context, a sufficient number of modal parameters are recommended to be taken into the 

mode superposition. There is no doubt that the superposition of inaccurate natural models provides 

the point-wise dynamic responses and the overall vibration patterns which are far from the exact 

ones. In particular, it becomes more critical for the modal expansion when the quantities associated 

with the extended natural modes are derived based on the measured modal parameters (Allaei and 

Soedel 1986). In case of vibration test, the use of limited number of exciters and sensors naturally 

leads to the necessity of optimum placement of exciters and sensors (Hiramoto et al. 2000, 

Stephan 2012), in order to acquire the limited number of modal parameters as accurate as possible. 

Traditionally, the placement of exciters and sensors was made by one’s own decision making 

appealing to his intuition or/and empirical know-how, so that this kind of trial-and-error approach 

may not guarantee the sufficiently informative modal parameters. Regarding the development of 

sensor placement methodology, Poston and Tolson (1992) introduced an effective independence 

(EI) method in which a number of candidate sensor positions are eliminated or added by the 

determinant of a Fisher information matrix (FIM). Papadimitriou et al. (2004) used the 

information entropy norm (IEN) to suppress the uncertainty in modal parameter testing, in which 

the optimum sensor configuration is sought by minimizing the information entropy norm. 

Hiramoto et al. (2000) applied the explicit solution of algebraic Riccati equation to the optimal 

sensor/actuator placement for active vibration control. As an effective alternative approach to the 

above-mentioned heuristic algorithms, the use of genetic algorithm (GA) has been also proposed 

by subsequent investigators (Han and Lee 1999, Jung et al. 2015). Yi et al. (2011) proposed a 

hybrid sensor placement optimization method for structural health monitoring based on multiple 

optimization strategies by utilizing the QR factorization, the sequential sensor placement algorithm 

and the generalized genetic algorithm (GGA). More recently, they introduced a multiaxial sensor 

placement optimization for structural health monitoring by making use of the triaxial modal 

assurance criterion and a distributed wolf algorithm (2013, 2016). 

The visualization of vibration pattern of elastic structure has become an important subject, in 

the structural vibration community, to which the modal parameters can be usefully applied (Larson 

et al. 1994, Sas et al. 1995, Garden and Fanning 2004). The overall vibration pattern helps one to 

easily figure out the vibration characteristic of a structural system, and furthermore the structural 

state could be diagnosed by monitoring the vibration patterns. As illustrated in Fig. 1, the vibration 

pattern of a structure at a specific frequency could be reproduced either by using the virtual 

instrument (Jiménez and De Frutos 2005) or by utilizing the modal expansion method (MEM) 

(Bernard and Bronowicki 1994, Lin and Parker 1999, Chen 2010). In case of the modal expansion 

method, the overall vibration patterns are reproduced with the limited number of the natural modes 

and the modal participation factors. Differing from the mode superposition method (Cho and Lee 

2001) in which the vibration response is predicted using the known natural modes, the modal 

expansion method conversely predicts the modal participation factors using the measured vibration 

response data. Thus, the quality of vibration pattern reproduction is influenced by the modal 

expansion technique as well as the sensor positions when the total number of modal parameters is 

limited. 
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Fig. 1 Vibration pattern visualization of a hollow cylindrical structure at a specific frequency 

 

 

In order for the numerical reproduction of vibration patterns of elastic structures, the basic and 

residual modal expansion methods are widely employed. However, it is known that the quality of 

reproduced vibration pattern by the basic MEM is definitely influenced by the number of selected 

natural modes. Moreover, the selection method of natural modes as well as the sensor positions 

does also influence the accuracy of vibration pattern reproduction. The numerical inaccuracy 

stemming from the limited number of natural modes could be resolved by the residual MEM to 

some extent, in which the effect of discarded high-order natural modes is accounted through the 

numerical manipulation. However, the improvement could be possible only when the total number 

of measured vibration data is not the same with the total number of selected natural modes. This 

condition will be addressed in details later in Section 3.2. 

As an extension of our previous work on the sensor placement optimization (Jung et al. 2015), 

this paper intends to introduce an improved modal expansion method, called the block-wise modal 

expansion (BMEM), for the accurate reproduction of vibration patterns of elastic structures with 

the help of genetic algorithm (GA). A whole frequency range of interest is divided into several 

overlapped frequency blocks and the vibration field reproduction is made block by block. The 

number of natural modes selected for the vibration pattern reproduction is kept the same for all the 

frequency blocks, but the total numbers of the natural modes and the modal participation factors 

are taken differently for different frequency blocks. Meanwhile, for the given number of vibration 

sensors, the sensor positions for measuring the vibration responses that are required to determine 

the modal participation factors are determined by the GA-based sensor placement optimization. 

Through the numerical experiments with a hollow cylindrical structure, the reproduced vibration 

patterns as well as the frequency responses are compared with the basic MEM, the residual MEM, 

and two commercial codes, MSC/Nastran and ABAQUS. 

 
 
2. Sensor placement and conventional modal expansion methods 
 

In this section, we briefly address the sensor placement and modal assurance criterion (MAC) 

that are essential for the modal identification. As well, we review the conventional basic modal 

expansion method (MEM) and its refined form, called the residual modal expansion method 

(RMEM), in which some of discarded high-order natural modes are considered. 
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2.1 Sensor placement 
 

For the sake of explanation purpose, let us consider the positioning of N  sensors to 

identify the natural modes of a rectangular plate shown in Fig. 2(a). We assume that the plate 

domain is discretized into a finite element mesh having m  degrees of freedom (DOFs), and 

only the lowest  mnn   natural modes    nnm ,,,   21  are selected for the 

vibration pattern reproduction. Here, I  are defined by  Tm
III ,,,  21  with the total of 

m  components. Furthermore, the reduced numerical natural modes 

   r
n

rr
nN

r ,,,   21  identified by  nNN   sensors are assumed to be constructed 

from the selected modes   nmΦ  among the original natural modes  org
Φ  obtained by the 

FE modal analysis. Then, each reduced numerical natural mode 
r
I  having the reduced 

number of components is defined by 

  n,,,I,,,,
TN

III
r
I  2121                        (1) 

in which 
i
I  denote the components in I  which correspond to the finite element nodes having 

the vibration sensors. 

Meanwhile, the correlation between two natural modes is usually evaluated by the modal 

assurance criterion (MAC) defined by (Allemang and Brown 1982) 

 
  J

T
JI

T
I

J
T
I

J
T
IIJ MACMAC






2

                       (2) 

where I  and J  denote two natural mode vectors of interest. The possible range of the 

MACs is from zero to unity such that two vectors I  and J  are the same when it is unity 

while both are in no correlation when it is zero. The MAC can be used to evaluate the correlation 

between the reduced numerical modes when I  and J  in Eq. (2) are replaced with 
r
I  and 

r
J , furthermore it can be also used to correlate the reduced numerical modes 

r
J  with the 

experimentally-measured modes I̂ . In the latter case, the definition given by 

 IJJIJ max MACMAC   seeks a numerical mode which is best fit to the I–th experimental mode 

(Brehm 2010). 

Fig. 2(b) illustrates MAC of the reduced numerical modes 
r
I  corresponding to the 10 sensor 

positions on the rectangular plate shown in Fig. 2(a). The orthogonality between the reduced 

numerical modes increases as the off-diagonal values decrease to zero while the diagonal terms 

approach to unity. This example demonstrates the importance of sensor placement when the 

natural modes of elastic structure are extracted by experiment using a limited number of vibration 

sensors. In other words, the modal identification of elastic structure by experiment becomes more 

accurate as the sensor placement produces the MAC closer to the above-mentioned ideal one. In 

this context, the sensor placement optimization is desired to be made by minimizing the objective 

function  XF  defined by 
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(a) (b) 

Fig. 2 A vibrating plate: (a) sensor placement and (b) modal assurance criterion (MAC) 

 

 

   



N

JI,J,I

IJMACF
1

XX                            (3) 

Here, X  denotes the  12 N  design variable vector  Ts
N

ss ,,, xxx 21  containing the 

position vectors  Tii y,xix of N  vibration sensors. 

In the current study, the n reduced numerical natural modes 
r
I  are constructed from the n

lowest natural modes I . This implies that those would be lowest natural modes satisfying the 

orthogonality if their MAC becomes diagonal. Because the vibration pattern is to be expanded 

with the n reduced numerical natural modes 
r
I , the mode expansion would lead to the best 

result when the MAC becomes diagonal. In this context, the sum of the off‐diagonal terms could 

be an indication (Yi et al. 2011) not only for the optimum sensor placement but also for the best 

mode expansion. 

 

2.2 Conventional modal expansion methods (MEMs) 
 

Basically, the numerical approximation of a damped structural vibration problem using a m

DOF finite element mesh ends up with the system of linear matrix equations given by 

      FuKuCuM                             (4) 

with u  being the nodal displacement vector. Substituting the mode superposition 

      tt qxxu ;  using the selected natural modes into Eq. (4) and multiplying the  nn  

matrix  T  of selected natural modes leads to 

                 FqKqCqM
TTTT

                 (5) 
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where q  is the  1n  vector of modal participation factors. From the orthonormality between 

the natural modes, one can obtain the relation between the modal participation factors Iq  and the 

normalized forces F
T
IIQ   for the harmonic response 

   n,,,I,Qq IIII  21222                     (6) 

In the mode superposition method, the coefficients Iq  are determined using Eq. (6) for the 

known IQ  and the damping ratio  , and then the structural vibration response  t;xu  is to be 

obtained. 

However, in the basic MEM, the vibration pattern is reproduced in terms of the reduced 

selected modes    r
n

rr
nN

r ,,,   21  and 1nq  which are determined from the measured 

nodal response  tm ;xu  at N  sensor positions. With the selected natural modes and the 

measured nodal responses, the relation given by   11   nnN
rm

N qu   leads to 

  11 



  NNn
r

n uq                               (7) 

to determine the modal participation factors q , where        TrrTrr 
1







  denotes the 

left generalized inverse matrix of  r  (Li et al. 2013). Then, the vibration field  t;xu  can be 

reproduced in terms of the nodal displacements calculated by 

  npN,nnp
r

p   11 qΦu                        (8) 

using the modal participation factors and the natural modes. 

On the other hand, the RMEM accounts for the contribution by some of the discarded 

higher-order natural modes    mnn ,,,    21 , where the total number of  nm   

higher-order modes will be denoted by n~  in this paper. Meanwhile, the whole nodal 

displacement  tn ;1 xu   is decomposed into the measured part  tm
N ;1 xu   by the vibration 

sensors and the unmeasured part  tu

N
~ ;

1
xu


 such that 

     ttt u

N
~

m
Nn ;;;

111 xuxuxu
                        (9) 

with N
~

 being Nn  . The two parts are superposed in terms of the reduced natural modes and 

the modal participation factors 

   
    

























q

q

u

u
u ~u,ru,r

m,rm,rm




                       (10) 

Here, the superscripts  m,r  and  u,r  stand for the reduced selected and unselected modes 

at N  measured and N
~

 unmeasured positions, respectively. And, 1nq  and 1~
~

nq  denote the 

modal participation factors of the selected and unselected natural modes, respectively. 

The modal participation factors 1nq  can be determined by the basic MEM as given in Eq. (7). 
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Let us split Eq. (10) into two matrix equations as follows 

    111   n~n~N
m,r

nnN
m,r ~qqu

m
N                     (11) 

    111 
 n~n~N

~
u,r

nnN
~

u,ru
~

~qqu
N

                    (12) 

in order to derive the relation between 1nq  and 1~
~

nq . In a similar manner to  m,r , three 

reduced mode matrices    m,ru,r ,   and  u,r  can be constructed from Eq. (1) using the 

selected and unselected natural modes. Pre-multiplying  m,r  to Eq. (11) and rearranging the 

resulting equation leads to 

          111   nnN
m,rT

Nn~
m,rmT

Nn~
m,r

n~n~N
m,rT

Nn~
m,r ~ quq N            (13) 

Thus, we have 

      111 







  nnN
m,r

Nn~
m,rm

NNn~
m,r

n~
~ quq                   (14) 

Substituting the relation given in Eq. (7) into Eq. (14) ends up with 

        m
NNn

m,r
nN

m,r
Nn~

m,r
n~

~
11 







 






  uIq                   (15) 

Then, finally one can compute the unmeasured part 
u

u  using 

            m
NNn

m,r
nN

m,r
Nn~

m,r
n~N

~
u,r

nnN
~

u,ru
~ 111 







 






  uIqu
N

         (16) 

 

 
3. Block-wise Modal Expansion Method (BMEM) using GA 

 

3.1 Sensor placement optimization 
 

The sensor placement optimization problem for the vibration pattern reproduction is formulated 

as follows: Find  Ts
N

ss ,,, xxxX  21  such that 

 X
X

FMinimize                             (17) 

Subject to:   02  MK                         (18) 

NII
r
I ,,2,1,  s

X
                       (19) 

Where,  Ts
N

ss ,,, xxxX  21  and  XF  indicate the design variable vector containing N  

sensor positions and the objective function defined in Eq. (3), respectively. Here, Eq. (18) stands 

for the finite element modal analysis to calculate the original natural modes 
org
IΦ  using a finite 

element mesh, while Eq. (19) represents the extraction process to construct the reduced numerical 
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modes 
r
I  corresponding to the sensor positions. A prominent feature of the sensor placement 

optimization is that the design variable vector X  is not continuous but discrete, which in turn 

leads to the discontinuity in the objective function  XF . Thus, the mathematical sensitivity can 

not be defined by the gradient of objective function to the design variable vector (Cho et al. 2012). 

In order to resolve this difficulty in the current discrete-type optimization problem, the 

mathematical sensitivity-driven search for the direction vector is replaced with the genetic 

evolution. 

The first step in the sensor placement optimization using GA is the generation of an initial 

population  popIDG N...,,,IDg 21 :00   consisted of the total of popN  genomes. Where, each 

genome 
0
IDg  corresponds to the design variable vector  Ts

N

ss ,,, xxxX  21  composed of N  

sensor positions. For the current sensor placement optimization, each genome IDg  is expressed 

by the total number of 
TOTm  binary bits, where TOTm  is calculated according to  

NjTOT mmmmm  21                      (20) 

by summing the bit numbers  Njm j ,,2,1    required for the binary representation of 

each sensor position vector s
jx . Here, each bit number jm  is determined using the relation of 

loc
j

m
Nj 2 , in which loc

jN  denotes the total number of possible locations where the j-th sensor 

can be positioned. Then, the genome IDg  corresponding to the ID-th discrete-type sensor 

placement IDX  becomes to be coded in the binary form given by 

pop

m

NN

m

jj

m

ID NIDbbbbbbbg Nj ...,,2,1,11
1

2
1

1
1

1             (21) 

where jm

jb  are either 1 or 0. Here, jm

jj bb ...1  stands for the binary string for the j-th sensor 

position s
jx . On the other hand, the decoding to transform each genome IDg  in a binary string to 

the corresponding discrete-type sensor placement  Ts

N

ss

ID ,,, xxxX  21  is carried out 

string-interval-wise. For example, once a string interval jm

jj bb ...1  is decoded into a decimal 

number according to the binary-decimal converting algorithm, then this decimal number indicates 

the specific location 
s
jx  of the j -th sensor. As will be demonstrated in Section 4.1, this decimal 

number (i.e., the integer) indicates the node number in the finite element mesh because the sensor 

positions are to be sought from the possible finite element nodes in the current study. 

The initial population 
0
G  of genomes is generated randomly and a best genome having the 

highest fitness is to be selected through the iterative genetic evolution. The selection process is 

made based on the fitness test of genomes in the population, and it prepares the parent genomes to 

reproduce the offspring genomes through the crossover and mutation operations. In the current 

study, the roulette-wheel selection method is chosen among several methods introduced so far, and 

the one-point crossover operator and the classical mutation operator (Michalewicz 2013) are 
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employed to enlarge the search space of genomes. The fitness of each genome 
k
IDg  at the k -th 

genetic evolution stage is evaluated by 

   K
ID

k
ID gF/gU 1                            (22) 

As a stop criterion to terminate the iterative genetic evolution, we use the relative change 
k
max

k
max

k
max

k U/UUU  1  in the maximum fitness value  k
ID

ID

k
max gUmaxU   among all the 

genomes in the population. 

The GA-based sensor placement optimization starts with an initial design variable 0,s
X , 

together with an initial population 
0
G , and the setting of crossover and mutation ratios. The 

genetic evolution is terminated if the relative change 
kU  satisfies the stop criterion (i.e., 

T
kU  ), otherwise the genetic evolution goes to the next iteration. The reader may refer to our 

previous papers (Jung et al. 2015) for more details on the numerical implementation of GA-based 

sensor placement optimization and the comparison with other methods using different-type 

objective functions. 

 

3.2 Block-wise modal expansion method (BMEM) 
 

The above-mentioned basic MEM can effectively provide the overall vibration patterns of 

structure using a number of known natural modes and the vibration responses measured at several 

positions, without the information of excitation force. However, the quality of reproduced 

vibration patterns is influenced by the number of selected modes and measurement points. 

Furthermore, the selection of natural modes and sensor positions does also influence the quality of 

vibration pattern reproduction. To overcome the demerit of basic MEM, the residual modal 

expansion method (RMEM) was introduced by accounting for the effect of high-order modes 

which were discarded from the mode selection. However, the RMEM provides better vibration 

pattern reproduction than the basic MEM only when the total number N  of sensor positions is 

not the same with the total number n  of selected modes. It is because the vibration patterns 

reproduced by the RMEM become identical with those obtained by the basic MEM when such two 

numbers N  and n  are the same. 

In order to explain this feature of the RMEM, let us consider the following term given by 

      Nn
m,r

nN
m,r I                          (23) 

which is included in Eq. (15). The matrix  m,r  of reduced natural modes becomes a square 

matrix when N  and n  are the same, which leads to 

          1
1











 m,rTm,rm,rTm,rm,r                  (24) 

Hence, the modal participation factors 1~
~

nq  of the discarded higher-order modes completely 

vanish, and which results in   0xu 


tu

N
~ ;

1
. The condition for the RMEM that N  should not be 

the same with n  becomes a crucial obstacle for improving the quality of vibration pattern 
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reproduction, because the more the modes are selected the more the measured responses are 

required. 

The disadvantages of the basic MEM and RMEM could be successfully overcome by the 

BMEM which is introduced in this paper. Referring to Fig. 3, a whole frequency range of interest 

is divided into the total of k  overlapped blocks, where the frequency bands I  of each block 

are non-uniformly determined such that 

k,,,I,~ R
I

L
II  21                       (25) 

based on the natural modes selected for the vibration pattern reproduction for each block. And, the 

whole vibration field of structure is expressed by the sum of block-wise vibration fields as follows 

        ;;;; 21
xuxuxuxu

k                   (26) 

where the frequency ranges of each block-wise vibration field are restricted within the 

corresponding frequency bands. And, each vibration field   ;xu
I

 is reproduced by the basic 

MEM such that 

  kII
nnN

rII
N ,,2,1,1

,
1   qΦu                     (27) 

Here,  r,I
Φ  and 

I
q  are the block-wise reduced natural modes and the modal participation 

factors. 

In the BMEM, the vibration responses 1Nu  at all the sensor positions are measured once and 

used to determine the modal participation factors 
I

q  for all the frequency blocks according to 

  kIN
I

Nn
rII

n ,,2,1,1
,

1  



 uq                     (28) 

Where, 
IBlock

I
N 11   Nuu  indicates the measured vibration response restricted to the I -th 

frequency block. In the current study, the total numbers of sensor positions and the selected modes 

are set equally (i.e., nN  ). And the total number of selected modes is set equally for all the 

frequency blocks and the frequency blocks are not uniform. The natural modes are selected from 

the original natural modes in sequence, so that frequency bands of each frequency block are 

determined by the lowest and highest modes selected for each frequency band, as shown in Fig. 3. 

 

 

Fig. 3 Schematic representation of the BMEM 
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4. Numerical experiments 
 

The proposed block-wise modal expansion method incorporated with the GA-based sensor 

placement optimization is implemented and compared with two conventional MEMs, ABAQUS 

and MSC/Nastran. For the sake of more reliable verification of the current BMEM, two 

commercial softwares are taken. For this purpose, we consider a hollow cylindrical shell-like 

structure shown in Fig. 4(a) of the thickness m.t 0080 , which is manufactured with steel having 

the Young’s modulus E  of GPa200 , Poisson’s ratio   of 0.3 and   of 
38507 cm/kg, . Both 

ends of the cylinder are closed by discs and a thick rectangular stiffener of the thickness 

m.t 010  is built within the cylinder. Cartesian co-ordinate system is positioned at the center of 

the right disc, and the vertical excitation forces 1F  and 2F  are applied to the internal rectangular 

stiffner. The whole structure is uniformly discretized with 4-node shell elements and the total 

number of elements reaches 11,328. 

The total of 64 vibration sensors are used to measure the nodal vibration responses, and those 

are to be positioned on the outer surface of cylindrical shell structure. The outer surface is 

uniformly discretized by 8080  in the horizontal and circumferenctial directions. The total 

number loc
jN  of possible locations where the j-th sensor can be positioned is identical with the 

total number of finite element nodes on the outer surface, except for the nodes lying on the outer 

surface-disc interfaces. In case of the current 8080  uniform mesh for the outer surface, the 

total number loc
jN  becomes 32068079 , . Then, from the relation of loc

j

m
Nj 2 , the total of 

13 binary bits are required to represent each sensor position, and each genome IDg  representing 

the placement  Tsss
ID ,,, 6421 xxxX   of 64 sensors is expressed by the total of 832 binary bits. 

The population size popN  is set by 50 while the crossover and mutation ratios are chosen by 

0.6 and 0.03 respectively, as is conventionally taken. The finite element modal analyses of the 

structure were performed by MSC/Nastran, a commercial FEM code, to compute the original 

natural modes 
org
IΦ , from which the total of 64 reduced numerical modes 

r
I  were constructed 

according to Eq. (1). The reduced modes were selected by choosing the lowest 64 natural modes 

within the frequency range of Hz~ 3900  from the original natural modes which were directly 

obtained by MSC/Nastran. The iteration histories of the fitness values without applying the stop 

criterion are represented in Fig. 5(a), where it is clearly observed that both the maximum fitness 

value and the mean fitness value converge uniformly and stably with the number of generations. 

The optimum placement of 64 sensors is represented in Fig. 4(b), for which the convergence 

criterion T  is set by 0.1 and the genetic evolution terminated in about 2,000 iterations. Fig. 5(b) 

represents the modal assurance criterion (MAC) of 64 reduced numerical modes 
r
I , where the 

contrast between the diagonal and off-diagonal values is apparent such that all the diagonal values 

are almost unity while the off-diagonal values are sufficiently small except for few off-diagonal 

values. 

Through the parametric experiments to the number of sensors, it was observed that the 

probability of error in finding the optimum sensor placement decreases in proportional to the 

number of sensor. It is because the possibility of GA to converge a local minimum deceases as the 

number of sensors increases. This observation is consistent with the result given in a paper by 
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Worden and Burrows (2001), where the influence of the number of sensors on the optimal sensor 

placement is presented. It was also observed that the quality of reproduced vibration pattern 

becomes improved in proportional to the number of sensors, because the orthogonality between 

the reduced numerical modes becomes better and therefore the accuracy of calculated modal 

participation factors becomes higher. 

Next, for the vibration pattern reproduction, the frequency range of interest is set by 

Hz~ 4000  and the selected 64 reduced numerical modes 
r
I  are taken. First, the vibration 

pattern reproduction was made by the basic MEM, and the results are compared with those that 

were obtained by the direct forced vibration analysis using ABAQUS with the same FEM mesh 

and two external excitations shown in Fig. 4. Meanwhile, the noise included in measurements 

deteriorates the quality of vibration pattern reproduction because it affects the reliability of sensor 

placement and modal participation factors that were determined using the measured vibration data. 

For the current study, the phase reference measurement (Cho and Kang 2016), together with the 

averaging of measured vibration data, was employed to suppress the influence of noise. In this 

measurement technique, the acceleration response at any response point is calculated using the 

phase reference spectrum of response point which is calculated from the relative phase difference 

between the response point and the reference basis point. The reader may refer to Cho and Kang 

(2016) for more detailed explanation. 

 

  
(a) (b) 

Fig. 4 (a) A hollow cylindrical shell structure and (b) optimum sensor placement 

 

  
(a) (b) 

Fig. 5 Optimization results obtained by GA: (a) iteration histories of fitness value and (b) MAC 
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(a) 

 
(b) 

Fig. 6 Comparison of the vibration patterns between ABAQUS (left) and basic MEM (right): (a) at 

Hz60 and (b) at Hz180  

 

 

Fig. 6 compares the vibration patterns at two different frequencies between the basic MEM and 

ABAQUS. The quantity in all the figures showing the vibration patterns in this paper indicates the 

absolute displacement. The patch function of MatLab is employed to construct the color contour 

maps, and the displacement magnitude is adjusted by the jet color scale. It is clearly observed that 

the basic MEM provides the vibration pattern which is consistent well with ABAQUS at Hz60 . 

But, one can see the quite difference in the vibration patterns at Hz180  between ABAQUS and 

the basic MEM. It can be inferred from this comparison that the basic MEM can provide the 

reliable vibration pattern at low frequency but its accuracy becomes lower as the frequency of 

interest increases. This fact can be also confirmed from the comparison of the nodal frequency 

responses shown in Fig. 7, where the positions of two nodes A and B on the shell outer surface are 

indicated in Fig. 6(a). The basic MEM shows the nodal frequency responses consistent with 

ABAQUS up to Hz225  at node A and up to Hz170  at node B, but it shows a remarkable 

deviation from ABAQUS at the frequencies higher than such frequency levels. Therefore, the 

applicability of basic MEM is limited to only the lower frequency range. 

Next, the residual modal expansion method (RMEM) was implemented for which 50 

higher-order discarded modes as well as the lowest 50 selected modes are taken for the vibration 

pattern reproduction. In other words, the total of 100 reduced modes are used for the total of 64 

points of measurement, which satisfies the condition imposed on the RMEM that the number of 

measurement points should not be the same with the number of selected modes. In Figs. 8 and 9, 

the vibration patterns reproduced by the RMEM at 200 and Hz400  are compared with 

MSC/Nastran and the basic MEM. Differing from the basic MEM, it is observed from Fig. 8 that 
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the RMEM provides the vibration pattern which is in a good agreement with MSC/Nastran at

Hz200 .  

 

 

  
(a) (b) 

Fig. 7 Comparison of the frequency responses of nodal Y-displacement for the basic MEM: (a) at node A 

and (b) at node B 

 

 

  
(a) (b) 

  
(c) (d) 

Fig. 8 The vibration patterns at Hz200 : (a) Nastran, (b) basic MEM, (c) RMEM and (d) BMEM 
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(a) (b) 

  
(c) (d) 

Fig. 9 The vibration patterns at Hz400 : (a) Nastran, (b) basic MEM, (c) RMEM and (d) BMEM. 

 
 

But, it shows the significant discrepancy at Hz400  like the basic MEM. Fig. 10 

comparatively represents the frequency responses of nodal accelerations within the frequency 

range of Hz~ 6000  at two different nodes C and D indicated in Fig. 9(a). Where, it is observed 

that the RMEM shows an agreement with MSC/Nastran to some extent in the lower frequency 

range like the basic MEM, but in the higher frequency range it shows the remarkable discrepancy 

from MSC/Nastran. What is worse, the RMEM leads to the frequency responses that are worse 

than the basic MEM at certain frequencies. Thus, it is confirmed that the RMEM can not provide 

the reliable vibration patterns at high frequencies, too. 

At the final step, the block-wise modal expansion method (BMEM) is implemented, for which 

the frequency range for determining the modal participation factors q  is set by Hz~ 6000  and 

it is divided into three blocks as follows: 

- Block 1) 1 = Hz~ 3900 ,    Number of selected modes & measurements: 641  Nn  

- Block 2) 2 = Hz~ 492276 ,  Number of selected modes & measurements: 642  Nn  

- Block 3) 3 = Hz~ 592391 ,  Number of selected modes & measurements: 643  Nn  

 

Among the original natural modes obtained by MSC/Nastran, the lowest 64 modes are selected 

for block 1 and the next 64 modes (i.e., from the 65-th mode to the 128-th mode) for block 3. 

Meanwhile, the intermediate 64 modes starting from the 33-th mode to the 96-th mode are taken 

for block 2. The frequency bands of three blocks were determined by the frequency levels of the 

lowest and highest modes within each block, as mentioned earlier. 
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(a) (b) 

Fig. 10 Comparison of the frequency responses of nodal acceleration for RMEM: (a) at node C and (b) at 

node D 

 
 

  
(a) (b) 

Fig. 11 Comparison of the frequency responses of nodal acceleration for BMEM: (a) at node C and (b) at 

node D 

 
 

The vibration patterns reproduced by the BMEM are compared with MSC/Nastran and the 

other two MEMs in Figs. 8 and 9. It is observed from Fig. 8 that the BMEM shows the result 

similar to the basic MEM and RMEM at Hz200 . But, from Fig. 9, one can clearly see that it 

provides the vibration pattern which is in an excellent agreement with MSC/Nastran at Hz400 . It 

can be also confirmed from the frequency responses of nodal accelerations shown in Fig. 11 at two 

different nodes. The basic MEM provides the frequency response similar to MSC/Nastran up to 

Hz400 , but it shows the remarkable discrepancy at the frequencies higher than Hz400 . On the 

other hand, the BMEM leads to the frequency response that is generally similar to MSC/Nastran 
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over a whole frequency range. Thus, it has been justified that the BMEM can provide the 

remarkably improved vibration field better than the basic and RMEM, particularly at high 

frequencies. 

 
 
5. Conclusions 

 

A new modal expansion method for reproducing the vibration patterns of elastic structures, 

called the block-wise modal expansion method (BMEM) incorporated with the GA-based sensor 

placement optimization, has been introduced in this paper. In order to overcome the quality 

deterioration of reproduced vibration patterns at high frequencies of the conventional basic and 

residual modal expansion methods, the vibration patterns in the BMEM are reproduced by 

superposing the block-wisely reproduced vibration patterns. A whole frequency range of interest is 

divided into several overlapped frequency blocks and the vibration field reproduction is made by 

block by block with different natural modes and different modal participation factors. Meanwhile, 

the sensor positions which greatly influence the quality of vibration field reproduction were 

determined by the discrete-type optimization making use of GA and the modal assurance criterion 

(MAC). 

Through the numerical experiment with a hollow cylindrical shell-like structure for the 

vibration pattern reproduction, the following main observations are drawn. 

• The vibration pattern and the frequency response that were reproduced by the basic MEM are 

consistent well with ABAQUS only at the remarkably low frequency range up to 60~170

Hz . 

• In case of the residual MEM (RMEM), the numerical accuracy becomes improved slightly 

when compared with the basic MEM. But, its improvement is observed to be limited up to 

200 Hz  from the comparison with MSC/Nastran, what is worse, it provides the frequency 

response worse than the basic MEM at certain frequencies. 

• On the other hand, the present BMEM provides the significantly improved vibration field 

better than the basic MEM and RMEM, particularly at high frequencies. 
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Nomenclature 
 

 org
Φ  original natural modes 

  nmΦ  selected natural modes   Φ  

  nN

r

Φ  reduced numerical natural modes   r
Φ  

IJMAC  modal assurance criterion     JIMAC ΦΦ  

 XF  objective function 

X  design variable vector  Ts
N

ss ,,, xxx 21  

 t;xu  nodal displacement vector 

 tq  vector of modal participation factors 

 M  mass matrix 

 C  damping matrix 

F  load vector 

IQ  normalized forces   FΦ
T

I  

Iq  modal participation factors 

  damping ratio 

 r
Φ  left generalized inverse matrix of  r  

   discarded higher-order natural modes 

 tm
N ;1 xu   measured nodal displacement 

 tu

N
~ ;

1
xu


 unmeasured nodal displacement 

1~
~

nq  modal participation factors of unselected natural modes 

IDg  ID-th genome 

0

G  initial population 

popN  population size 

case
iN  case number of the i-th position vector 

s
Ix  

IDX  ID-th discrete-type sensor placement 

ib  binary bits 

 k

IDgU  fitness of ID-th genome 

T  tolerance of stop criterion 

If  frequency band of I-th block 

 ;xu
I

 block-wise vibration fields 

 r,I
Φ  block-wise reduced natural modes 

I
q  block-wise modal participation factors 
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