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Abstract.  The aim of the paper is to analyze nonlinear transverse vibration of an embedded piezoelectric 
plate reinforced with single walled carbon nanotubes (SWCNTs). The system in rested in a Pasternak 
foundation. The micro-electro-mechanical model is employed to calculate mechanical and electrical 
properties of nanocomposite. Using nonlinear strain-displacement relations and considering charge equation 
for coupling between electrical and mechanical fields, the motion equations are derived based on energy 
method and Hamilton's principle. These equations can't be solved analytically due to their nonlinear terms. 
Hence, differential quadrature method (DQM) is employed to solve the governing differential equations for 
the case when all four ends are clamped supported and free electrical boundary condition. The influences of 
the elastic medium, volume fraction and orientation angle of the SWCNTs reinforcement and aspect ratio are 
shown on frequency of structure. The results indicate that with increasing volume fraction of SWCNTs, the 
frequency increases. This study might be useful for the design and smart control of nano/micro devices such 
as MEMS and NEMS. 
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1. Introduction 
 

Nanocomposites hold the promise of advances that exceed those achieved in recent decades in 

composite materials. The nanostructure created by a nanophase in polymer matrix represents a 

radical alternative to the structure of conventional polymer composites. These complex hybrid 

materials integrate the predominant surfaces of nanoparticles and the polymeric structure into a 

novel nanostructure, which produces critical fabrication and interface implementations leading to 

extraordinary properties (Kotsilkova 2007).  

Piezoelectricity is a classical discipline traced to the original work of Jacques and Pierre Curie 

around 1880. This phenomenon describes the relations between mechanical strains on a solid and 

its resulting electrical behavior resulting from changes in the electric polarization. One can create 
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an electrical output from a solid resulting from mechanical strains, or can create a mechanical 

distortion resulting from the application of an electrical perturbation (Antonio Arnau 2008). 

Piezoelectric materials have been used to manufacture various sensors, conductors, actuators, etc. 

in fact, they have become one of the smart materials nowadays (Chen et al. 2004).  

Regarding research development into the use of nanocomposite, Kireitseu (2007) concentrates 

on an investigation related to nanoparticle-reinforced materials dynamic characterization and 

modelling of relationships between structure and mechanical properties of the materials across the 

length scales. Dynamic stability analysis of functionally graded nanocomposite beams reinforced 

by SWCNTs based on Timoshenko beam theory was studied by Ke et al. (2011). Murmu and 

Adhikari (2011) analyzed vibration of nonlocal double-nanoplate- system (NDNPS). Their study 

highlighted that the small-scale effects considerably influence the transverse vibration of NDNPS. 

Besides, they elucidated that the increase of the stiffness of coupling springs in the NDNPS 

reduces the small-scale effects during the asynchronous modes of vibration. In this paper paper 

they considered the Winkler model for simulation of elastic medium between two nanoplates. In 

this simplified model, a proportional interaction between pressure and deflection of single layer 

graphene sheets (SLGSs) is assumed, which is carried out in the form of discrete and independent 

vertical springs. Whereas, Pasternak suggested considering not only the normal stresses but also 

the transverse shear deformation and continuity among the spring elements, and its subsequent 

applications for developing the model for buckling analysis, which proved to be more accurate 

than the Winkler model. Recently, analysis of the coupled system of double-layered graphene 

sheets (CS-DLGSs) embedded in a visco-Pasternak foundation is carried out by Ghorbanpour 

Arani et al. (2012a) who showed that the frequency ratio of the CS-DLGSs is more than the SLGS. 

Electro-thermo nonlinear vibration of a piezo-polymeric rectangular micro plate made from 

polyvinylidene fluoride (PVDF) reinforced by zigzag double walled boron nitride nanotubes 

(DWBNNTs) was studied by Ghorbanpour Arani et al. (2012b). Dodds (2013) studied 

Piezoelectric nanocomposite sensors assembled using zinc oxide nanoparticles and poly vinylidene 

fluoride. Numerical analysis of large amplitude free vibration behaviour of laminated composite 

spherical shell panel embedded with the piezoelectric layer was presented by Singh and Panda 

(2015). Ghorbanpour Arani et al. (2015a) studied nonlinear vibration and instability analysis of a 

bonded double-smart composite microplate system (DSCMPS) conveying microflow based on 

nonlocal piezoelasticity theory.Control and analyze the electro-magneto nonlinear dynamic 

stability of smart sandwich nano-plates were presented by Ghorbanpour Arani et al. (2015b). 

Kolahchi et al. (2016a) investigated nonlinear dynamic stability analysis of embedded 

temperature-dependent viscoelastic plates reinforced SWCNTs. Nonlinear buckling of straight 

concrete columns armed with SWCNTs resting on foundation was investigated by Jafarian Arani 

and Kolahchi (2016b). Mosharrafian and Kolahchi (2016c) presented the nanotechnology, 

smartness and orthotropic nonhomogeneous elastic medium effects on the buckling of 

piezoelectric pipes. 

In this study, nonlinear transverse vibration of an embedded piezoelectric plate reinforced with 

SWCNTs is investigated. Considering the nonlinear strain-displacement relations and charge 

equation, the nonlinear governing equations are derived using energy method and Hamilton's 

principle. Hence, the DQM is presented to solve the nonlinear governing equations and estimate 

the frequency ratio of clamped supported system. In present study, the influences of geometrical 

aspect ratio, elastic medium constants, orientation angle and volume fraction of SWCNTs in 

polymer have been taken into account. 
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2. Formulation 
 

Based on the classical plate theory (CPT) which satisfies Kirchhoff assumption, displacement 

field is expressed as (Reddy 1997) 
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where ( wvu ,, ) denote the total displacements of a point along the ( zyx ,, ) coordinates and 

( 000 ,, wvu ) are the displacements of points on the mid-plane. The von Kármán nonlinear strains 

associated with the above displacement field can be expressed in the following form 
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On the basis of the CPT, shear strains xz , yz  are considered negligible. Hence, the strain 

equations in terms of the mid-plane displacements are derived by substituting the Eq. (1) into the 

Eq. (2) as follows 
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The strain components xx , yy  and xy at an arbitrary point of the sheet are related to the 

middle surface strains and curvatures tensor as follows 
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where (
000 ,, xyyyxx  ) are components of the membrane strains (middle surface strains) tensor and 
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(
111 ,, xyyyxx  ) are components of the bending strain (curvature) tensor.  

 
2.1 Modeling of the problem 
 

N embedded piezoelectric plate reinforced with SWCNTs with the length L , the width b  and 

the thickness h , assuming that blh ,  (Vinson 2005), is shown in Fig. 1. The origin of the 

Cartesian coordinate system is considered at one corner of the middle surface of the microplate. 

The x , y  and z  axes are taken along the length, width, and thickness of the plate, respectively. 

The elastic medium is simulated by the Pasternak foundation.  

 
2.2 Constitutive equations for piezoelectric materials 
 
In a piezoelectric material, application of an electric field to it will cause a strain proportional 

to the mechanical field strength, and vice versa. According to a piezoelectric microplate under 

electro-thermal loads, constitutive equations can be represented as (Ghorbanpour Arani et al. 

2012) 
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Fig. 1 Schematic of embedded piezoelectric nano-composite plate 

 
 

790



 

 

 

 

 

 

Nonlinear vibration analysis of piezoelectric plates reinforced with carbon… 

 

where ),(),6,...,1,(, yxkjie kijij   and T  are piezoelectric constants, dielectric 

constants, thermal expansion coefficients and temperature gradient, respectively. ijC  denote 

transformed stiffness components and is defined as (Reddy 1997) 

,sinsincos)2(2cos 4

22

22

6612

4

1111  CCCCC   

,sincos)4()sin(cos 22

662211

44

1212  CCCCC   

,sinsincos)2(2cos 4

11

22

6612

4

2222  CCCCC   

),cos(sincossin)22( 44

66

22

6612221166   CCCCCC
       (7)

 

where ijC  are components of stiffness tensor.   is the orientation angle between the global and 

local Cartesian coordinates, corresponding to the angle between SWCNTs and the main axis of the 

matrix. Electric field tensor E can be written in term of electric potential  as (Ghorbanpour 

Arani et al. 2012) 

.E                                 (8) 

Using approach adopted by Tan and Tong (2001) in which they use representative volume 

element (RVE) based on micro-electro-mechanical models, the mechanical and electrical 

properties of the system can be obtained.  

 
2.3 Equations of motion  
 

The governing differential equations of motion are derived using the Hamilton's principle 

which is given as 
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where U is the virtual strain energy, V  is the virtual work done by external applied forces 

and K is the virtual kinetic energy. The motion equations can be derived using Eq. (9) as follows 
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where ),( 20 mm are mass moments of inertia and 0 denotes the density of the material. 

Meanwhile, the force resultants ),,( xyyyxx NNN and the moment resultants ),,( xyyyxx MMM of 

plate can be defined as 
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Charge equation for coupling electrical and mechanical fields is 
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In this study, transverse vibration is investigated (i.e. 000 vu ). Considering 
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As well as substituting combination of Eqs. (1)-(5) and (12) into Eqs. (10) and (13) the 

dimensionless nonlinear transverse nonlocal motion equations of DPCMPS can be written as 
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The clamped supported mechanical and free electrical boundary conditions can be expressed as 
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             (17) 

 
2.4 DQ method 
 
As can be seen the coupled governing equations contain nonlinear terms and should be solved 

using a numerical method such as DQM. In this method, the differential equations are changed 

into a first order algebraic equation by employing appropriate weighting coefficients. Weighting 

coefficients do not relate to any special problem and only depend on the grid spacing. For 

implementation of the DQ approximation, consider a function ),( f which has the field on a 

rectangular domain ( 10   and 10  ) with  nn  grid points along x and y axes. 

According to DQ method, the rth derivative of a function ),( yxf can be defined as (Kolahchi et al. 

2015) 
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where 


ijC  are weighting coefficients and defined as 
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where )( iM  is Lagrangian operators which can be presented as 
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The weighting coefficients for the second, third and fourth derivatives are defined as 
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In a similar method, the weighting coefficients for y-direction can be obtained. The coordinates 

of grid points are chosen as 
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The motion equations using DQM can be rewritten as 
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In order to carry out the eigenvalue analysis, the domain and boundary points are separated and 

in vector forms they are denoted as {d} and {b}, respectively. Hence, the discretized form of the 

motion equations together with the boundary conditions can be expressed in matrix form as 

   
 

 
,02

][






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











b

d
MKK

K

NLL 
                     (25)

 

in which  M ,  LK  and  NLK  are the mass matrix, linear stiffness matrix and nonlinear 

stiffness matrix. This nonlinear equation can now be solved using a direct iterative process as 

follows 
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 First, nonlinearity is ignored by taking 0][ NLK  to solve the eigenvalue problem 

expressed in Eq. (25). This yields the linear eigenvalue (
L ) and associated eigenvector. 

The eigenvector is then scaled up so that the maximum transverse displacement of the 

microplate is equal to the maximum eigenvector, i.e. the given vibration amplitude 
*

maxW .  

 Using linear eigenvector,  NLK  could be evaluated. Eigenvalue problem is then solved 

by substituting  NLK  into Eq. (25). This would give the nonlinear eigenvalue ( NL ) and 

the new eigenvector.  

The new nonlinear eigenvector is scaled up again and the above procedure is repeated 

iteratively until the frequency values from the two subsequent iterations „ r ‟ and „ 1r ‟ satisfy the 

prescribed convergence criteria as 

0

1









r

rr

                           (32)
 

where 0  is a small value number and in the present analysis it is taken to be %1.0 . 

 

 

3. Numerical results and discussion 
 

Mechanical, thermal and electrical properties of PVDF matrix and SWCNTs reinforcement are 

taken from Ref. (Lei et al. 2012). The final converged solution using the numerical procedure 

outlined in Section 2.6 above is illustrated as the influences of the elastic medium, aspect ratio, 

orientation angle of SWCNTs in polymer and volume percent of SWCNTs in and on the frequency 

ratio of the system. The frequency ratio is defined as 

,FrequencyRatio =




NL

L

 

where NL  and 
L  are the nonlinear and linear frequencies of the system, respectively. 

In order to show the effect of dimensionless elastic medium constants, the frequency ratio 

( LNL  / ) versus the dimensionless maximum amplitude (
*

maxW ) is demonstrated in Figs. 2 and 3. 

Noted that the elastic medium in this study is simulated as spring constants of Winkler-type (
*

WK ) 

and shear constants of Pasternak-type (
*

GK ). In general, the frequency ratio decreases with 

increasing elastic medium constants. This is because increasing Winkler and Pasternak coefficients 

increases the system stiffness. Furthermore, the effect of Pasternak medium is higher that Winkler 

one. It is due to the fact that Pasternak foundation considers normal and shear loads. 

The effect of geometrical aspect ratio ( x ) on the frequency ratio versus the dimensionless 

maximum amplitude is shown in Fig. 4. It is clear that the LNL  /  increases with increasing 

the 
*

maxW  and the influence of geometrical aspect ratio becomes more prominent at the higher 

dimensionless maximum amplitude. It is also found that the LNL  /  is decreased with 

increasing the x , since the equivalent stiffness of the system increases.  
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Fig. 2 The effect of spring constant of elastic medium on the frequency ratio versus the dimensionless 

maximum amplitude 

 

 

Fig. 3 The effect of shear constant of elastic medium on the frequency ratio versus the dimensionless 

maximum amplitude 

 
 

In realizing the influence of SWCNT volume percent (  ) in polymer, Fig. 5 indicates how 

frequency ratio changes with respect to the dimensionless maximum amplitude. Generally, the 

frequency ratio of the system is decreased with increasing  . This is why, the Yong's modulus of 

reinforcer (e.g., SWCNT) is much greater than polymer (e.g., PVDF). Therefore, with increasing 

  , elastic constants of the composite increase and consequently the piezoelectric composite 

plates become more stable. 
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Fig. 4 The effect of aspect ratio on the frequency ratio versus the dimensionless maximum amplitude 

 

 
Fig. 5 The effect of SWCNT volume percent in polymer on the frequency ratio versus the dimensionless 

maximum amplitude 

 
 

Fig. 6 demonstrates variations of the frequency ratio versus the dimensionless maximum 

amplitude. Noted that Fig. 5 is plotted for different values of SWCNT orientation angle in polymer 

which are taken as 0 , 6/  , 4/  , 3/   and 2/  , respectively. As can 

be seen LNL  /  is significantly dependent on   so that the frequency ratio increases with 

increasing orientation angle. Moreover, frequency ratio of 2/   and 0  are maximum 

and minimum, respectively. This is most likely due to the fact that in 0 , the direction of 

polarization for both reinforcements (SWCNT) and matrix (PVDF) are the same which makes the 

system stiffer and leads to increase in frequency and consequently, decrease in frequency ratio. 
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Fig. 6 The effect of SWCNT orientation angle in polymer on the frequency ratio versus the dimensionless 

maximum amplitude 

 

 
Fig. 7 The effect of temperature change on the frequency ratio versus the dimensionless maximum 

amplitude 

 
 

Fig. 7 illustrates the influence of thermal gradient ( T ) on the frequency ratio versus the 

dimensionless maximum amplitude. It is evident that an increase in temperature change does not 

affect on the frequency ratio. 

 
 

4. Conclusions 
 

Vibration response of piezoelectric composites has applications in designing many 

NEMS/MEMS devices such as hydraulic sensors and actuators. In the present study, nonlinear 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

w
max


N

L
/ 

L

 

 

=0

=/6

=/4

=/3

=/2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

W
max


N

L
/

L

 

 

T= -100 0c

T= -50 0c

T= 0 0c

T= 50 0c

T= 100 0c

798



 

 

 

 

 

 

Nonlinear vibration analysis of piezoelectric plates reinforced with carbon… 

 

vibration of a piezoelectric nano-composite plate made of PVDF reinforced by SWCNT is 

investigated. The surrounding elastic medium is simulated as Pasternak foundation. Considering 

charge equation, the nonlinear motion equations are derived based on energy method. The DQM is 

applied to obtain to the nonlinear frequency ratio of the system so that the effects of the stiffness of 

the elastic medium, the volume fraction, orientation angle of the SWCNTs reinforcement, 

temperature change and aspect ratio are discussed. The results indicate that with increasing 

geometrical aspect ratio, the frequency ratio decreases. Furthermore, frequency ratio of 2/   

and 0  are maximum and minimum, respectively. In addition, the frequency ratio of the 

system is decreased with increasing SWCNT volume percent. 
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