
 

 

 

 

 

 

 

Smart Structures and Systems, Vol. 18, No. 3 (2016) 375-387 

DOI: http://dx.doi.org/10.12989/sss.2016.18.3.375                                                 375 

Copyright ©  2016 Techno-Press, Ltd. 

http://www.techno-press.org/?journal=sss&subpage=8         ISSN: 1738-1584 (Print), 1738-1991 (Online) 
 
 

 

 
 
 
 

Data fusion based improved Kalman filter with unknown inputs 
and without collocated acceleration measurements 

 

Ying Lei

, Sujuan Luo and Ying Su 

 
Department of Civil Engineering, Xiamen University, Xiamen 361005, China 

 
(Received December 20, 2015, Revised February 27, 2016, Accepted May 22, 2016) 

 
Abstract.  The classical Kalman filter (KF) can provide effective state estimation for structural 
identification and vibration control, but it is applicable only when external inputs are measured. So far, some 
studies of Kalman filter with unknown inputs (KF-UI) have been proposed. However, previous KF-UI 
approaches based solely on acceleration measurements are inherently unstable which leads to poor tracking 
and fictitious drifts in the identified structural displacements and unknown inputs in the presence of 
measurement noises. Moreover, it is necessary to have the measurements of acceleration responses at the 
locations where unknown inputs applied, i.e., with collocated acceleration measurements in these 
approaches. In this paper, it aims to extend the classical KF approach to circumvent the above limitations for 
general real time estimation of structural state and unknown inputs without using collocated acceleration 
measurements. Based on the scheme of the classical KF, an improved Kalman filter with unknown 
excitations (KF-UI) and without collocated acceleration measurements is derived. Then, data fusion of 
acceleration and displacement or strain measurements is used to prevent the drifts in the identified structural 
state and unknown inputs in real time. Such algorithm is not available in the literature. Some numerical 
examples are used to demonstrate the effectiveness of the proposed approach. 
 

Keywords:  Kalman filter; unknown inputs; data fusion; structural identification; least-square estimation 

 
 
1. Introduction 
 

The identification of structural dynamic systems using the measurements of structural vibration 

data is essential for structural health monitoring and vibration control (Wang et al. 2009; Sirca and 

Adeli 2012, Li and Chen 2013, Yuen and Mu 2015). As it is impractical to measure all structural 

responses, structural identification using only partial measurements of structural responses have 

received great attentions (Papadimitriou et al. 2011, Yi et al. 2013, Xu and Jia 2012, Xu et al. 2015, 

Lei et al. 2014, 2015). In this regard, the Kalman filter (KF), which was proposed by R.E. Kalman 

in the early sixties (Kalman 1960), provides a particularly practical and efficient state estimation 

algorithm with partial measurements of structural responses. Also, KF can inherently take the 

uncertainty in the model into account (Hung et al. 2010, Yuen et al. 2013, Azam et al. 2015, Naets 

et al. 2015). However, in the classical KF approach, it is requested that all external inputs are 

known (measured).  
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To circumvent the limitation of the classical KF approach, many improved approaches have 

been proposed for Kalman filter based identification of joint structural state and external inputs, 

e.g., an iterative identification procedure consisting of the least-squares identification technique 

and a modification process between each iterative step (Chen and Li 2004); the unbiased 

minimum-variance input and state estimation with direct feed through (Gillijns and Moor 2007); a 

Kalman filter with unknown inputs approach derived by the weighted least-squares estimation 

method (Pan et al. 2010); a two-stage Kalman estimator in which the classical Kalman filter is first 

adopted to establish a regression model between the residual innovation and then a recursive 

least-squares estimator is proposed to identify the input excitation forces (Liu et al. 2000, Ma et al. 

2003, Wu et al. 2009); an augmented Kalman filter (AFK) for force identification in structural 

dynamics, in which the unknown forces are included in the state vector and estimated in 

conjunction with the states (Lourens et al. 2012); an average acceleration discrete algorithm with 

regularization (Ding et al. 2013) and implicit Newmark- algorithm with regularization (Liu et al. 

2014); a weighted adaptive iterative least-squares estimation with incomplete measured excitations 

(Xu et al. 2015); Kalman estimator with unknown inputs (Lei et al. 2012, 2014) and a two-stage 

and two-step algorithm (Lei et al. 2015). However, it has been demonstrated that previous Kalman 

filter with unknown input (KF-UI) using limited number of acceleration measurements are 

inherently unstable which leads poor tracking and so-called drifts in the estimated unknown 

external inputs and structural displacements (Azam et al. 2015, Naets et al. 2015). Although 

regularization approaches (Ding et al. 2013, Liu et al. 2015) or post-signal processing schemes 

(Lei et al.2012, 2014, 2015) can be used to treat the drift in the identified results, these treatments 

prohibits the on-line and real-time identification of coupled structural state and unknown inputs.  

Recently, the authors have proposed an improved Kalman filter with unknown inputs based on 

data fusion of partial acceleration and displacement measurements for real time estimation of joint 

structural states and the unknown inputs (Liu et al. 2016). However, like other previous Kalman 

filter with unknown input (KF-UI), it is necessary to have the measurements of acceleration 

responses at the locations where unknown inputs applied, i.e., collocated acceleration 

measurements at the locations of unknown inputs are requested. 

In this paper, it aims to extend the classical KF approach and overcome the drawbacks of 

existing KF-UI approaches for real time estimation of structural states and unknown inputs 

without using collocated acceleration measurements. Compared with the recent KF-UI (Liu et al. 

2016), an improved Kalman filter with unknown excitations (KF-UI) and without collocated 

acceleration measurements is derived. Since accelerations and displacements contains high and 

low frequencies vibration characteristics, respectively (Smith et al. 2007, Ay and Wang 2014, Kim 

and Sohn 2014), data fusion of acceleration and displacement or strain measurements is used to 

prevent the low-frequency drifts in the identified structural state vector and unknown external 

inputs in real time. Numerical examples of the identification of joint structural state and unknown 

inputs of a multi-story shear type building and a plane truss are used to demonstrate the 

effectiveness and versatilities of the proposed algorithm. 

 

 

2. Recent KF-UI approach 
 

To circumvent the limitation of the classical KF approach, many improved approaches have 

been proposed for Kalman filter based identification of joint structural state and external inputs. 

Recently, the authors have presented an improved Kalman filter with unknown inputs (KF-UI) 
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using data fusion of partially measured acceleration and displacement responses (Liu et al. 2016). 

For comparison, the main scheme of the recent KF-UI is briefly introduced as follows, 

The equation of motion of a linear structural system under unknown external inputs can be 

described by 

(t) (t) (t) (t)u Mx Cx + Kx Ef                        (1) 

in which (t)x , (t)x  and (t)x  are vectors of displacements, velocity and acceleration responses, 

respectively; M, C and K are the mass, damping, and stiffness matrices, (t)u
f  is the unmeasured 

external input vector with influence matrix E. 

Based on the zero-order holder (ZOH) discretization of the above equation and the 

consideration of uncertainty in modeling, the state equation of the system in the discrete form can 

be expressed as 

1 +u

k k k k k k  X X f w                            (2) 

where Xk is the state vector at time t k t   with t  being the sampling time step. Ak is the state 

transformation matrix, Bk is the influence matrix of unknown input vector u

kf , and wk is the model 

uncertainty which is assumed a noise with zero mean and a covariance matrix Qk. 

In practice, only partial structural responses can be measured. The discrete form of the 

observation equation can be expressed as 

1 1 1 1 1+u

k+1 k k k k k     Y C X D f v                        (3) 

where Yk+1 is the measured response vector at time t=(k+1)t, Ck+1 and Dk+1 are two known 

measurement matrices associated with structural state and external force vectors, respectively, and

+1k
v is the measurement noise vector, which is assumed a Gaussian white noise vector with zero 

mean and a covariance matrix Rk+1. 

Analogous to the classical KF scheme, the proposed KF-UI also contains two procedures. First, 

1|k kX  is predicted as 

1| | |
ˆˆ u

k k k k k k k k  X X f                            (4) 

where 1|k kX ,
|

ˆ
k kX and 

|
ˆ u

k kf  denote the predicted 1k+X , estimated kX  and the estimated u
f at 

time at time t k t  , respectively.  

Then, the estimated +1kX in the measurement update (correction) procedure is derived as 

1| 1 1| 1 1 1 1| 1| 1
ˆˆ ( )u

k k k k k k k k k k 1 k k            X X K Y C X D f                 (5) 

where 
1| 1

ˆ
k k X  and 

1| 1
ˆ u

k k f are the estimated +1kX  and 
1

u

kf  given the observations (Y1, Y2,…, 

Yk+1) , respectively, Kk+1 is the Kalman gain matrix which can be derived as 

T T 1

1 1| 1 1 1 1| 1 1( )k k k k k k k k k



        K C C C RP P                      (6) 

in which 
1|k k

P  is the error covariance of the predicted 1|k kX . 
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Under the condition that the number of response measurements (sensors) is no less than the 

number of the unknown inputs, 
1| 1

ˆ u

k k f  can be estimated based on the least-squares estimation as 

  T 1

1| 1 1 1 1 +1 +1 +1 1 1|
ˆ =u

k k k k k k k k k k k



       f S D R I C K Y C X                   (7) 

where I denotes a unit matrix, and 

 
1

T 1

1 1 1 +1 +1 +1k k k k k k




  
   S D R I C K D                      (8) 

The covariance matrix for error 
1| 1

ˆ
k k 

f
e can be derived as (Liu et al. 2016). 

 T T

1| 1 +1 1 +1 +1 1 1 1 +1
ˆ T T

k k k k k k k k k k



       f
P S D I C K R D S S                  (9) 

Also, other error covariance matrices can be derived as (Liu et al. 2016) 

  T 1

1| 1 1 1 1 1 1 +1 +1 +1 1|
ˆ =k k k k k k k k k k k k



        X X
P I K D S D R C I K C P           (10) 

   1| 1 1| 1 1| 1 1| 1 1 1 1
ˆ ˆ ˆ ˆ

T T

k k k k k k k k k k kE          
    
  

Xf Xf X f
P P e e K D S              (11) 

However, it is noted that matrix D in Eq. (7) should exist for the recursive estimation of 

unknown input by Eq. (7). This requires the measurements of acceleration responses at the 

locations where unknown inputs applied, i.e., collocated acceleration measurements at the 

locations of unknown inputs are requested. This limitation is also requested in other previous 

KF-UI methodologies. 

 

 

3. The improved KF-UI without collocated acceleration measurements 
 

To further circumvent the limitation of the existing KF-UI approaches, it is proposed to extend 

the recent KF-UI for the identification of joint structural states and unknown inputs without using 

collocated acceleration measurements. 

Instead of using the conventional zero-order holder (ZOH) discretization (constant interpolated), 

in which the unknown input force vector in a sampling period is assumed to be constant in Eq. (2), 

the first-order holder (FOH) discretization is used herein (Ding et al. 2013). This discretizationit 

within a sampling period is treated differently in the FOH discrete method, namely the triangle 

hold linear discrete (linear interpolated) method, in which the discrete data is interpolated as 

 1(t) ( )   ;    k t (k +1)
u u

u u k k
k t k t t t

t

 
       



f f
f f              (12) 

Then, Eq. (1) can be converted into the following state equation as follows 

1 1 1+ +u u

k k k k k k k k   X X B f G f w                      (13) 

where matrices Ak  ,Bk and Gk+1  have been explained after Eq. (2). 

In this paper, it is considered that the acceleration responses at the location of external input are 
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not measured. Therefore, the discrete observation equation is described by 

 1 1 1 1k k k k    Y C X v                          (14) 

where 1kY is also the measured response vector, Ck+1is the measurement matrix, and vk+1 is the 

measurement noise vector with zero mean and a covariance matrix Rk+1. 

Analogously, 1|k kX is first predicted as 

+1| | | 1 1| +1
ˆ ˆˆ + u u

k k k k k k k k k k k  X X B f + G f                     (15) 

Then, the measurement updated (corrected) 
1| 1

ˆ
k k X  can be obtained by 

1| 1 1| 1 1 1 1|
ˆ ( )k k k k k k k k k        X X K Y C X                   (16) 

where Kk+1 is the Kalman gain matrix. 

Under the condition that the number of measurements (sensors) is no less than that of the 

unknown inputs, 
1 1

ˆ u

k+ |k+f  can be estimated by minimizing the error vector 1k+  defined by 

1 1 1 1| 1
ˆ

k+ k+ k k k=   y C X                        (17) 

By inserting the expression of 1| 1
ˆ

k k X  and 1|k kX in Eqs. (16) and (15), respectively  

into the above error vector, 1k+  can be expressed by 

     1 +1 +1 +1 1 | | +1 +1 +1 1 1 1
ˆ ˆˆ u u

k+ k k k k k k k k k k k k k k k+ |k+  
      
 

I C K Y C X B f I C K C G f    (18)  

Then, 
1 1

ˆ u

k+ |k+f can be estimated from Eq.(18) based on least-squares estimation as 

1| 1 k+1 +1 1 |
ˆ ˆˆ= ( )u u

k k k k k k k k k|k  
  
 

f M Y C A X B f                  (19) 

where +1 1 1k k k  M C G I   

 
1

+1 1 1 1 1 1 1( ) ( )( )T T

k k k k k k k



     
   M C G C G C G                  (20) 

The error of state estimation defined as 
1| 1 1 1| 1

ˆˆ =k k k k k    X
e X X can be derived from Eqs. 

(14)-(16) as 

 1| 1 +1 +1 1| +1 1
ˆ =k k k k k k k k    X X
e I K C e K v                     (21) 

where +1|k k

X
e  is defined as +1| 1 1|=k k k k k X

e X X . Form Eqs. (14) and (15), it is known that 

+1| | 1 1| 1 |
ˆ ˆ ˆ= + +k k k k k k k k k k k k   X X f f

e A e G e B e w                      (22) 
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where 
1| 1

ˆ
k k 

f
e  is error of estimated 1| 1

ˆ u

k k f defined as 1| 1 1 1| 1
ˆˆ u u

k k k k k     f
e f f . By inserting +1kY  in 

Eq. (14) into Eq. (19), 1| 1
ˆ

k k 

f
e  can be derived by 

 1| 1 +1 1 | | 1 +1
ˆ ˆ ˆ

k k k k k k k k k k k k k   
   
 

f X f
e M C A e B e + C w + v             (23) 

From Eq. (21), the error covariance matrix 
1| 1

ˆ
k k 

X
P is estimated as 

   
T T

1| 1 +1 +1 1| +1 +1 +1 1 1
ˆ =k k k k k k k k k k k      X X
P I C K P I C K K R K            (24) 

To minimize the error covariance matrix
1| 1

ˆ
k k 

X
P , 1kK  should be selected as 

1

1 1| 1 1 1| 1 1( )T T

k k k k k k k k k



       X X
K P C C P C R                      (25) 

Then, 
1| 1

ˆ
k k 

X
P in Eq. (24) can be simplified 

 1| 1 +1 +1 1|
ˆ =k k k k k k  X X
P I C K P                         (26) 

The error covariance matrix 
1| 1

ˆ
k k 

f
P can be estimated from Eqs. (23) as 

   

 

T
T T

+1| 1 1 1 1 1 1 1 1

T

1 1 1 1

ˆ ˆ
ˆ  

ˆ ˆ
k

k k k k k k k k k k kT

k

k k k k k

       

   

   
    

     



X Xf

k|k k|kf

fX f

k|k k|k

P P A
P M C A B M C M R M

P P B

M C Q M C

       (27) 

where |
ˆ

k k

Xf
P and |

ˆ
k k

fX
P are the two error covariance matrices defined as 

  T

| | |
ˆ =Ek k k k k k

Xf X f
P e e ;   T

| | |
ˆ =Ek k k k k k

fX f X 
P e e                    (28) 

From Eqs. (19) and (20), the error of predicted state +1|k k

X
e  can be rewritten as 

+1| 1 +1 1 | | 1 +1 +1
ˆ ˆ( )(k k k k k k k k k k k k k k k    X X f

e I G M C A e + B e + w ) G M v           (29) 

So the error covariance matrix +1|k k

x
P  is expressed as 

    

   
1

T
T| |

1| 1 1 1 1 1 1

| |

TT

1 1 1 1 1 1 1 1 1 1 1

ˆ ˆ
 

ˆ ˆ

+

k

k

k k k k

k k k k k k k k k kT

k k k k k

T

k k k k k k k k k k k

      

          

   
     

     

  

X Xf

X

fX f

P P A
P I G M C A B I G M C

P P B

G M R M G I G M C Q I G M C

       (30) 

and the error covariance matrix +1| 1
ˆ

k k

Xf
P can be derived from Eq. (29) as  
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     

      

T

| |

+1| 1 1 1 1 1 1 1 1

| |

TT

1 1 1 1 1 1 1 1 1 1 1 1 1 1

ˆ ˆ
ˆ =  

ˆ ˆ
k

X X

k k k k

k k k k k k k k k k kX T

k k k k k

k k k k k k k k k k k k k k k

       

             

   
      

     

       

f

Xf

f f

P P A
P I C K I G M C A B M C

P P B

I C K B M K R M I C K I G M C Q M C

   (31a) 

and 

 
T

+1| 1 +1| 1
ˆ ˆ=k k k k 

fX Xf
P P                            (31b) 

In practice, accelerometers are often used in structural dynamics applications. However, 

previous KF-UI approaches based only on sparse noisy acceleration measurements are inherently 

unstable which leads to the so-called spurious drifts in the estimated unknown inputs and structural 

displacements. The reason can be considered from a physical point of view. At any given time it is 

not clear whether acceleration is the effect of external forces or from the elastic restoring force. 

Although either regularization scheme or post-signal processing can be used to treat the drift 

problem. These approaches prohibit the on-line identification of coupled structural state and 

unknown inputs. In this paper, it is proposed to add partial measured displacements to the 

measured accelerations since accelerations and displacements contains high and low frequencies 

vibration characteristics, respectively. Data fusion of acceleration and displacement or strain 

measurements is used in the observation equation (Smith et al. 2007, Ay and Wang 2014, Kim and 

Sohn 2014).  

In summary, the procedures of the proposed KF-UI without collocated acceleration 

measurements are shown in Fig. 1. 

 

 

4. Numerical validations of the proposed KF-UI 
 

Two numerical examples are used to validate the proposed KF-UI for the identification of joint 

structural states and unknown inputs. The theoretically computed displacement and acceleration 

responses are superimposed with corresponding white noises to consider the influence of 

measurement noises. These polluted responses are treated as “measured responses” for the 

identification problem. 

 

4.1 Identification of multi-story shear building and unknown input 
 

A twenty-story shear building is used as an example. Parameters of the building are assumed as: 

floor mass mi=60kg, floor stiffness ki=1.2x10
6
 N/m, floor damping ci=1000Ns/m (i=1,2,..,20), 

respectively. An input of wide-banded white noise is applied to the top floor of the building. 

First, only three acceleration measurements at the 6th, 14th and 19th story floors are used in the 

proposed KF-UI. Measurement noises with 5% noise-to-signal ratio in root mean square (RMS) 

are considered. As shown in Fig. 2, significant drifts occur in the identified displacement and the 

identified unknown input. 

To circumvent the spurious low-frequency drift problem, partial measured displacements are 

added in the improved KF-UI. For this relatively simple structural model, the displacement at the 

2nd floor of the shear building is added in the measured signals. Data fusion of the measured 

displacement and the above three accelerations are used. 
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Fig. 1 Procedures of the proposed KF-UI without collocated acceleration measurements 

 

 

 

Fig. 3 shows the comparisons of identified structural state and input with their exact values. It 

is clearly demonstrated that the so-called drift can be avoided by the proposed KF-UI with data 

fusion of 5% noisy acceleration and displacement measurements. 

From the above comparisons, it is noted that the recursive identification results of both 

structural state and unknown input by the proposal algorithm quickly coverage to the 

corresponding actual values and the identification accuracies are satisfactory. However, the 

identification accuracy decreases with the increase of measurement noise level. 
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(a) Drift in the identified displacement               (b) Identified velocity 

 
(c) Oscillation in the identified unknown input 

Fig. 2 Comparisions of identified structural state and input with noisy acceleration measurements 

 

 
 

(a) Comparison of identified displacement     (b) Comparison of identified velocity 

 
(c) Comparison of identified unknown input 

Fig. 3 Comparisions of identified results with data fusion of 5% noisy measuremnts 
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4.2 Identification of a truss-structure and unknown input 
 
To validate the proposed KF-UI for the identification of other type structures with unknown 

inputs, the identification of a plane truss and unknown input is studied. As shown in Fig. 4, the 

truss consists of 11 uniform members. The length of each horizontal and inclined bar are 2m, 2

m, respectively. Other parameters of the truss are: cross section area A=
-57.854 10 m

2
, Young’s 

module E= 112 10 pa, mass density of truss member 3 37.8 10 /kg m   and the mass is 

concentrated on each node. The truss is subjected to an unknown input in the vertical direction at 

node 4. In this example, Rayleigh damping C=M+K is employed with =0.6993 and =0.0011. 

 

 

 

Fig. 4 A plane truss under unknown input 

 

 
 

(a) Drift in the identified displacement              (b) Identified velocity 

 
(c) Oscillation in the identified unknown input 

Fig. 5 Comparisions of identified structural state and input with noisy acceleration measuremnts 
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(a) Comparison of identified displacement        (b) Comparison of identified velocity 

 
(c) Comparison of identified unknown input 

Fig. 6 Comparisions of identified results with data fusion of 5% noisy measuremnts 

 
 

As indicted in Fig.4, acceleration responses in the vertical directions of nodes 1, 3 and 5 are 

measured. If only these three measured noisy acceleration responses are used in the identification 

by the KF-UI, significant drifts in the identified displacement and unknown input are shown in Fig. 

5 where measured accelerations contains noises with a 5% noise-to-signal ratio in RMS. 

In practice, displacement measurements may be absent but strain measurements are easily 

available. Displacement measurements can be replaced by strain measurements in the KF-UI based 

on data fusion. Therefore, partially measured strains are added in combination with the partial 

acceleration measurements to prevent the above drifts in the identification problem. For this 

relatively small size structural model, the strain at the second bar in Fig. 4 is measured. Data 

fusion of this measured strain and the above three accelerations are used in the observation 

equation. As shown by the comparisons of identified structural state and input with their exact 

values in Fig. 6, it is demonstrated that the so-called drifts in estimated structural state and input 

are avoided by the proposed KF-UI.  

 
 
5. Conclusions 
 

Previous KF-UI approaches based solely on acceleration measurements are inherently unstable 

which leads the drifts in the estimated unknown inputs and structural displacements. Moreover, it 

is necessary to have the measurements of acceleration responses at the locations where unknown 
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inputs applied for the recursive estimation of unknown inputs. In this paper, an algorithm is 

proposed to circumvent these limitations for the estimation of structural states and unknown inputs 

without using collocated acceleration measurements. Based on the scheme of the classical KF, an 

improved Kalman filter with unknown excitations (KF-UI) and without collocated acceleration 

measurements is derived. Then, data fusion of acceleration and displacement or strain 

measurements is used to prevent the drifts in the identified structural state vector and unknown 

external inputs in real time. 

The proposed algorithm is not available previous literature and the advantages of the proposed 

algorithm are obvious since it provides an efficient algorithm of real time estimation of joint 

structural states and the unknown inputs. Some numerical examples have demonstrated the 

effectiveness and versatilities of the proposed approach. However, more numerical example 

demonstrations by complex structural configurations and experimental validations are needed. 

Also, measurement noise is assumed as white noise this paper; the effect of other different type of 

noise distribution on the identification results should be investigated. 
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