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Abstract. This contribution presents an extended one-dimensional theory for piezoelectric beam-type
structures with non-ideal electrodes. For these types of electrodes the equipotential area condition is not
satisfied. The main motivation of our research is originated from passive vibration control: when an elastic
structure is covered by several piezoelectric patches that are linked via resistances and inductances,
vibrational energy is efficiently dissipated if the electric network is properly designed. Assuming infinitely
small piezoelectric patches that are connected by an infinite number of electrical, in particular resistive and
inductive elements, one obtains the Telegrapher’s equation for the voltage across the piezoelectric transducer.
Embedding this outcome into the framework of Bernoulli-Euler, the final equations are coupled to the wave
equations for the longitudinal motion of a bar and to the partial differential equations for the lateral motion
of the beam. We present results for the wave propagation of a longitudinal bar for several types of electrode
properties. The frequency spectra are computed (phase angle, wave number, wave speed), which point out
the effect of resistive and inductive electrodes on wave characteristics. Our results show that electrical
damping due to the resistivity of the electrodes is different from internal (=strain velocity dependent) or
external (=velocity dependent) mechanical damping. Finally, results are presented, when the structure is
excited by a harmonic single force, yielding that resistive-inductive electrodes are suitable candidates for
passive vibration control that might be of great interest for practical applications in the future.

Keywords: piezoelectric effect; conductive electrodes; linear elastic beam and bar modeling; vibration
control; wave propagation

1. Introduction

Smart and intelligent structures are systems which are equipped with multi-functional materials.
Candidates for active or passive multi-functional materials are piezoelectric materials. The
piezoelectric effect characterizes the ability to transform a mechanical motion or deformation into
an electrical signal (direct piezoelectric effect) or to cause deformations of a body due to electrical
stimuli (converse piezoelectric effect). The first-mentioned effect is exploited in sensor
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applications (e.g., structural health monitoring), whereas the latter one is used for actuation.
Classical review works on this subject are Crawley (1994), Miu (1993) and Tzou (1998).

In general, the electrodes of the piezoelectric transducers are assumed to be perfectly
conductive, i.e., the electrical potential over the electrode surface does not depend on the location.
This contribution is concerned with the development of a theory for beam-type structures
including the piezoelectric effect, but without assuming the equipotential area condition to be
fulfilled over the electrodes. These are so-called lossy electrodes (=resistive or finitely conductive
electrodes), where the electric potential depends on the location. The other type of electrodes,
where the equipotential area condition is fulfilled, is denoted as ideal or perfectly conductive
electrodes. Here, we are mainly interested in how far these electrodes, namely resistive-inductive
electrodes, influence the motion of a slender beam-type structure. In particular how mechanical
vibrations can be attenuated. A variation of the electric potential provides an additional degree of
freedom which might lower the sensitivity and improve the robustness of piezoelectric devices for
vibration control.

Forward (1979) is the first to use piezoelectric devices for passive vibration control. He
damped vibrations of an optical system by attaching an electric network to the piezoelectric
transducer. Almost all researchers, which apply piezoelectric devices on elastic host structures,
either for actuation or sensing purposes, use piezoelectric transducers with ideal electrodes. For
metal electrodes the assumption of a uniformly distributed electric potential over the electrodes is
correct, but for polymer electrodes, the potential loss over the surface might not be neglected.
Large area resistive electrodes have been successfully applied for position-sensitive touchpads,
where the location of a pressure or heat source can be detected with the Telegrapher’s equation, see
Buchberger et al. (2008), (2008b), (2015). To the best knowledge of the authors, the only
investigations where non-perfect (=moderately conductive) electrodes are combined with elastic
and piezoelectric systems are the contributions by Lediaev (2010) and Buchberger and Schoeftner
(2013). In Lediaev (2010) the influence of moderately and high resistive electrodes on the
three-dimensional deformations of a cantilever is investigated. In Buchberger and Schoefiner
(2013) the beam theory for piezoelectric laminates is combined with resistive electrodes. Based on
these results, it was found that the local action of the piezoelectric transducers can be manipulated
by the resistive electrode properties, and the concept of shape control was successfully applied and
even experimentally verified, see Schoeftner et al. (2014), (2015) and the patent (Schoeftner and
Buchberger 2013).

Nowadays piezoelectric transducers are commonly used to control mainly time-harmonic
vibrations of beams and plates. For this topic the reader is referred to the literature analysis in
Schoeftner et al. (2015b), which considers bending vibrations of a piezoelectric beam.
Comparatively few papers dealt with piezoelectricity and waves, in particular extensional waves in
bars. The books of Graff (1991), Kolsky (1963) and Rose (2004) provide a good theoretical
overview on wave propagation in elastic solids. Jansson and Lundberg (2007) derived a three-port
impedance model of a piezoelectric element that is attached to a bar. With this model the electrical
(voltage, current) and the mechanical ports (force, velocity) are coupled by a 3 x 3 matrix with
four independent entries. In a further contribution of Jansson and Lundberg (2008) this model was
used for damping and controlling extensional waves. In Lin and Yuan (2001) PZT ceramic discs
were mounted on an aluminum plate that generate and sense Lamb waves. A Mindlin plate theory
model was adopted to consider the interaction between the actuators, the sensors and the host plate.
The reflection and transmission of waves in a composite beam with a semi-infinite delamination
was investigated in Yuan ef al. (2008). The Timoshenko beam theory was used to study the portion
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of transmitted and reflected power caused by an open (non-contact) or a closed (full contact)
delamination. A hybrid approach for computing ultrasonic guided waves in an efficient manner
was presented by Vivar-Perez et al. (2014). Their objective is to couple a higher-order finite
element method (HO-FEM) for the piezoelectric actuators with analytical methods, which describe
the host structure. With this procedure the numerical and computational effort can be reduced and
also the difference of their results with ABAQUS-FE calculations was found negligible. Wave
propagation in a periodic piezoelectric beam was investigated in Ding et al. (2013). The dynamic
transfer matrix is derived from an energy formulation, which is needed to predict the propagation
of waves along the piezoelectric beam. Krawczuk et al. (2006) presented four spectral elements
derived from elementary and more refined bar theories, which are then compared. The dynamic
transfer matrices were developed for the elementary, the Love, the Mindlin-Herrmann and the
three-mode theory. For disturbance signals, which also excite higher modes, it was found that the
Mindlin-Herrmann and the three-mode theory give accurate results.

In this contribution we treat piezoelectric slender beam-type structures that are covered by
resistive-inductive electrodes: we consider the longitudinal and the lateral motion of the beam and
we finally obtain three coupled partial differential equations for the axial and for the lateral
deformation and also for the electric voltage across (or the electric potential of) the piezoelectric
transducers. For many practical applications, these equations may be decoupled, thus the
longitudinal and the lateral motion can be treated independently. We concentrate on the wave
propagation in piezoelectric bars with non-ideal and ideal electrodes. The equations of motion for
a piezoelectric bimorph are given in non-dimensional form and the influence of wave speeds, wave
numbers and phase angles (=which are indicators for damping) as a function of the excitation
frequencies are given for various electrode materials. In the end, the transient behavior of the wave
front due to a time-harmonic impact load is given, which also demonstrates the damping
capabilities of the electrode material.

2. Resistive-inductive electrodes - concepts

The mathematical model for the electrodes can be derived from the equivalent circuit diagram
given in Fig. 1: the electrodes consist of infinitely small electrical impedances which link the
infinitely small piezoelectric patches (=represented by electric potential nodes #(x, y), Fig. 1(c)).
The one-dimensional representation is given in Fig. 1(d): assuming no gap between the patches
(d — 0) and that the lengths of the patches approach zero (Ax — dx ), one derives a model for
the piezoelectric transducer, where the potential over the electrodes ¢ is not uniformly

distributed. This means that the resistance per unit length 7(x)# 0 and the inductance per unit
length /(x)#0 cause a voltage drop.

The electrical model of the infinitely small piezoelectric strips and the finitely conductive
electrodes can be modeled as a transmission line (see Buchberger ef al. (2008) and section 3.2).
Combining these properties with the mechanical assumptions for a slender beam (equivalent single
layer theory, Bernoulli-Euler framework including axial deformation of the beam axis, see
Buchberger and Schoeftner (2013) and section 3.1), one derives new sets of differential equations
for a piezoelectric laminated bar or/and beam with non-ideal resistive-inductive electrodes.
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Fig. 1 (a) and (b) Prototype with electrodes of the conducting polymer poly(ethylene dioxythiophene)
(PEDOT-PSS) (with friendly permission of Buchberger et al. (2008), (c) two-dimensional electrical model
of the electrode surface, (d) one-dimensional discrete and continuous electrode model

3. Equations of motion of a slender piezoelectric beam with resistive-inductive
electrodes

3.1 Electromechanical equations of piezoelectric beams

The displacements u,(x,¢)and w,(x,?)of the x -axis and the axial strain &_(x,z,t) are

related to the displacements u(x,z,t) and w(x,z,t) of an arbitrary point on the cross section as

u(x,z,t) =uy(x,1) — 2w,  (x,1) (1)
w(x, z,t) = wy(x,1) (2)
&, (x,z2,0) =uy (x,0) —zw, . (X,1). (3)

Here we only consider the thickness component of the electric field Ef and of the electric

displacement Df and neglect the components in the x -direction.
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Neglecting the magnetic field, one finds the relation between the electric field and the electric
potential ¢k from the Maxwell-Faraday equations

E! =—¢; @)

z 4

The voltage drop across the electrodes ¥ (x,) over the beam length is defined by
Vk(x,t):¢k(x,22k,t)—¢k(x,zlk,t), (5)

where the tracer k is the indicator for the k™ piezoelectric layer. The distances to the x -axis
are z,, and z,, so thatthe heightofalayeris A, =2z, —z,.

The constitutive relations are the material laws which relate mechanical (=axial stress G)I:x and

strain & ) and electrical variables (=electric displacement Dzk and electric field Ef)

P ~k ok

O-}CX - Cllgxx _e31Ez (6)
Kk ~k ~k ok

D} =e 6, +K,E;. @)

The "—symbol means that these parameters are the material constants reduced on beam level

(=the reduced short-circuit elastic stiffness élkl, the effective stress piezoelectric coupling constant
é;‘l and the effective blocked (=strain-free) permittivity 123"3 ).

Gauss’ law of electrostatics applied on slender beams yields that Dﬁ . =0 holds so that
1 Z2k
D*(x,t) = const. — h_-[ D¥(x,t) dz = const. )
k 21k
Inserting Egs. (3)-(5) and (7) into Eq. (8) one finds for the electric displacement

~k
. K
D¥(x,t) =&}, (uo’x ~ Zo i Wooxe ) - f VE(x,0). )
k

Solving Eq. (7) for the electric field and using Eq. (9), one finds

Vi) e

k —_
El(x,z,t)= - P
k 33

(ka —Z)Woaxx, (10)

where z_, =(z,, +2,,)/2 is the mean distance of the k" -layer to the x -axis. Finally, the

equation of motion for the extensional and lateral deflections of a slender piezoelectric beam with
the piecewise constant mass per unit length M = M can be derived from d’Alembert’s principle
(see e.g., Krommer (2001))
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MuiiO ('x’ t) - Muwwo,x (x’ t) - N,x = qx (xﬁt) (1 1)
M i, (x,0) + (M, iy (x,1)) M =q.(x0). (12)

where ¢ (x,t) and g¢_(x,t) are distributed forces in the x and z -directions. The normal
force N(x,t) and the bending moment M (x,f) are computed by inserting Eq. (10) into Eq. (6)
and integrating with respect to the cross-section of the beam (with the infinitesimal area

dd=b,dz)

N0 =X [* 0k (rz.00b,dz = Kty (60) ~ Koy o (ra0) + Y250V (r) (13)
kT k

M(x,t)= ZLZ“ o (x,2,0)b,zdz = Kyt (X, 1) = Kyyw, . (x,1) + Zéaklbkzmka (x,2). (14)
[ k

Here, the axial, the coupling and the bending stiffness are denoted by K,,Ky,, and K|,
and the mass per unit length by M =M (see Appendix A), respectively.

3.2 Electric equations of the resistive-inductive electrodes

The models of the piezoelectric transducer and for the electrodes are shown in Fig. 2. The
thickness of the electrodes is infinitely small and perfect bonding between the layers is assumed.

The electrodes are modeled as a transmission line with the series resistance 7 and inductance

Il.k per unit length. The time-derivative of the electric displacement, which is proportional to the
electric current, can be split up into elastic and electric portions: one is the current generated by the

deformation di* . the other one is the leakage current dif through the blocked capacitance per

elast >
unit length ¢* = IZ‘;bk / h, . Using Eq. (9) one obtains the infinitesimal current flow between the

electrodes

dif (x,t) = DY (x,0)b, dx = di*_ (x,1) + di* (x,2). (15)

Applying Kirchhoft’s current rules for the leakage flow between the electrodes and the voltage
rule for the electrode surface, four differential equations are obtained (see Fig. 2).

ilkx = _lf) x -’531{1 (uO x - kaWO xx)bk + Cka
’ S ’ ’ : (16)
lé(,x = —ig?x =e} (tg = Zop Wo )BT+ c*V*...Kirchhoff's current rule (KCR)
dif
_¢i (x,2,) =i’ +%Ilk
t (a7

-k
—B(x,2,) =y 1y +(%lzfc ...Kirchhoff’s voltage rule (KVR).
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Fig. 2 Model of a piezoelectric layer with resistive-inductive electrodes. The current flow between the layers

dif,dieklast influence the voltage difference V*(x,7) and consequently also the motions uy(x,1),

W, (x,t) of the structure

Eq. (16) states the decrease/increase of the current over the electrodes is equal to the leakage
current gradient ig’x between the electrodes. The first term on the right-hand side of Eq. (16)

e [do,x -z, kwo’xx]bk shows the coupling to the mechanical strain. The variation of the electric

potential along the electrodes is given by Eq. (17), which is related to the electrode current iik by

the resistance rl.k and the inductance ll.k ,1=1,2.
3.3 Coupled membrane-bending equations of motion

The 2+ 5k unknowns 1, (x,1), w, (x,2), V" (x,2),8" (x,2,.,1),8" (x, 2y, ,0),8] (x,¢) and i} (x,1)
of the partial differential equations can be solved by

* The two equations of motion (11) and (12)

* The k voltage-potential relations (5)

» And the 4% Kirchhoff Egs. (16) and (17).

In order to focus on much more practical problems, we derive a less complex set of differential
equations: we consider structures with constant properties along the x -coordinate, except for the
electrode properties. Furthermore, we consider a bimorph consisting of two identical piezoelectric
weM,, =0
vanish. The resistance and inductance per unit length for the internal and external electrodes are
identical 7 (x)=r, (x)=r(x),], (x)=1,(x)=1I(x) (Fig. 3). The potentials of the inner

layers with the same direction of polarization, consequently, the coupling terms K

electrodes are grounded ¢'(x,z,, = 1) = 3 (x,z,, = —z,,,1)=0.



342 Juergen Schoeftner, Gerda Buchberger and Ayech Benjeddou

Taking into account these simplifications and applylng the Laplace transformation
(;C{uo(x r)[ =3:(%.%), )C{uo(x r)} =%, ﬁ{V (% r) V(s s)) the following equations for
the displacements #,(x,s) and W,(x,s) are derived from Egs. (1 1)-(14)

M i, (x,5)s” - Kyitg o (x,8) = q,.(x,5) + Zfl’bp [I})lc (x,8)+ I};’ (x,s)] (18)
Alw‘;{)O(x,S)S2 -KMW’O,xxxx(x’S): éz(x,s)_*—%[; mp p[V ('x S) Vu,x(x,s)] (19)

For the derivation of the electrical voltage equations for the lower and upper layers (k=1,u),

one differentiates Eq. (17) with respect to x , subtracts the second from the first equation, and then
inserts Egs. (5) and (16)

%Vk(x §)+eslr(x) + sl P (x,) (20)

= &b, sl o)+ 510l () - 2w (5,9)] or £ =L

—I}k L(x,8)+

The mechanical strain can be split into one part from the axial deflection u,  and one part
from the mean bending strain z w, . (x,7): neglecting the bending strain, the voltage drop is
identical for lower and upper layer V(x,t)=V"(x,£)=V"(x,t). In contrast for u,, =0, the
bending strain z, w, (x,7) causes sign-reversed voltages V' (x,f) = V'(x,t) ==V"(x,t), since
it holds: z, =z = and z , =-z . The tedious transformation of Egs. (18)-(20) into the

time-domain is left out at this place.

resistive-inductive

Q" (x,—z,,) =-V"(x) external electrode r(x),/(x)

i) o

ml .. inner electrodes _

V' (x) grounded upper layer
P (x,0)=¢"(x,0)=0
e ....‘E...... e | '/ LY

I—’I \

Wy(x) lower layer

.
; i resistive-inductive
¢ (x,z,,) =V '(x) external electrode r(x),/(x)

Fig. 3 Piezoelectric bimorph for which the differential Eqs. (18)-(20) are derived and which is used for the
numerical example (section 4.3)
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The main novelty of our modeling approach is given by Eq. (20), which determines the
distribution of the voltage drop depending on the resistance and inductance per unit length of the

electrode 7(x),/(x) and the axial strain thy (X, ) = Zpy W (, S), the voltage I}(x,s) may be

computed. So this technology could be a promising candidate for passive vibration control, if the
design of the inductive-resistive properties are well-tuned (see Fig. 8 and also Schoeftner et al.
(2015b)).

4. Axial wave propagation analysis

4.1 Equations of motion of a slender piezoelectric bar

In the following we assume constant electrode properties 7 (x) =/ (x) =0 and additionally

take into account internal D, and external D,

ext

damping. Thus, setting g, =0, one finds the
time-domain representation of Egs. (18)- (20), yielding two coupled and damped wave equations

M jiiy(x,t)+ D, u,(x,t)— D, Uy (x,t)— Kyuy (x,0)=q (x,t)+ Zéflbpl/jx (x,2) (©2))

nt
VGt eV (xe,t)+clV (x,0) = b, | rity , (x, 1)+l (x,1) | (22)

In order to identify the problem-governing parameters, Egs. (21) and (22) are transformed into
non-dimensional differential equations. The speed of the axial wave is governed by

Coeen = K / M, , the electrical wave by c,,. =+/1/cl . Introducing the characteristic length as

L, the characteristic oscillations period as 7' and the characteristic voltage as Vj, = K\ /(€3b,) ,

one finds the non-dimensional coordinate, time, displacement and voltage as
xX=x/L t=t/T uy=u,/ L v=V1V,. (23)

Consequently, one finds the non-dimensional coupled wave equations, with the
non-dimensional load q. =¢q L/ K, as

Ty + dextuo,? - dintuO,ETx —Uy & =45 +2v; (24)

V. V. V- = _a2 u, u 25
VetV + TV = 5 [rruoﬁ + f,uoyl—,f} (25)

These equations show that the problem is governed by these six non-dimensional parameters
only
2 2 2 ‘ 2 2éP2 b2
Tm — 2L2 T,, — ]"CL dEXt — DextL dim — Dmt z.] — 21‘2 al — 31 “p . (26)
T T TK, TK T

mech elec

K,c
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4.2 Axial wave propagation solution under impact loads

For the numerical example presented in section 4.3.3, we need to determine the Green’s
functions of a bar that is subjected to the dirac-load g. = 8(X)S(# ). For this purpose, we apply

the double-transform approach to our wave Egs. (24) and (25), see Fig. 4 and also Graff (1991).
First the Fourier transform is taken on the x -coordinate

[LTO (x,1),v(x, t_)] - [(.7 (k,0),V (k, t_)] , and then the Laplace transform on the time
[U (k,0),V(k ,t_)} - [U (k5,7 (k, E)] (Fig. 4). Assuming zero-initial conditions, it
follows, from Egs. (24) and (25), that

212 5 2% 5 —
7,5 + I; +d,,S+ din—tk S —2ki U, _ 7.
—%(T,EJrT,Ez)ki kK2+r5+7,5° |\ V) 0 @7
Inverting Eq. (27) yields the solution for the displacement and the voltage
77 k? + T.5+7,5° 2ki =
liL _ 1 o2 ! . B B qsr1

V,) det|—(,5+7,5)ki 7,5 +k*+d,5+d k*s|\ 0

2 (28)
_ [ Ggg (k,5) G (k,5) [%J
Gy (k,5) Gy (k,5) 0
where the determinant is the characteristic equation of the system

det = (rmEZ vk +d 5+ dintl?E) (/;2 +T5+75" ) +a’ (r,_E +75° )l?z. (29)

The quantities G;; (k,5), Gy (k,5), Gy (k,5), G (k,5)are the transfer functions in the
(l; —5)-domain. For the numerical example presented in section 4.3.3, the external load is a
time-harmonic impulse load g (X, 7 ) = 8(X) cos(? ) . Knowing the Green’s function g(X,7 ) of the
displacement, which is the solution of the temporal and spatial impulse load
q.(x,t)=0(x)5(t ), one may find more general load cases by the following double integral.

u(x.0) =] [ g -% .7 -T)g(x.0)dr &¥ (30)
0 —o0

see e.g. Abramovich and Stegun (1972). In Graff (1991) pp. 25, it is shown how the Green’s
function is obtained for the wave equation. We extend here this solution procedure to the coupled
wave Egs. (24) and (25):

Performing the Fourier and Laplace transformation of the impulse load, it follows that
7..(k,5)=1/y27 holds. From Eq. (28) the transformed Green’s function follows as
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C_?L (k,5)= UL (k,5)= Gy (k,5)/~27 . Anyway, for the case when all kinds of damping are
ignored d_, =d, =7, =0, an analytical solution may be derived. For the undamped bar, the

transfer function of the displacement in the (l; —5) - domain is, see Eq. (28)

— 1 — 1 k?+75°

G (k,5)=———G. (k.5)= L _
‘ NG 27 (rm§2 +k2)(k2 +z‘,§2)+ a’t 5k’

I Wion B G
\/27r(w12—wf) wist+k® wist+k’

o1+ (7, +(1+a*)z,)

with  w/, = + -7,7,.
1,2 2 4 m°l
Transformation into the Fourier domain (k —7) yields
- 2 2
Te.7)=—11 (5) | B sin(ke /wy) + 2 sin(ke S wy) |, (32)
\N27x (w1 - W, ) wk w,k

where the Heaviside function is denoted by the function H (7).

Applying the inverse Fourier transformation, one finally obtains the Green’s function for this
problem

- 2
g(x,7)= Ii(” - {Wl —4 [H(x+7/w)-HX-1/w)]

(=) L (33)
Tz_sz

+ [H()?+t_/w2)—H()7—7/w2)]}.

W,

In extension to the wave equation of an elastic structure, there are two right-traveling wave

fronts and two left-traveling wave fronts with different speeds ¢, =1/w, (=slow traveling wave)

and ¢, =1/w, (=fast traveling wave), which occur in the arguments of the Heaviside functions
H(xtt/w) and Hx*t /w,).

If inductive electrodes (i.e., 7, = 0 Or 7/ << Tinecn) OF piezoelectric coupling are negligible (i.e.

a—0), the two wave speeds are ¢, —>./l/7, ., and ¢, >./l/7, . From Eq. (33) the

solution follows as

7 << Timech Ora—)O:g(fﬂr) = Hl (t_) I:H()_C+ZT/ Tmech)-H()?-t_)/ Tinech )] (34)
2 Tinech
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which is the same as the solution for an elastic bar, see Graff (1991) pp. 25.

4.3 Numerical examples

In this section we study the wave-properties like wave-velocity, phase angle and wavenumber
for various parameter combinations of a piezoelectric bimorph, see Fig. 3. First we only study
conservative systems, i.e., mechanical damping or resistive electrodes are not considered (section
4.3.1). Then wave-characteristics are presented for dissipative systems, i.e., when mechanical

damping d_, #0,d,, #0 is accounted for or when the electrodes are assumed to be finitely

conductive 7, # 0 (section 4.3.2). The parameters of the numerical example are listed in Table 1
(Appendix B). The characteristic length and the oscillation period for non-dimensionalization are
chosen as L=05m and Q=7"=5698s"'. Since the mechanical wave speed is

Coon =~ Ky /M, =2849ms™ (see Table 1 in Appendix B and Eq. (B.1) therein), the

mech —
non-dimensional parameter is 7, =1 and the non-dimensional coupling constant is a’ =0.089,
and d

ext

see Eq. (26). The other parameters 7,,7,,d

int

are considered as variables in our study.

4.3.1 Wave propagation of a non-damped piezoelectric bar
A first insight gives the frequency spectrum by solving the characteristic Eq. (29). Fig. 5 shows

the excitation frequency @ and the wave-speed ¢ =@/ k over the wave number k . Ideal
electrodes mean that the equipotential area condition of the voltage is satisfied (7, =7, =0), i.e.,
the voltage does not depend on x . The wave speed does not depend on the wave number ¢ =1
(no dispersion). Considering no electrodes (7, — o0), the differential Eq. (25) yields a linear
relation between voltage and axial strain

2

a
Vo= . 35
5 Hos (33)

Inserting this into Eq. (24), the non-dimensional longitudinal stiffness is increased by (1+ a*)
7,y — (140 )ity o = e (36)

yielding the characteristic equation TmEZ +(1+0{2)l? >=0 (see Eq. (29)). The result is a faster

wave speed Ezrm/(l+a2)=1.04 compared to ideal electrodes. Considering an

electromechanically uncoupled configuration & =0 with inductive electrodes 7, =0.64, two

wave speeds exist: the mechanical wave traveling with ¢

mech

=1, and the electrical one with

C,e =+/1/7, =1.25. Taking into account the piezoelectric coupling, one finds the lower wave

elec

propagating with 0.93, the faster one with 1.33 (black-dotted line).
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4.3.2 Wave propagation of a damped piezoelectric bar
The results for the dissipative piezoelectric bar are given in Fig. 6. Prescribing the frequency

@ , the wave number k is complex-valued for these systems. The left figure shows the relation
between @ and Re{k}. Internal damping (d

int

=0.4) means that the dissipation is related to

the strain-rate: for low frequencies, the outcome is similar to the undamped beam, but for
frequencies higher than @ >1, damping needs to be accounted for. At @ =1, the phase angle is

@ =10.9° (tangp = Im{k}/Re{k}). Considering velocity dependent damping (d,,=0.4), one
recognizes from Fig. 6 (right) that damping is only relevant for very low frequencies. Including
both kinds of mechanical damping (d,, =0.4, d,, =0.4), the phase angle ¢@=21.8° is
minimized at @ =1, but it is ¢ =45° for ® >0 and @ —> o . The damping due to the
resistive electrodes 7, =1 has a maximum @ =1.27° at @ =1: for very low and very high

frequencies, electrical damping is not present. It is important to note that electrical damping cannot
be reproduced by a linear combination of internal and external damping effects (see the phase
angle for the limits @ — 0 and @ — ). In general, the case 7, # 0 yields two solutions for
the wave-numbers, which are both complex-valued: roughly spoken, one solution is a slightly
attenuated wave with a propagation speed of ¢ =1, the second solution is an evanescent wave, i.e.
a non-propagating wave. For electrodes with 7, =1 and « # 0, this phase angle is ¢ = 45°.

@ 7, = ), 77 = 0 (ideal electrodes)
2 g 7 — 00,71 = 0 (no electrodes)
Fequanicy ok e = (), 77 =0.64, a2 =0 (uncoupled) 1.33
15 <SR 7, =0, 71 = 0.64, a® = 0.089 (coupled) // 1.95
— 7 \‘\‘ — ‘/
T /K S o o
| L
0.93
0.5 1 05¢
wave speed
0 ; A : 0 : 3 3
0 0.5 B 1 1.5 2 0 0.5 1 125 2
k(1] k 1]

Fig. 5 Frequency spectrum @ (left) and wave speed ¢ (right) as functions of the wave-number k for a
piezoelectric bar
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Fig. 6 Frequency spectrum @ as a function of the wave-number Re {l; } (left) and phase angle @ asa

function of the excitation frequency @ (right) for mechanically and electrically damped bar

Fig. 7 shows the wave speed (top) and the phase angle (bottom) for various values of
resistive-inductive electrodes (cases: 7, #0, 7, #0). For purely resistive electrodes (7, =1,

7, = 0—black dashed) one sees the mechanical wave, which travels with ¢ ~1. Again, the second
branch is the exponentially decaying, non-propagating (=the evanescent “electrical”’) wave. Taking
into account resistive-inductive electrodes (7, =7, =1-light gray), one recognizes two wave
fronts when increasing the excitation frequency (¢ =0.87 and ¢ =1.16 for w >>1). If the
resistance is decreased, a similar behavior is obtained: for 7, =0.5, 7, =1 (gray-circle) the
phase angle (of the lower branch) is maximized at @ =1 and reads ¢ = 3.71°, whereas for
7.=0.1, 7, =1 (black-circle), the phase is a maximum at @ =0.2. The phase angle diagram
also shows that the hyperbola, which characterizes the ¢ —@ curve of the second wave, is higher

damped. These curves show that the damping performance of resistive-inductive electrodes is
significantly much more efficient compared to the case of resistive electrodes, where the maximal

phase angle is ¢, ~1.27°. This is pointed out in the next section.

4.3.3 Harmonic response due to a single force
Next we investigate the response of the bar which is excited by the time-harmonic single force

g.(x,t)=05(X)cos(t), i.e. at the frequency @ =1. Consequently, the response of the bar will
be also time-harmonic, and depending on the dissipative properties of the system, the disturbance

will spatially decay. We are mainly interested in the damping capabilities of the electrodes to show
that this technology might be useful for technical applications.
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Fig. 7 Wave speed ¢ as a function of the wave-number Re{l; } (above) and phase angle ¢ over the

excitation frequency @ (bottom) for bar with resistive and/or inductive electrodes

As already known from Figs. 6 and 7, the phase angle for the resistive electrodes 7, =1 is
maximal for =1 (¢,, =1.27°). But, also for the case 7, =0.5 and 7, =1, the phase is

optimized at @ =1 (¢, =3.71°). Anyway, from the frequency spectra curves it is difficult to

conclude what this means for harmonic excitations, e.g. from a practical point of view it is
interesting to know at which distance the disturbances are almost attenuated. In Fig. 8, bars with
resistive and resistive-inductive electrodes are compared to mechanically damped bars (case 1:

d, =0.05d =0 (light-gray), case 2: d , =0,d,, =0.03 (gray)). The steady-state
responses as a function of the axial coordinate are drawn for various time steps 4 =0,¢, =0.4x

and £, =0.87.
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Fig. 8 Longitudinal wave propagation due to a harmonic impact load &(X)cos(f) for a mechanically

=0.05,d,

nt

damped piezoelectric bar with perfect electrodes (d =10.03), for a mechanically undamped

ext
bar with resistive-inductive (7, =0.5,7, =1) and with resistive electrode properties (7, =1,7, =0).

Three consecutive instants of time z ,1_2 and t_3 are shown

=0.03 —gray) and the
externally damped bar (d,, =0.05-light gray) and for the bar with resistive electrodes

One observes that the wave speed is ¢ =1 for the internally (d

int
(7, =1,7, = 0—dashed-black). For the resistive-inductive (7, = 0.5,7, = 1 - black), the wave speed
is slightly faster ¢ ~1.10. At x =27 the amplitude of the wave for the internally damped bar is

0.34 (reduction of —32% compared to the deflection amplitude at the origin X = 0, which is
0.5), which is higher than the resistively damped harmonic wave 0.29 (—42%) at the same

location. The outcome of the electrical damping (7, =1,7, =0) is close to the results, when the
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external damping of the bar is d,, =0.05. In comparison to this, the amplitude for the

resistive-inductive electrodes is much lower, it is only 0.08 (reduction —84%). This is less than
one sixth of the displacement at the origin X = 0. From a practical point of view, the vibrations
are almost completely damped out at X = 27, which is 4 times of the wavelength, and thus
showing the huge potential of resistive and inductive electrodes, in particular for passive vibration
control.

5. Conclusions

In the present contribution, a new one-dimensional theory for smart piezoelectric beams is
derived, which considers non-ideal electrodes. Here, we assume the electrodes to have resistive
and inductive properties for our approach. The outcome is an extended beam theory with coupled
differential equations for the longitudinal and the lateral beam deflections and an additional
differential equation (Telegrapher’s equation) for the calculation of the voltage distribution along
the beam axis. Furthermore, for the special case of an infinitely long, piezoelectric longitudinal bar
equipped with non-ideal (resistive-inductive) electrodes, the non-dimensional equations of motions
are presented. The frequency spectra are calculated (wave-numbers, wave speeds and phase angles)
and the results for a time-harmonic excitation load is presented. For purely inductive electrodes it
is shown that the traveling wave fronts propagate with two different wave speeds. It is found that
purely resistive and resistive-inductive electrodes may be considered as candidates to attenuate
structural vibrations. In case of resistive-inductive electrodes it is shown that an optimal choice of
the electrical properties may efficiently attenuate the axial displacement of a bar.
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Appendix A

The general beam Egs. (11) and (12), where the electrode properties and the longitudinal and
lateral deformations are considered, require the knowledge of the axial, the coupling and the

bending stiffness K,Ky,, and K,, and the mass per unit length M =AM terms. They read

for a beam with &k layers
Ky = chkl (ZZk _Zlk)bk
k

2 2
~1 Zn, — 2y,
KNMzzclkl 2k2 . bk
k
(&) (22 o
e Z,, —Z
K, ckzzk ”‘b,+ B) Ve Fu)
Z Rk 12 k

M, =M, :Zpk Zoy _Zlk)bk'
%

Appendix B

The parameters for the bimorph bar (used in the numerical examples presented in section 4.3)
are listed in Table 1.

Table 1 Parameters for the numerical examples

variable (unit) value
p, (kg/m’) 7750
z,, (m) 0
z,, (M) 5.00-107
b, (m) 5.00-107
é? (As/m?) -10.94
&P, (As/V/m) 2.15-10°°
C’, (Nm?) 6.29-10"

The layer thickness /4 , » the mean distance to the x -axis z,,, the mass per unit length M,

the longitudinal stiffness K, the capacity per unit length ¢ read (see also A.1)
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h,=z,,-z, =500 10%m

Zy,, tz
Zpp = %z 2.50 10* m
M,=2p,b,h,=0.3875 kg/m (B.1)

Ky =2Ckb,h, =3.15 10° N
¢ =kb, /h, =2.15 10°As/V/m





