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Abstract.    This contribution presents an extended one-dimensional theory for piezoelectric beam-type 
structures with non-ideal electrodes. For these types of electrodes the equipotential area condition is not 
satisfied. The main motivation of our research is originated from passive vibration control: when an elastic 
structure is covered by several piezoelectric patches that are linked via resistances and inductances, 
vibrational energy is efficiently dissipated if the electric network is properly designed. Assuming infinitely 
small piezoelectric patches that are connected by an infinite number of electrical, in particular resistive and 
inductive elements, one obtains the Telegrapher’s equation for the voltage across the piezoelectric transducer. 
Embedding this outcome into the framework of Bernoulli-Euler, the final equations are coupled to the wave 
equations for the longitudinal motion of a bar and to the partial differential equations for the lateral motion 
of the beam. We present results for the wave propagation of a longitudinal bar for several types of electrode 
properties. The frequency spectra are computed (phase angle, wave number, wave speed), which point out 
the effect of resistive and inductive electrodes on wave characteristics. Our results show that electrical 
damping due to the resistivity of the electrodes is different from internal (=strain velocity dependent) or 
external (=velocity dependent) mechanical damping. Finally, results are presented, when the structure is 
excited by a harmonic single force, yielding that resistive-inductive electrodes are suitable candidates for 
passive vibration control that might be of great interest for practical applications in the future. 
 

Keywords:  piezoelectric effect; conductive electrodes; linear elastic beam and bar modeling; vibration 
control; wave propagation 

 
 
1. Introduction 
 

Smart and intelligent structures are systems which are equipped with multi-functional materials. 
Candidates for active or passive multi-functional materials are piezoelectric materials. The 
piezoelectric effect characterizes the ability to transform a mechanical motion or deformation into 
an electrical signal (direct piezoelectric effect) or to cause deformations of a body due to electrical 
stimuli (converse piezoelectric effect). The first-mentioned effect is exploited in sensor 
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applications (e.g., structural health monitoring), whereas the latter one is used for actuation. 
Classical review works on this subject are Crawley (1994), Miu (1993) and Tzou (1998). 

In general, the electrodes of the piezoelectric transducers are assumed to be perfectly 
conductive, i.e., the electrical potential over the electrode surface does not depend on the location. 
This contribution is concerned with the development of a theory for beam-type structures 
including the piezoelectric effect, but without assuming the equipotential area condition to be 
fulfilled over the electrodes. These are so-called lossy electrodes (=resistive or finitely conductive 
electrodes), where the electric potential depends on the location. The other type of electrodes, 
where the equipotential area condition is fulfilled, is denoted as ideal or perfectly conductive 
electrodes. Here, we are mainly interested in how far these electrodes, namely resistive-inductive 
electrodes, influence the motion of a slender beam-type structure. In particular how mechanical 
vibrations can be attenuated. A variation of the electric potential provides an additional degree of 
freedom which might lower the sensitivity and improve the robustness of piezoelectric devices for 
vibration control. 

Forward (1979) is the first to use piezoelectric devices for passive vibration control. He 
damped vibrations of an optical system by attaching an electric network to the piezoelectric 
transducer. Almost all researchers, which apply piezoelectric devices on elastic host structures, 
either for actuation or sensing purposes, use piezoelectric transducers with ideal electrodes. For 
metal electrodes the assumption of a uniformly distributed electric potential over the electrodes is 
correct, but for polymer electrodes, the potential loss over the surface might not be neglected. 
Large area resistive electrodes have been successfully applied for position-sensitive touchpads, 
where the location of a pressure or heat source can be detected with the Telegrapher’s equation, see 
Buchberger et al. (2008), (2008b), (2015). To the best knowledge of the authors, the only 
investigations where non-perfect (=moderately conductive) electrodes are combined with elastic 
and piezoelectric systems are the contributions by Lediaev (2010) and Buchberger and Schoeftner 
(2013). In Lediaev (2010) the influence of moderately and high resistive electrodes on the 
three-dimensional deformations of a cantilever is investigated. In Buchberger and Schoeftner 
(2013) the beam theory for piezoelectric laminates is combined with resistive electrodes. Based on 
these results, it was found that the local action of the piezoelectric transducers can be manipulated 
by the resistive electrode properties, and the concept of shape control was successfully applied and 
even experimentally verified, see Schoeftner et al. (2014), (2015) and the patent (Schoeftner and 
Buchberger 2013).  

Nowadays piezoelectric transducers are commonly used to control mainly time-harmonic 
vibrations of beams and plates. For this topic the reader is referred to the literature analysis in 
Schoeftner et al. (2015b), which considers bending vibrations of a piezoelectric beam. 
Comparatively few papers dealt with piezoelectricity and waves, in particular extensional waves in 
bars. The books of Graff (1991), Kolsky (1963) and Rose (2004) provide a good theoretical 
overview on wave propagation in elastic solids. Jansson and Lundberg (2007) derived a three-port 
impedance model of a piezoelectric element that is attached to a bar. With this model the electrical 
(voltage, current) and the mechanical ports (force, velocity) are coupled by a 3 × 3 matrix with 
four independent entries. In a further contribution of Jansson and Lundberg (2008) this model was 
used for damping and controlling extensional waves. In Lin and Yuan (2001) PZT ceramic discs 
were mounted on an aluminum plate that generate and sense Lamb waves. A Mindlin plate theory 
model was adopted to consider the interaction between the actuators, the sensors and the host plate. 
The reflection and transmission of waves in a composite beam with a semi-infinite delamination 
was investigated in Yuan et al. (2008). The Timoshenko beam theory was used to study the portion 
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of transmitted and reflected power caused by an open (non-contact) or a closed (full contact) 
delamination. A hybrid approach for computing ultrasonic guided waves in an efficient manner 
was presented by Vivar-Perez et al. (2014). Their objective is to couple a higher-order finite 
element method (HO-FEM) for the piezoelectric actuators with analytical methods, which describe 
the host structure. With this procedure the numerical and computational effort can be reduced and 
also the difference of their results with ABAQUS-FE calculations was found negligible. Wave 
propagation in a periodic piezoelectric beam was investigated in Ding et al. (2013). The dynamic 
transfer matrix is derived from an energy formulation, which is needed to predict the propagation 
of waves along the piezoelectric beam. Krawczuk et al. (2006) presented four spectral elements 
derived from elementary and more refined bar theories, which are then compared. The dynamic 
transfer matrices were developed for the elementary, the Love, the Mindlin-Herrmann and the 
three-mode theory. For disturbance signals, which also excite higher modes, it was found that the 
Mindlin-Herrmann and the three-mode theory give accurate results. 

In this contribution we treat piezoelectric slender beam-type structures that are covered by 
resistive-inductive electrodes: we consider the longitudinal and the lateral motion of the beam and 
we finally obtain three coupled partial differential equations for the axial and for the lateral 
deformation and also for the electric voltage across (or the electric potential of) the piezoelectric 
transducers. For many practical applications, these equations may be decoupled, thus the 
longitudinal and the lateral motion can be treated independently. We concentrate on the wave 
propagation in piezoelectric bars with non-ideal and ideal electrodes. The equations of motion for 
a piezoelectric bimorph are given in non-dimensional form and the influence of wave speeds, wave 
numbers and phase angles (=which are indicators for damping) as a function of the excitation 
frequencies are given for various electrode materials. In the end, the transient behavior of the wave 
front due to a time-harmonic impact load is given, which also demonstrates the damping 
capabilities of the electrode material. 

 
 

2. Resistive-inductive electrodes - concepts 
 
The mathematical model for the electrodes can be derived from the equivalent circuit diagram 

given in Fig. 1: the electrodes consist of infinitely small electrical impedances which link the 
infinitely small piezoelectric patches (=represented by electric potential nodes ( , )x y , Fig. 1(c)). 
The one-dimensional representation is given in Fig. 1(d): assuming no gap between the patches 
( 0d  ) and that the lengths of the patches approach zero ( dx x  ), one derives a model for 
the piezoelectric transducer, where the potential over the electrodes   is not uniformly 

distributed. This means that the resistance per unit length ( ) 0r x  and the inductance per unit 

length ( ) 0l x   cause a voltage drop. 
The electrical model of the infinitely small piezoelectric strips and the finitely conductive 

electrodes can be modeled as a transmission line (see Buchberger et al. (2008) and section 3.2). 
Combining these properties with the mechanical assumptions for a slender beam (equivalent single 
layer theory, Bernoulli-Euler framework including axial deformation of the beam axis, see 
Buchberger and Schoeftner (2013) and section 3.1), one derives new sets of differential equations 
for a piezoelectric laminated bar or/and beam with non-ideal resistive-inductive electrodes. 
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Neglecting the magnetic field, one finds the relation between the electric field and the electric 

potential k from the Maxwell-Faraday equations  

,
k k
z zE                                             (4) 

The voltage drop across the electrodes ( , )kV x t over the beam length is defined by 

2 1( , ) ( , , ) ( , , ),k k k
k kV x t x z t x z t                                         (5) 

where the tracer k  is the indicator for the thk  piezoelectric layer. The distances to the x -axis 
are 2kz  and 1kz  so that the height of a layer is 2 1k k kzh z  .  

The constitutive relations are the material laws which relate mechanical (=axial stress k
xx and 

strain xx ) and electrical variables (=electric displacement k
zD  and electric field k

zE ) 

11 31
k k k k
xx xx zC e E                                (6)    

31 33 .k k k k
z xx zD e E                                (7)      

The ˜–symbol means that these parameters are the material constants reduced on beam level 

(=the reduced short-circuit elastic stiffness 11
kC , the effective stress piezoelectric coupling constant 

31
ke and the effective blocked (=strain-free) permittivity 33

k ).  

Gauss’ law of electrostatics applied on slender beams yields that , 0k
z zD  holds so that  

2

1

1
( , ) const. ( , ) consd t. 

k

k

zk k
z zz

k

D x t D x t z
h

                                (8) 

Inserting Eqs. (3)-(5) and (7) into Eq. (8) one finds for the electric displacement 

  33
31 0, m 0,( , ) ( , ).

k
k k k
z x k xx

k

D x t e u z w V x t
h


  


                              (9) 

Solving Eq. (7) for the electric field and using Eq. (9), one finds 

 31
m 0,

33

( , )
( , , ) ,

kk
k
z k xxk

k

eV x t
E x z t z z w

h 
   




                            (10) 

where m 1 2( ) / 2k k kz z z   is the mean distance of the thk -layer to the x -axis. Finally, the 

equation of motion for the extensional and lateral deflections of a slender piezoelectric beam with 
the piecewise constant mass per unit length w uM M can be derived from d’Alembert’s principle 

(see e.g., Krommer (2001)) 
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0 0, ,( , ) ( , ) ( , )u uw x x xM u x t M w x t N q x t                                       (11) 

 0 0 ,,
( , ) ( , ) ( , ).w uw xx zx

M w x t M u x t M q x t                                   (12) 

where ( , )xq x t   and ( , )zq x t   are distributed forces in the x  and z -directions. The normal 

force ( , )N x t   and the bending moment ( , )M x t  are computed by inserting Eq. (10) into Eq. (6) 
and integrating with respect to the cross-section of the beam (with the infinitesimal area 

d dkA b z ) 

2

1
N 0, NM 0, 31( , ) ( , , ) d ( , ) ( , ) ( , )

k

k

z k k k
xx k x xx kz

k k

N x t x z t b z K u x t K w x t e b V x t            (13) 

2

1
NM 0, M 0, 31 m( , ) ( , , ) d ( , ) ( , ) ( , ).

k

k

z k k k
xx k x xx k kz

k k

M x t x z t b z z K u x t K w x t e b z V x t       (14) 

Here, the axial, the coupling and the bending stiffness are denoted by N NM,K K  and MK  

and the mass per unit length by w uM M  (see Appendix A), respectively. 

 
3.2 Electric equations of the resistive-inductive electrodes 
 
The models of the piezoelectric transducer and for the electrodes are shown in Fig. 2. The 

thickness of the electrodes is infinitely small and perfect bonding between the layers is assumed. 

The electrodes are modeled as a transmission line with the series resistance k
ir  and inductance 

k
il  per unit length. The time-derivative of the electric displacement, which is proportional to the 

electric current, can be split up into elastic and electric portions: one is the current generated by the 

deformation elastd ki , the other one is the leakage current d k
ci  through the blocked capacitance per 

unit length 33 /k k
k kc b h  . Using Eq. (9) one obtains the infinitesimal current flow between the 

electrodes 

elastd ( , ) ( , ) d d ( , ) d ( , ).k k k k
D z k ci x t D x t b x i x t i x t                                (15) 

Applying Kirchhoff’s current rules for the leakage flow between the electrodes and the voltage 
rule for the electrode surface, four differential equations are obtained (see Fig. 2). 

(KCR) rulecurrent  sKirchhoff' ...+)-(~=-=

+)-(~-=-=

,0m,031,,2

,0m,031,,1

kk
kxxkx

kk
xD

k
x

kk
kxxkx

kk
xD

k
x

Vcbwzueii

Vcbwzueii




       (16) 

1
, 1 1 1 1

2
, 2 2 2 2

d
( , )

d

d
( , ) Kirchhoff s voltage rule (KVR).

d

k
k k k k
x k

k
k k k k
x k

i
x z i r l

t

i
x z i r l

t





  

   

                   (17) 
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4.2 Axial wave propagation solution under impact loads 
 
For the numerical example presented in section 4.3.3, we need to determine the Green’s 

functions of a bar that is subjected to the dirac-load )( )(xq x t  . For this purpose, we apply 

the double-transform approach to our wave Eqs. (24) and (25), see Fig. 4 and also Graff (1991). 
First the Fourier transform is taken on the x -coordinate 

 0 ( ), ( ) (, , , ,), ( )u x t x t k tv U V k t     , and then the Laplace transform on the time 

L L( ), ( ) ( ), (, , ), ,U V Uk t k t k s k sV        (Fig. 4). Assuming zero-initial conditions, it 

follows, from Eqs. (24) and (25), that 
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Inverting Eq. (27) yields the solution for the displacement and the voltage  
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where the determinant is the characteristic equation of the system 

    2 2 2 2 2 2 2 2
ext intdet .m r l r ls k s k s k s sd d s s k                   (29) 

The quantities ( , ), ( , ), ( , ), ( , )UU UV VU VVk s k s k GsG kG sG are the transfer functions in the 

( )k s -domain. For the numerical example presented in section 4.3.3, the external load is a 

time-harmonic impulse load ( ( cos(, ) ) )xq x t x t . Knowing the Green’s function ( , )g x t of the 

displacement, which is the solution of the temporal and spatial impulse load 
( ), ) )( (xq x t x t  , one may find more general load cases by the following double integral. 

' ' ' '

0

( , ) ( , ) ( , ) d d
t

xu x t g x x t t q x t t x




                     (30) 

see e.g. Abramovich and Stegun (1972). In Graff (1991) pp. 25, it is shown how the Green’s 
function is obtained for the wave equation. We extend here this solution procedure to the coupled 
wave Eqs. (24) and (25): 

Performing the Fourier and Laplace transformation of the impulse load, it follows that 

L ,( ) 1 / 2xq k s   holds. From Eq. (28) the transformed Green’s function follows as 
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L L( , ) ( , ) ( , ) / 2UUk s k s G kU sG   . Anyway, for the case when all kinds of damping are 

ignored ext int 0rd d    , an analytical solution may be derived. For the undamped bar, the 

transfer function of the displacement in the ( )k s - domain is, see Eq. (28) 
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Transformation into the Fourier domain ( )k t  yields 
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where the Heaviside function is denoted by the function ( )H t .  
Applying the inverse Fourier transformation, one finally obtains the Green’s function for this 

problem 
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In extension to the wave equation of an elastic structure, there are two right-traveling wave 
fronts and two left-traveling wave fronts with different speeds 1 1/1c w  (=slow traveling wave) 

and 2 2/1c w  (=fast traveling wave), which occur in the arguments of the Heaviside functions 

1( / )H x t w  and 2( / )H x t w . 

If inductive electrodes (i.e., 0l   or τl << τmech) or piezoelectric coupling are negligible (i.e. 

0  ), the two wave speeds are 1 mech1/c   and 2 1/ lc  . From Eq. (33) the 

solution follows as 
 
 

[ ])/)-(-)/+(
2

)(
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τ

tH
txgαττ      (34) 
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which is the same as the solution for an elastic bar, see Graff (1991) pp. 25. 

 

4.3 Numerical examples 
 
In this section we study the wave-properties like wave-velocity, phase angle and wavenumber 

for various parameter combinations of a piezoelectric bimorph, see Fig. 3. First we only study 
conservative systems, i.e., mechanical damping or resistive electrodes are not considered (section 
4.3.1). Then wave-characteristics are presented for dissipative systems, i.e., when mechanical 
damping ext int0, 0d d   is accounted for or when the electrodes are assumed to be finitely 

conductive 0r   (section 4.3.2). The parameters of the numerical example are listed in Table 1 

(Appendix B). The characteristic length and the oscillation period for non-dimensionalization are 

chosen as 0.5mL  and 1 15698s .T      Since the mechanical wave speed is 

Nmech
1/ 2849msuKc M    (see Table 1 in Appendix B and Eq. (B.1) therein), the 

non-dimensional parameter is 1m   and the non-dimensional coupling constant is 2 0.089  , 

see Eq. (26). The other parameters int, ,r l d   and extd  are considered as variables in our study. 

 
4.3.1 Wave propagation of a non-damped piezoelectric bar 
A first insight gives the frequency spectrum by solving the characteristic Eq. (29). Fig. 5 shows 

the excitation frequency   and the wave-speed /c k  over the wave number k . Ideal 
electrodes mean that the equipotential area condition of the voltage is satisfied ( 0r l   ), i.e., 

the voltage does not depend on x . The wave speed does not depend on the wave number 1c   
(no dispersion). Considering no electrodes ( r  ), the differential Eq. (25) yields a linear 

relation between voltage and axial strain 

2

0, .
2 xv u


                             (35) 

Inserting this into Eq. (24), the non-dimensional longitudinal stiffness is increased by ( 21  ) 

 2
0, 0,1 ,m tt xx xu u q                                           (36) 

yielding the characteristic equation  2 2 21 0ms k     (see Eq. (29)). The result is a faster 

wave speed  2/ 1 1.04mc      compared to ideal electrodes. Considering an 

electromechanically uncoupled configuration 0   with inductive electrodes 0.64l  , two 

wave speeds exist: the mechanical wave traveling with mech 1c  , and the electrical one with 

elec 1/ 1.25lc   . Taking into account the piezoelectric coupling, one finds the lower wave 

propagating with 0.93 , the faster one with 1.33  (black-dotted line). 
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external damping of the bar is ext 0.05d  . In comparison to this, the amplitude for the 

resistive-inductive electrodes is much lower, it is only 0.08  (reduction 84% ). This is less than 
one sixth of the displacement at the origin 0x  . From a practical point of view, the vibrations 
are almost completely damped out at 27x  , which is 4  times of the wavelength, and thus 
showing the huge potential of resistive and inductive electrodes, in particular for passive vibration 
control. 
 
 
5. Conclusions 

 
In the present contribution, a new one-dimensional theory for smart piezoelectric beams is 

derived, which considers non-ideal electrodes. Here, we assume the electrodes to have resistive 
and inductive properties for our approach. The outcome is an extended beam theory with coupled 
differential equations for the longitudinal and the lateral beam deflections and an additional 
differential equation (Telegrapher’s equation) for the calculation of the voltage distribution along 
the beam axis. Furthermore, for the special case of an infinitely long, piezoelectric longitudinal bar 
equipped with non-ideal (resistive-inductive) electrodes, the non-dimensional equations of motions 
are presented. The frequency spectra are calculated (wave-numbers, wave speeds and phase angles) 
and the results for a time-harmonic excitation load is presented. For purely inductive electrodes it 
is shown that the traveling wave fronts propagate with two different wave speeds. It is found that 
purely resistive and resistive-inductive electrodes may be considered as candidates to attenuate 
structural vibrations. In case of resistive-inductive electrodes it is shown that an optimal choice of 
the electrical properties may efficiently attenuate the axial displacement of a bar. 
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Appendix A 
 
The general beam Eqs. (11) and (12), where the electrode properties and the longitudinal and 

lateral deformations are considered, require the knowledge of the axial, the coupling and the 
bending stiffness N NM,K K  and MK  and the mass per unit length w uM M  terms. They read 

for a beam with k  layers 
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Appendix B 

 
The parameters for the bimorph bar (used in the numerical examples presented in section 4.3) 

are listed in Table 1.  
 
 

Table 1 Parameters for the numerical examples 

variable (unit) value 
3

p kg/m )(  7750  

1p (m)z  0  

2p )(mz  45.00 10  

p )(mb  25.00 10  
p 2
31 A( s/m )e  10.94  
p
33 As/ )( V/m  82.15 10  

p 2
11 (Nm )C  

106.29 10  

 
 
The layer thickness ph , the mean distance to the x -axis m pz , the mass per unit length uM , 

the longitudinal stiffness NK , the capacity per unit length c  read (see also A.1) 
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