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Abstract.  In this research work, an exact analytical solution for thermal buckling analysis of functionally 
graded material (FGM) sandwich plates with clamped boundary condition subjected to uniform, linear, and 
non-linear temperature rises across the thickness direction is developed. Unlike any other theory, the number 
of unknown functions involved is only four, as against five in case of other shear deformation theories. The 
theory accounts for parabolic distribution of the transverse shear strains, and satisfies the zero traction 
boundary conditions on the surfaces of the plate without using shear correction factor. A power law 
distribution is used to describe the variation of volume fraction of material compositions. Equilibrium and 
stability equations are derived based on the present refined theory. The non-linear governing equations are 
solved for plates subjected to simply supported and clamped boundary conditions. The thermal loads are 
assumed to be uniform, linear and non-linear distribution through-the-thickness. The effects of aspect and 
thickness ratios, gradient index, on the critical buckling are all discussed. 
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1. Introduction 
 

Functionally graded materials (FGMs) are new inhomogeneous materials which have widely 

used in many engineering applicants such as nuclear reactors and high-speed spacecraft industries 

(Yamanouchi 1990). The mechanical properties of FGMs vary smoothly and continuously from 

one surface to the other. Typically these materials are made from a mixture of ceramic and metal or 

from a combination of different materials. The ceramic constituent of the material provides the 

high-temperature resistance due to its low thermal conductivity. The ductile metal constituent on 

the other hand, prevents fracture caused by stresses due to the high temperature gradient in a very 

short period of time. Furthermore a mixture of ceramic and metal with a continuously varying 

volume fraction can be easily manufactured (Fukui 1991, Koizumi 1997). With the developments 

in manufacturing methods (Fukui 1991, Fukui 1997, El-Hadek 2003) functionally graded materials 
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seem to have great potential in sandwich structures. The analysis of these materials has been 

considered by many researchers. Due to the importance and wide engineering applications of 

FGMs, the static, vibrational, thermomechanical and buckling analyses of FGM structures have 

been addressed by many investigators. 

The functionally graded (FG) plates are commonly used in thermal environments; they can 

buckle under thermal and mechanical loads. Thus, the buckling analysis of such plates is essential 

to ensure an efficient and reliable design. Eslami and his co-workers (Javaheri (2002), Javaheri 

and Eslami (2002), Samsam and Eslami (2007), Javaheri and  Eslami (2005), Samsam and 

Eslami (2006), Samsam and Eslami (2005) have treated a series of problems relating to the linear 

buckling of simply supported rectangular FG plates, with and without imperfections, under 

mechanical and thermal loads. By using an analytical approach, they obtained closed-form 

expressions for buckling loads. 

Sohn and Kim (2008) dealt with the stabilities of FG panels subjected to combined thermal and 

aerodynamic loads. The first-order theory was used to simulate supersonic aerodynamic loads 

acting on the panels. The influence of the material constitution of FG panels on thermal buckling 

and flutter characteristics was examined. Zenkour et al. (2010) studied the thermal buckling 

response of FG plates using sinusoidal shear deformation plate theory. Bouiadjra et al. (2012) 

developed a four-variable refined plate theory for buckling analysis of functionally graded plates. 

Xiang et al. (2013) used a n-order four variable refined theory for bending and free vibration of 

functionally graded plates. Recently, Tounsi and his co-workers workers (Tounsi et al. 2013, Ait 

Yahia et al. 2015, Zidi et al. 2014, Bouderba et al. 2013, Bellifa et al. 2016, Atia et al. 2015, 

Bouchafa, et al. 2015) developed new shear deformation plates theories involving only four 

unknown functions. Ait Amar Meziane et al. (2014) developed an efficient and simple refined 

theory for buckling and free vibration of exponentially graded sandwich plates under various 

boundary conditions. Mahi et al. (2015) studied the bending and free vibration analysis of 

isotropic, functionally graded, sandwich and laminated composite plates using a new hyperbolic 

shear deformation theory. Bourada et al. (2015) used a new simple shear and normal deformations 

theory for functionally graded beams. Belabed et al. (2014) used an efficient and simple higher 

order shear and normal deformation theory for functionally graded material (FGM) plates. Hebali 

et al. (2014) studied the static and free vibration analysis of functionally graded plates using a new 

quasi-3D hyperbolic shear deformation theory. Hamidi et al. (2015) used a sinusoidal plate theory 

with 5-unknowns and stretching effect for thermomechanical bending of functionally graded 

sandwich plates. Bennoun et al. (2016) studied the vibration analysis of functionally graded 

sandwich plates using a novel five variable refined plate theory. Bousahla et al. (2014) 

investigated a novel higher order shear and normal deformation theory based on neutral surface 

position for bending analysis of advanced composite plates. 

In this paper, the four-variable refined plate theory has been extended for the first time to the 

thermal buckling behavior of FGM sandwich plates with clamped boundary condition. Material 

properties of the FGM sandwich plate are assumed to vary in the thickness direction according to a 

simple power-law distribution in terms of the volume fractions of the constituents. An eigenvalue 

problem is formulated for a FGM sandwich plates to analyze its thermal buckling behaviors. The 

thermal loads are assumed as uniform, linear, and nonlinear temperature rises across the thickness 

direction. Illustrative examples are given so as to demonstrate the efficacies of the theory. The 

effects of various variables, such as thickness and aspect ratios, gradient index, loading type, and 

sandwich plate type on the critical buckling are all discussed. 
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Thermal buckling response of functionally graded sandwich plates… 

 

Fig. 1 Geometry of the functionally graded material (FGM) sandwich plate 

 

 

2. Statement of the problem 
 

The geometry and dimensions of the rectangular plate made of FGMs under consideration are 

represented in Fig. 1. Rectangular Cartesian coordinates (x, y, z) are used to describe infinitesimal 

deformations of a three-layer sandwich elastic plate occupying the region 

[ ] [ ] [ ]2/,2/,0,0 hhxbxa  in the unstressed reference configuration, and the axes are parallel to the 

edges of the plate. The plate has length a , width b , and uniform thickness h . The mid-plane of 

the composite sandwich plate is defined by 0z  and its external bounding planes being defined 

by 2/±= hz . The vertical positions of the bottom surface, the two interfaces between the core 

and faces layers, and the top surface are denoted, respectively, by ,2/=0 hh ,1h ,2h and 

2/+=3 hh . 

The effective material properties for each layer, such as Young’s modulus, Poisson’s ratio, and 

thermal expansion coefficient, can be expressed as 

  )()( )( n

mcm

n VPPPzP                         (1) 

where )(nP  is the effective material property of FGM of layer n . mP  and cP  denote the 

property of the bottom and top faces of layer 1. ( )
10 hzh ≤≤ , respectively, and vice versa for 

layer 3 ( )
32 hzh ≤≤  depending on the volume fraction ( )3,2,1=)( nV n . Note that mP  and cP  

are, respectively, the corresponding properties of the metal and ceramic of the FGM sandwich 

plate. The volume fraction 
)(nV  of the FGMs is assumed to obey a power-law function along the 

thickness direction (Houari et al. (2011)) 

,
12

1)1(

k

hh

hz
V 












 ],[ 21 hhz               (2a) 

,1)2( V  32 ,hhz                  (2b) 
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where k is the volume fraction exponent, which takes values greater than or equals to zero. The 

core layer is independent of the value of k, which is a fully ceramic layer. However, the value of k 

equal to zero represents a fully ceramic plate. The above power-law assumption given in Eqs. (2(a)) 

and (2(c)) reflects a simple rule of mixtures used to obtain the effective properties of the metal–

ceramic and ceramic–metal plate faces (see Fig. 1). Note that the volume fraction of the metal is 

high near the bottom and top surfaces of the plate and that of ceramic is high near the interfaces. 

 

 

3. Basic assumptions  
 
Assumptions of the present theory are as follows: 

- The displacements are small in comparison with the plate thickness and, therefore, s

trains involved are infinitesimal. 

- The transverse displacement w  includes two components of bending bw  and shear 

sw . These components are functions of coordinates yx,  only. 

     yxwyxwzyxw sb ,,,,                      (3) 

- The transverse normal stress 
z  is negligible in comparison with in-plane x and

y . 

- The displacements u in x -direction and v  in y -direction consist of extension, ben

ding, and shear components. 

,0 sb uuuu  ,0 sb vvvv 
                    (4) 

The bending components bu  and bv  are assumed to be similar to the displacements given by 

the classical plate theory. Therefore, the expression for bu  and bv  can be given as 

,
x

w
zu b

b



    

y

w
zv b

b



                      (5) 

The shear components su  and sv  give rise, in conjunction with sw , to the sinusoidal 

variations of shear strains xz , yz  and hence to shear stresses xz , yz  through the thickness 

of the plate in such a way that shear stresses xz , yz  are zero at the top and bottom faces of the 

plate. Consequently, the expression for su  and sv  can be given as  

                        
x

w
zfu s

s



 )( ,  

y

w
zfv s

s



 )(                   (6) 
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where 

  







 22

3

1

4

1

2

1
zhzzzf                       (7) 

 

 
 
4. Kinematics and constitutive equations 

 

Based on the assumptions made in the preceding section, the displacement field can be 

obtained using Eqs. (3)- (7) as  

 
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The non-linear von Karman strain–displacement equations are as follows 
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For elastic and isotropic FGMs, the constitutive relations can be written as 
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where ( x , y , xy , yz , yx ) and ( x , y , xy , yz , xz ) are the stress and strain 

components, respectively. Using the material properties defined in Eq. (1), stiffness coefficients, 

ijQ , can be expressed as 
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5. Stability equations 
 

The total potential energy of the FG plate may be written as 
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where nh  and 1nh  are the top and bottom z-coordinates of the nth layer. 

Using Eq. (13) in Eq. (15), the stress resultants of the FG plate can be related to the total strains by 
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where ijA , ijB , etc., are the plate stiffness, defined by 
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and 
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The stress and moment resultants, 
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The stability equations of the plate may be derived by the adjacent equilibrium criterion. 

Assume that the equilibrium state of the FG plate under thermal loads is defined in terms of the 

displacement components  000

0

0

0 ,,, sb wwvu . The displacement components of a neighboring stable 

state differ by  111

0

1

0 ,,, sb wwvu  with respect to the equilibrium position. Thus, the total 

displacements of a neighboring state are 

,1

0

0

00 uuu  ,1

0

0

00 vvv  ,10

bbb www  ,10

sss www               (20)    

Where the superscript 1 refers to the state of stability and the superscript 0 refers to the state of 

equilibrium conditions. 

Substituting Eqs. (9) and (20) into Eq. (14) and integrating by parts and then equating the 

coefficients of ,1

0u ,1

0v ,1

bw ,1

sw to zero, separately, the governing stability equations are 

obtained for the shear deformation plate theories as 
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with   
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where the terms 0
xN  and 

0
yN  are the pre-buckling force resultants obtained as 
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The stability equations in terms of the displacement components may be obtained by 

substituting Eq. (16) into Eq. (21). The resulting equations are four stability equations based on the 

present refined shear deformation theory for FG plates. 
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where ,ijd ,ijld and ijlmd  are the following differential operators  
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6. Trigonometric solution to thermal buckling 
 

The exact solution of Eqs. (24) for the FGMs sandwich plate under various boundary 

conditions can be constructed. The boundary conditions for an arbitrary edge with simply 

supported and clamped edge conditions are: 

- Clamped (C): 

0////00  ywxwwywxwwvu sssbbb  à ax  ,0 by  ,0
  

(26) 

- Simply Supported (S): 

0//0  ywwywwv ssbb  à  ax  ,0
            

(27a) 

               
0//0  xwwxwwu ssbb  à  by  ,0

            
(27b) 

The following representation for the displacement quantities, that satisfy the above boundary 

conditions, is appropriate in the case of our problem 
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Table 1 The admissible functions 

 Boundary conditions The functions mX  and nY  

At ax  ,0  At  by  ,0  )(xX m  
)(yYn  

 

SSSS 
0)0()0( ''  mm XX

 
0)0()0( ''  nn YY

 
 

) sin( x
 

 

) sin( y
 0)()( ''  aXaX mm  

0)()( ''  bYbY nn  

0)()( '  aXaX mm  
0)()( ''  bYbY nn  

 

CCCC 
0)0()0( '  mm XX

 
0)0()0( ''  nn YY

 
 

) (sin 2 x
 

 

) (sin 2 y
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0)()( '  bYbY nn  

0)()( '''''  aXaX mm  
0)()( '  bYbY nn  

()’ Denotes the derivative with respect to the corresponding coordinates 
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where mnU , mnV , bmnW , and smnW   are arbitrary parameters to be determined. 

The functions )(xX m  and )(yYn  are suggested by Sobhy (2013) to satisfy at least the 

geometric boundary conditions given in Eqs. (26) and (27), and represent approximate shapes of 

the deflected surface of the plate. These functions, for the different cases of boundary conditions, 

are listed in Table 1 noting that am /   and bn /  .  

Substituting expressions (28) into the governing Eqs. (24), one obtains, after some 

mathematical manipulations, the following equations                                                                       
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(30b) 

 

 

The non-trivial solution is obtained when the determinant of Eq. (29) equals zero. 

 

 

7. Buckling of FG plates under uniform temperature rise 
 

The plate initial temperature is assumed to be iT . The temperature is uniformly raised to a 

final value fT  in which the plate buckles. The temperature change is if TTT  . The thermal 

force resultant and is evaluated as 
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8. Buckling of FG plates under linear temperature rise 
 

For FG plates, the temperature change is not uniform. The temperature is assumed to be varied 

linearly through the thickness as follows 
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where the buckling temperature difference tb TTT  and   is the temperature exponent 

  0 . Note that the value of   equal to unity represents a linear temperature change across 

the thickness. While the value of   excluding unity represents a non-linear temperature change 

through-the-thickness. 

Similar to the previous loading case, the thermal force resultant crN  is obtained by using Eqs. 

(32) into Eq. (31).  
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9. Numerical results 
 
To illustrate the proposed approach, a ceramic-metal functionally graded sandwich plate is 

considered. The combination of materials consists of Titanium and Zirconia. The Young’s modulus 

and the coefficient of thermal expansion for Titanium and Zirconia are given in Table 1. 

The general approach outlined in the previous sections for the thermal buckling analysis of the 

FGM sandwich plates under uniform, linear, and nonlinear temperature rises through the thickness 

is illustrated in this section using the four variable refined plate theory. 

The shear correction factor for FSDPT is set equal to 5/6. For the linear and nonlinear 

temperature rises through the thickness, CTt °25= . 

In order to prove also the validity of the present refined plate theory, results were obtained for 

FGM sandwich plates under uniform, linear, and nonlinear temperature rise according to all 

theories. The critical buckling temperature difference ( )
crcr TT Δ10= 3  are considered for ,0=p

,2 ,5 10  and for various types of FGM sandwich plates as is illustrated in Tables 3-5. As observed 

in Tables 3-5, there is a very good agreement between the present refined plate theory and other 

higher order plate theories. It is seen that the thermal buckling temperature increases with the 

increasing thickness of the FGM layers and especially for 1≥p . For various power law exponent 

k , the thermal buckling temperature values are between those of plates made of ceramic (ZrO2) 

and metal (Ti–6A1–4V). It is interesting to note that the critical buckling temperatures obtained 

based on CPT are noticeably greater than values obtained based on higher order shear deformation 

theory. 

Fig. 2 shows the effect of the volume fraction index k  on the thermal force resultant crT  for 

different types of clamped square FGM sandwich plate under uniform, linear and non-linear 

temperature change through-the-thickness using the present four-variable refined plate theory. It is 

clear that the critical buckling temperature crT  for the plates under a nonlinear temperature 

change is higher than that for the plates under uniform temperature change. While crT  for the 

plates under linear temperature change is intermediate to the two previous thermal loading cases. It 

is further observed that, for the plate without core, the critical buckling crT  decreases rapidly to 

reach minimum values and then increases gradually as the inhomogeneity parameter k  increases 

as shown in Fig. 2(a).However, for the other sandwich FGM plates (see Figs. 2(b)-2(d)), crT  

decreases smoothly as k  increases. 

 

 
Table 2 Material properties used in the FG sandwich plate 

 

Properties Metal: Ti–6A1–4V Ceramic: ZrO2 

 GPaE
 

66.2 244.27 

  0.3 0.3 

 K/10 6
 

10.3 12.766 
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Table 3 Critical buckling temperature crT of simply supported FGM sandwich square plates under uniform 

temperature rise ( ).5=/ ha  

 

 

 

k         

Theory 
crT  

1-0-1 1-1-1 2-1-2 3-1-3 

 

 

0 

CPT 3.96470 3.96470 3.96470 3.96470 

FSDPT 3.23493 3.23493 3.23493 3.23493 

SSDPT 3.23775 3.23775 3.23775 3.23775 

TSDPT 3.23652 3.23652 3.23652 3.23652 

Present 3.23654 3.23654 3.23654 3.23654 

 

 

0.2 

CPT 3.66606 3.65640 3.64978 3.65144 

FSDPT 3.04858 3.03637 3.03394 3.03603 
SSDPT 3.07198 3.05591 3.05598 3.05875 
TSDPT 3.07042 3.05484 3.05461 3.05729 

Present 3.07039 3.05484 3.05458 3.05725 

 

 

0.5 

CPT 3.34559 3.31343 3.30066 3.30593 

FSDPT 2.83507 2.80230 2.79675 2.80218 
SSDPT 2.87277 2.83331 2.83194 2.83855 
TSDPT 2.87074 2.83224 2.83030 2.83673 

Present 2.87074 2.83223 2.83029 2.83673 

 

 

1 

CPT 3.06734 2.96299 2.95538 2.97216 

FSDPT 2.64222 2.55161 2.55053 2.56519 
SSDPT 2.69065 2.59015 2.59458 2.61100 
TSDPT 2.68781 2.58882 2.59241 2.60856 

Present 2.68781 2.58883 2.59241 2.60855 

 

 

2 

CPT 2.96200 2.64806 2.68016 2.72994 

FSDPT 2.57355 2.31737 2.34734 2.38823 
SSDPT 2.63460 2.36196 2.39953 2.44337 
TSDPT 2.63018 2.36000 2.39637 2.43977 

Present 2.63019 2.35999 2.39637 2.43977 

 

 

5 

CPT 3.32950 2.44274 2.59922 2.73600 

FSDPT 2.86226 2.16069 2.28926 2.39882 

SSDPT 2.94205 2.21327 2.35401 2.46905 

TSDPT 2.93446 2.21009 2.34898 2.46321 

Present 2.93443 2.21008 2.34899 2.46321 

 

 

10 

CPT 3.82441 2.41650 2.68184 2.89384 

FSDPT 3.23289 2.14099 2.35529 2.52271 

SSDPT 3.31230 2.20150 2.42733 2.60199 

TSDPT 3.30340 2.19469 2.42186 2.59474 

Present 3.30340 2.19469 2.42186 2.59476 
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The variation of critical temperatures crT  of clamped square FGM sandwich plates subjected to 

various thermal loading types are shown in Fig. 3 with respect to the side-to-thickness ratio ha / . 

It is seen that the critical temperature difference decreases monotonically as the side-to-thickness 

ratio ha /  increases. Note that the critical temperatures crT  of the FGM plate under uniform 

temperature rise is smaller than that of the plate under linear temperature rise and the latter is 

smaller than that of the plate under nonlinear temperature rise. Also, it is noticed that crT  

increases as the nonlinearity parameter   increases. 
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Fig. 2 Critical buckling temperature difference crT  vs the power-law index k  for various types of 

functionally graded material (FGM) sandwich clamped square plates ( )10=/ ha : (a) the ( )101  

FGM sandwich plate, (b) the ( )111  FGM sandwich plate, (c) the ( )212  FGM sandwich plate, 

and (d) the ( )313  FGM sandwich plate. For non-linear 2=γ  
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Table 4 Critical buckling temperature crT of a simply supported FGM sandwich square plates plates under 

linear temperature rise 

k  
 

crT  

Theory 1-0-1 1-1-1 2-1-2 3-1-3 

0 

CPT 7.87940 7.87940 7.87940 7.87940 

FSDPT 6.41986 6.41986 6.41986 6.41986 

SSDPT 6.42550 6.42550 6.42550 6.42550 

TSDPT 6.42305 6.42305 6.42305 6.42305 

Present 6.42307 6.42307 6.42307 6.42307 

0.2 

CPT 7.28211 7.26279 7.24955 7.25287 

FSDPT 6.04716 6.02273 6.01789 6.02207 

SSDPT 6.09396 6.06183 6.06197 6.06751 

TSDPT 6.09084 6.05968 6.05922 6.06459 

Present 6.09084 6.05969 6.05922 6.06457 

0.5 

CPT 6.64118 6.57686 6.55131 6.56187 

FSDPT 5.62014 5.55460 5.54350 5.55435 

SSDPT 5.69554 5.61663 5.61389 5.62710 

TSDPT 5.69148 5.61449 5.61059 5.62346 

Present 5.69144 5.61447 5.61061 5.62347 

1 

CPT 6.08468 5.87599 5.86076 5.89431 

FSDPT 5.23443 5.05323 5.05105 5.08038 

SSDPT 5.33130 5.13030 5.13918 5.17201 

TSDPT 5.32562 5.12765 5.13482 5.16711 

Present 5.32566 5.12762 5.13484 5.16709 

2 

CPT 5.87400 5.24612 5.31032 5.40989 

FSDPT 5.09711 4.58475 4.64468 4.72645 

SSDPT 5.21920 4.67392 4.74908 4.83673 

TSDPT 5.21036 4.66999 4.74275 4.82954 

Present 5.21039 4.66998 4.74277 4.82954 

5 

CPT 6.60901 4.83549 5.14843 5.42200 

FSDPT 5.67452 4.27139 4.52851 4.74763 

SSDPT 5.83411 4.37654 4.65805 4.88811 

TSDPT 5.81891 4.37017 4.64797 4.87641 

Present 5.81891 4.37019 4.64795 4.87641 

10 

CPT 7.59882 4.78299 5.31369 5.73769 

FSDPT 6.41578 4.23198 4.66058 4.99542 

SSDPT 6.57459 4.35224 4.80638 5.15396 

TSDPT 6.55680 4.33937 4.79372 5.13948 

Present 6.55682 4.33937 4.79372 5.13948 
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Table 5 Critical buckling temperature crT of a simply supported FGM sandwich square plates plates under 

non-linear temperature rise 5=γ  and ( ).5=/ ha  

k  
 

crT  

Theory 1-0-1 1-1-1 2-1-2 3-1-3 

0 

CPT 23.63820 23.63820 23.63820 23.63820 

FSDPT 19.25957 19.25957 19.25957 19.25957 

SSDPT 19.27651 19.27651 19.27651 19.27651 

TSDPT 19.26915 19.26915 19.26915 19.26915 

Present 19.26904 19.26904 19.26904 19.26904 

0.2 

CPT 24.58692 24.34093 24.43703 24.47887 

FSDPT 20.41729 20.18492 20.28528 20.32483 

SSDPT 20.57531 20.31595 20.43388 20.47819 

TSDPT 20.56479 20.30876 20.42463 20.46833 

Present 20.56459 20.30887 20.42463 20.46807 

0.5 

CPT 25.21986 24.74530 2491598 24.99617 

FSDPT 21.34246 20.89907 21.08307 21.15824 

SSDPT 21.62878 21.13244 21.35073 21.43534 

TSDPT 21.61337 21.12438 21.33822 21.42148 

Present 21.61331 21.12453 21.33821 21.42153 

1 

CPT 25.60494 24.85771 25.09061 25.21549 

FSDPT 22.02700 21.37713 21.62417 21.73355 

SSDPT 22.43462 21.70318 22.00140 22.12553 

TSDPT 22.41074 21.69196 21.98279 22.10459 

Present 22.41079 21.69199 21.98269 22.10458 

2 

CPT 25.96247 24.69501 25.02775 25.23797 

FSDPT 22.52869 21.58175 21.89055 22.04964 

SSDPT 23.06831 22.00152 22.38252 22.56412 

TSDPT 23.02926 21.98304 22.35275 22.53055 

Present 23.02926 21.98310 22.35272 22.53058 

5 

CPT 26.92893 24.41235 25.04991 25.47341 

FSDPT 23.12129 21.56445 22.03367 22.30513 

SSDPT 23.77153 22.09533 22.66384 22.96510 

TSDPT 23.70963 22.06317 22.61489 22.91015 

Present 23.70956 22.06303 22.61498 22.91029 

10 

CPT 27.82720 24.36712 25.28770 25.87769 

FSDPT 23.49484 21.55996 22.17958 22.52996 

SSDPT 24.07633 22.17208 22.86373 23.24502 

TSDPT 24.01127 22.10708 22.81317 23.17972 

Present 24.01122 22.10699 22.81307 23.17970 

 
 
 
 

284



 

 

 

 

 

 

Thermal buckling response of functionally graded sandwich plates… 

 
 

Fig. 4 shows the effects of the aspect ratio ab /  on the critical buckling temperature change 

crT  of clamped FGM sandwich plates under various thermal loading types. It is seen that, 

regardless of the sandwich plate types, the critical buckling crT  decreases gradually with the 

increase of the plate aspect ratio ab /  wherever the loading type is. It is also noticed from Figure 

3 that the Tcr increases with the increase of the nonlinearity parameter  . 
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Fig. 3 Critical buckling temperature difference crT  vs the side-to-thickness ratio ha /  for various types of 

FGM sandwich clamped square plates ( )1=k : (a) the ( )101  FGM sandwich plate, (b) the 

( )111  FGM sandwich plate, (c) the ( )212  FGM sandwich plate, and (d) the ( )313  FGM 

sandwich plate 
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10. Parametric investigations 
 

Because the functionally graded rectangular sandwich plate under assumed thermal forces and 

with simply supported boundary conditions bends not buckle, it is reasonable to consider only in 

this section the case of a sandwich plate with clamped boundary conditions (CCCC). 

In this parametric study, the general approach outlined in the previous sections for thermal 

buckling of FGM sandwich plate with clamped boundary conditions (CCCC) has been illustrated 

through numerical examples. 
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Fig. 4 Critical buckling temperature difference crT  vs the plate aspect ratio ab /  for various types of 

FGM sandwich clamped plates ( )10=/,1= hak : (a) the ( )101  FGM sandwich plate, (b) the 

( )111  FGM sandwich plate, (c) the ( )212  FGM sandwich plate, and (d) the ( )313  FGM 

sandwich plate 

 
 

Tables 6 and 7 exhibit the thermal force resultant crT  for different values of the aspect ratio 

ba / , the temperature exponent and the power law index k  under non-linear temperature loads at 

10/ ha and 20, respectively. The nonlinearity temperature exponent is taken here as 2, 5, and 

10. 
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Table 6 Critical buckling temperature crT  of ( )111  clamped FGM sandwich plates under non-linear 

temperature rise for different values of index k , aspect ratio ba / , and temperature exponent 

( ).10=/ ha  

 
 

Table 7 Critical buckling temperature crT  of ( )111  clamped FGM sandwich plates under non-linear 

temperature rise for different values of index k , aspect ratio ba / , and temperature exponent 

( ).20=/ ha  

 1/ ba  2/ ba  3/ ba  

2
 

5
 

10
 

2
 

5
 

10
 

2
 

5
 

10
 

0k  
1.8354 3.6708 6.7296 5.1898 10.3796 19.0323 10.4051 20.8102 38.0932 

5.0k  
1.6278 3.8528 8.4596 4.6995 11.1292 24.4312 9.6656 22.8458 50.3484 

1k  
1.4935 3.8682 9.2605 4.3659 11.3101 27.0502 9.1152 23.5889 56.4331 

5.1k  
1.4143 3.8546 9.5870 4.1587 11.3284 28.1749 8.7582 23.8403 59.3164 

2k  
1.3651 3.8358 9.6858 4.0294 11.3232 28.5933 8.5180 23.9319 60.4205 

5.2k  
1.3334 3.8214 9.6812 3.9482 11.3178 28.6707 8.3867 23.9810 60.8417 

3k  
1.3126 3.8110 9.6367 3.8954 11.3039 28.5818 8.2878 24.0388 60.6596 

5.3k  
1.2988 3.8017 9.5778 3.8607 11.2951 28.4453 8.2085 24.0229 60.6473 

5k  
1.2777 3.7880 9.4059 3.8061 11.2766 27.9945 8.1192 24.0628 59.6594 

 

 1/ ba  2/ ba  3/ ba  

2

 

5
 

10
 

2
 

5
 

10
 

2
 

5
 

10
 

0k  
6.8196 13.6392 25.0079 16.1553 32.3196 59.2291 26.3366 52.6613 96.6074 

5.0k  
6.2284 14.7407 32.3644 15.4609 36.5878 80.3265 26.5299 62.8141 137.8929 

1k  
5.8065 15.0311 35.9797 14.7528 38.1915 91.4186 26.0190 67.3533 161.2391 

5.1k  
5.5465 15.1145 37.5954 14.2867 38.9263 96.8358 25.6283 69.8179 173.6483 

2k  
5.3839 15.1332 38.2026 13.9879 39.3158 99.2407 25.3514 71.2838 179.9581 

5.2k  
5.2799 15.1335 38.3353 13.7952 39.5356 100.1528 25.1872 72.1845 182.8339 

3k  
5.2118 15.1281 38.2581 13.6705 39.6814 100.3539 25.0816 72.7937 184.0739 

5.3k  
5.1659 15.1218 38.0957 13.5884 39.7844 100.2058 25.0196 73.2352 184.5526 

5k  
5.0980 15.1124 36.4154 13.4757 39.9522 99.2061 24.9784 74.0240 183.7963 
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It can be seen that as the power law index k  increases, the thermal force resultant crT  

decreases to reach lowest values only for the case when 2=γ .
 

For the case of 5=γ
 

and 10, as the power law index k  increases, the thermal force resultant 

crT  increases to reach larger values and then decreases. 

it is noticed that crT  increases as the nonlinearity index increases. 

 

11. Conclusions 
 
In the present study, thermal buckling behavior of functionally graded sandwich plates with 

clamped boundary conditions and subjected to uniform, linear and non-linear temperature rises 

across the thickness direction has been investigated. The theory accounts for a quadratic variation 

of the transverse shear strains across the thickness, and satisfies the zero traction boundary 

conditions on the top and bottom surfaces of the plate without using shear correction factors. 

The accuracy of the present theory is ascertained by comparing it with other higher-order shear 

deformation theories where an excellent agreement was observed in all cases. Furthermore, the 

influences of plate parameters such as power law index, aspect ratio, the side to thickness ratio and 

thermal loading types on the thermal force resultant of FG sandwich plate have been 

comprehensively investigated. 
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