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Abstract.  Traffic load and volume is one of the most important physical quantities for bridge safety 
evaluation and maintenance strategies formulation. This paper aims to conduct the statistical analysis of 
traffic volume information and the multimodal modeling of gross vehicle weight (GVW) based on the 
monitoring data obtained from the weigh-in-motion (WIM) system instrumented on the arch Jiubao Bridge 
located in Hangzhou, China. A genetic algorithm (GA)-based mixture parameter estimation approach is 
developed for derivation of the unknown mixture parameters in mixed distribution models. The statistical 
analysis of one-year WIM data is firstly performed according to the vehicle type, single axle weight, and 
GVW. The probability density function (PDF) and cumulative distribution function (CDF) of the GVW data 
of selected vehicle types are then formulated by use of three kinds of finite mixed distributions (normal, 
lognormal and Weibull). The mixture parameters are determined by use of the proposed GA-based method. 
The results indicate that the stochastic properties of the GVW data acquired from the field-instrumented 
WIM sensors are effectively characterized by the method of finite mixture distributions in conjunction with 
the proposed GA-based mixture parameter identification algorithm. Moreover, it is revealed that the Weibull 
mixture distribution is relatively superior in modeling of the WIM data on the basis of the calculated 
Akaike’s information criterion (AIC) values. 
 

Keywords:  structural health monitoring; weigh-in-motion; gross vehicle weight; finite mixture 

distributions; mixture parameter estimation; genetic algorithm 

 
 
1. Introduction 
 

Structural damage of in-service highway or urban bridges is mainly caused by the deterioration 

of structural performances as well as the increasing traffic flow, especially the overloaded trucks. 

There can be little argument that the traffic load is one of the most important indicators for 

structural behavior assessment, safety condition evaluation, maintenance strategy optimization, 

and life-cycle cost analysis. In the past investigations, the traffic load models were determined on 

the basis of the subjective and empirical decisions made by bridge engineers or very limited 

survey data of traffic flow (Nowak 1993). In order to acquire the vast real-time traffic information, 

the weigh-in-motion (WIM) system has been proposed and widely used in a structural heath 

monitoring (SHM) system for random vehicle load monitoring of urban road and bridge structures. 
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With a field-deployed WIM monitoring system, the realistic vehicle load data can be readily 

obtained for further load-relevant research (Ye et al. 2012, 2013, 2015). 

In general, three types of critical data attained from the WIM system, i.e., gross vehicle weight 

(GVW), axle weight, and axle spacing are related to the construction of bridge load model (Miao 

and Chan 2002, Chan et al. 2005). The bridge load models can be favorably formulated upon the 

condition that the probability distributions of the primary parameters are accurately achieved. 

Based on the WIM monitoring data from the Binzhou Yellow River Highway Bridge, Lan et al. 

(2011) developed a traffic load model by use of the GVW probabilistic distribution and the 

developed model was applied to conduct bridge fatigue assessment. A critical bridge load accident 

may be induced by a single enormous heavy vehicle or a combination of different vehicle weights 

simultaneously passing through the bridge (O’Brien et al. 2011). Thus, it is of great importance to 

model the statistical distribution of the GVW data with a continuous probabilistic expression 

aiming at sufficiently characterizing the random load state. 

Traditionally, a unimodal lognormal distribution or an inverse normal distribution is utilized to 

model the characteristics of the GVW data because the majority of observed vehicles are light ones. 

However, in recent years, many researchers have perceived the multimodal distribution 

characteristic of collected GVW data from a WIM system due to the site-specific traffic situation 

which inevitably covers light, medium and heavy vehicles with different load patterns such as 

empty, half full, full and overloaded cases (Mei et al. 2004, Caprani 2008, Lan et al. 2011, Caprani 

et al. 2012). Therefore, a multimodal probability distribution is seemingly needed to fit the traffic 

data with the stochastic properties of actual vehicle loads. The finite mixture distributions are 

generally used to model complex probability distributions and enable the statistical modeling of 

random variables with multimodal behaviors where a simple parametric model fails to depict the 

characteristics of the observations (Timm et al. 2005, Isaia et al. 2007). To cope with the modeling 

of finite mixture distributions, it is a necessity to estimate the unknown parameters in the mixed 

distribution models, which is regarded as an issue of parameter optimization (Kwon and Frangopol 

2007, Ni et al. 2010, Ni et al. 2012, Volk et al. 2012, Franko and Nagode 2015, Sankararaman and 

Mahadevan 2015). 

There are a variety of estimation methods that have been employed in finite mixture modeling 

such as the method of moments, maximum likelihood, minimum chi-square, and least squares 

algorithm. Especially, the maximum likelihood estimation method and the least squares algorithm 

have been broadly employed to perform the unknown mixture parameter estimation (Richardson et 

al. 1997, Mei et al. 2004). In this study, an alternative genetic algorithm-based (GA-based) 

mixture parameter estimation approach is developed for effective estimation of the parameters of 

finite mixture distributions, which has been successfully applied to model the field-measured 

vehicle load data obtained from the WIM monitoring system installed on the arch Jiubao Bridge 

located in Hangzhou, China. Statistical analysis of one-year WIM monitoring data is firstly carried 

out to capture the overall characteristics of collected axle weight and GVW data. The probability 

density function (PDF) and cumulative distribution function (CDF) of the GVW data of selected 

vehicle types are then formulated by use of three kinds of finite mixed distributions (normal, 

lognormal and Weibull). The mixture parameters are determined by the proposed GA-based 

method. The performance of the proposed method is evaluated by application of the Akaike’s 

information criterion (AIC) (Akaike 1974). 

 

 

 

1088



 

 

 

 

 

 

Statistical analysis and probabilistic modeling of WIM monitoring data… 

 

2. Statistical analysis of WIM monitoring data 
 

2.1 SHM of Jiubao Bridge 
 

The Jiubao Bridge with an overall length of 1,855 m is a steel-concrete composite arch bridge 

located in Hangzhou, China. It was opened to the traffic in July 2012 and represents the first 

river-crossing bridge composed by the composite structure in full length. As shown in Fig. 1, the 

upper structure of the main bridge comprises a 3×210 m arch bridge with a steel-concrete 

composite beam structure. The bridge deck is constructed in terms of urban bridge standard of 

China with six traffic lanes and double-sided pavements. The design velocity of vehicle is set to be 

80 km/h. 

After the completion of its construction in 2012, the bridge has been instrumented with a 

long-term SHM system comprising nine sophisticated subsystems. The real-time monitoring data 

are acquired through various types of sensors, including wind velocity and direction, 

environmental temperature and humidity, vehicle velocity and traffic volume, structural vibration, 

structural temperature, structural strain, alignment, displacement of bearing, and cable force. The 

huge amounts of field monitoring data are collected by comprehensive data acquisition stations 

and then transferred to the bridge monitoring center for further analysis. In the monitoring center, 

the tasks of data storage and analysis are performed by means of specific hardware and software. 

In addition, the SHM system is connected to the internet, and administrators and authorized 

visitors can easily access to the server in the monitoring center for data demonstration and 

extraction. 

As an essential part of the long-term SHM system, a WIM system was installed on the entrance 

to the main span of the Jiubao Bridge, as shown in Fig. 2. The continuous monitoring data of 

vehicle type, vehicle velocity, axle weight, and GVW can be acquired by the instrumented WIM 

sensors. In particular, along with the growing traffic flow in recent years, the GVW data are 

playing an increasingly important role in overloading monitoring and structural safety evaluation. 

In this study, one-year GVW monitoring data from 1 November 2014 to 31 October 2015 are 

extracted to conduct the statistical analysis and probabilistic modeling of the load properties of 

highway traffic. 

 

 

 

Fig. 1 Jiubao Bridge 
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Fig. 2 Deployment of WIM system (unit: m) 

 

 

2.2 Statistical analysis of WIM data 
 

The availability of the traffic flow monitoring data permits the characterization of highway load 

information directly measured by the WIM sensors. In the statistical process, the load distribution 

models can be briefly divided into two groups: (i) those regarding the highway traffic as a whole, 

and (ii) those describing the highway traffic in different vehicle classes (O’Connor and O’Brien 

2005, O’Brien and Enright 2012, Zhou et al. 2015). 

In this study, the statistical analysis of the highway traffic as a whole is firstly carried out. As 

illustrated in Fig. 3, the proportion of the vehicles in the lanes 1, 2, 5 and 6 are 9.50%, 48.23%, 

30.09% and 12.18%; while the average vehicle speeds in each lane are 43.49 km/h, 72.39 km/h, 

49.39 km/h and 66.06 km/h, respectively. It can be found that the traffic volume from south to 

north (57.73%) is larger than that from north to south (42.27%) according to one-year real-time 

monitoring data. The maximum value of the average vehicle speed in the lane 2 is up to 72.39 

km/h, which is much close to the limited design speed of 80 km/h. These statistical data provide 

quite useful information for bridge management department for road transportation supervision. 

In addition, the vehicle type is identified and classified in accordance with the axle spacing, 

axle number, and axle weight by the WIM sensors. In the WIM system of the Jiubao Bridge, each 

passing vehicle is classified into seven types (A-G). As illustrated in Fig. 4, each type of the 
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vehicle is described in terms of the axle number and axle type. For example, type A refers to 2-axle 

light and medium truck. As shown in Table 1, the proportion and average axle weight of each 

vehicle type are addressed. Obviously, the light and medium trucks account for the majority of the 

passing vehicle volume, which is up to 98.12%. 

With the collected WIM monitoring data, the daily, monthly and yearly vehicle load properties 

can be derived. The total number of the vehicle traffic volume is 4,199,668 attained by the WIM 

system during one year period (1 November 2014 to 31 October 2015). As shown in Fig. 5, the 

peak traffic flow is occurred in May 2015, and the traffic volume in February 2015 is at the lowest 

level which is reflecting the less vehicle passing through the bridge due to the Spring Festival in 

February. Likewise, in terms of the typical daily traffic of one week, the weekend traffic decreases 

sharply in comparison with the weekday data, as shown in Fig. 6. In addition, in one day, the rush 

hour in the morning and evening is well exhibited in Fig. 7. 

 

 

 

Fig. 3 Proportion and average speed of vehicle in each lane 

 

 
Table 1 Statistics of axle weight 

Vehicle Average value of axle weight (t) 

Type Number Ratio Axle 1 Axle 2 Axle 3 Axle 4 Axle 5 Axle 6 

A 4,120,820 98.12% 2.89 6.78 -- -- -- -- 

B 32,506 0.77% 6.52 10.33 12.50 -- -- -- 

C 23,711 0.56% 5.76 9.26 12.70 14.55 -- -- 

D 2,681 0.06% 5.87 12.04 12.58 11.75 10.83  

E 19,680 0.47% 5.02 7.63 9.87 8.93 9.52 10.23 

F 99 <0.01% 2.75 6.51 -- -- -- -- 

G 98 <0.01% 4.87 10.21 -- -- -- -- 
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Type Description Graphic symbol 
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Fig. 4 Vehicle type classification 
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Fig. 5 Monthly traffic in one year (from November 2014 to October 2015) 

 

 

Fig. 6 Typical daily traffic of one week (from 12 October 2015 to 18 October 2015) 

 

 

 

Fig. 7 Typical hourly traffic of one day (20 October 2015) 
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2.3 Stochastic characteristics of GVW data 
 

In order to examine the stochastic characteristics of the GVW data, the histogram analysis of 

the typical daily, monthly and yearly monitoring data is performed. At the beginning of the 

statistical analysis, the raw GVW data are preprocessed by the data cleaning rule as reported in the 

literature, i.e., the GVW data less than 3.5 t are excluded (O’Brien and Enright 2012). It should be 

noted that, for the sake of showing the difference of the two distributions, the histograms of the 

raw GVW data and the GVW data more than 3.5 t are separately described, as illustrated in Fig. 8. 

 

 

  
(a) 16 January 2015 (b) 16 January 2015 (more than 3.5 t) 

  
(c) January 2015 (d) January 2015 (more than 3.5 t) 

  
(e) one-year GVW data (f) one-year GVW data (more than 3.5 t) 

Fig. 8 Histograms of daily, monthly and yearly GVW data 
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It is seen from Fig. 8 that both the raw GVW data and processed GVW data are monotonically 

decreased with one peak. In general, the monotonically decreasing data can be well modeled by a 

simple distribution. Meanwhile, the GVW data of each type are analyzed and represented in Fig. 9. 

It is noteworthy that the vehicle type F and G are not considered in this study due to the 

excessively little data collected by the WIM sensors. 

 

 

  
(a) Type A (b) Type B 

  
(c) Type C (d) Type D 

 
(e) Type E 

Fig. 9 Histograms of each vehicle type GVW data 
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3. Probabilistic modeling of GVW data 
 

3.1 Finite mixture distributions 
 

The method of finite mixture distributions has been increasingly employed to model the 

probability distributions of a variety of random phenomena. A finite mixture model is a convex 

combination of two or more PDFs. Generally, the basic structure of finite mixture distributions for 

independent scalar or vector observations x can be defined as a weighted sum of component 

distribution (McLachlan and Peel 2000) 
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component densities indexed by the scalar or vector parameters θl. The objective of the analysis 

inference about the unknowns which include the number of components or groups, c, the 
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where μl and σl are the mean values and standard deviations of normal mixture parameters; γl and 

ηl are the shape parameter and scale parameter of Weibull mixture parameters. The parameter 

estimation of mixture distribution models is deemed as a problem of parameter optimization. In 

this study, these unknown parameters of each distribution are determined by GA-based method as 

discussed in the following section. 

 

3.2 GA-based mixture parameter estimation approach 
 

Genetic algorithm (GA), proposed by Holland in 1975 (Holland 1975), is a stochastic algorithm 

inspired by Darwin’s theory of evolution. With the renewal and advance of computational 

intelligence, GA has been successfully applied to solve a variety of optimization problems in the 

area of science, biology and engineering. In this section, a GA-based mixture parameter estimation 

approach is introduced. As shown in Fig. 10, the principle of GA mainly consists of fitness 

function, selection, crossover and mutation. The fitness function can reflect the quality of fitting 

1096



 

 

 

 

 

 

Statistical analysis and probabilistic modeling of WIM monitoring data… 

 

result. In this study, the fitness function is established based on the law of large numbers. 

Assuming that f(x|c,w,θ) is continuous and does not vary appreciably over region Rv, of the vth 

bin volume ξv. The probability that a scalar or vector observation x will fall inside Rv is given by 

vv

R

cfcf

v

),,(),,( θwxθwx                          (6) 

Region Rv is taken to be a hypersquare with the sides of length Zv=[z1v,…,zdv]
T centered on xv. 

Its volume is expressed as 
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where N stands for the total number of independent scalar or vector observations; and Nv is the 

fraction of observations falling inside Rv. 

GA is used to find the optimal solution of the unknown parameters Θ={w,θ} by developing the 

following fitness function 
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It is found that the closer between pv and ),,( θwx cf v
, the larger the T is. 

The values of AIC for each type of mixed distribution are calculated to select both the optimal 

number of components and the parametric family. The best mixed distribution is selected at the 

lowest values of AIC (Akaike 1974). 

In the general case, the AIC is defined as 

)2ln(-2AIC LM                            (10) 

where M is the number of unknown parameters in the mixed distribution; and L is the maximized 

value of the likelihood function for the estimated mixed distribution. 

 

3.3 Multimodal probabilistic modeling 
 

As described in Section 2, the GVW monitoring data of types C, D and E obtained from the 

WIM system exhibit a two-peak characteristic. In this study, the GVW monitoring data of these 

three types are selected to perform the probabilistic modeling analysis. Three types of finite 

mixture distributions (normal, lognormal and Weibull) are employed to model the probability 

distribution of the GVW monitoring data, and the unknown parameters (weight, mean value, and 

standard deviation of normal distribution and lognormal distribution, and weight, scale parameter 

and shape parameter of Weibull distribution) of the mixture distribution models are calculated by 

the proposed GA-based approach. The optimal fitting model is determined according to the AIC 

value. 
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Fig. 10 Flowchart of GA calculation process 
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Fig. 11 shows the calculated AIC values with different numbers of the component for type C. It 

is revealed that the AIC value is almost stable when the number of component exceeds 3 for 

normal mixture, 4 for lognormal mixture, and 6 for Weibull distribution. The Weibull distribution 

gives the minimum AIC value, and therefore it is rational to choose the Weibull mixture with 6 

components as the optimal probability distribution of the GVW monitoring data of type C. Figs. 

12 and 13 illustrate the PDFs and CDFs of the GVW monitoring data of type C. The estimated 

mixture parameters of each distribution are listed in Table 2. The GA-based finite mixture 

distribution provides an effective and alternative tool for modeling the multimodal distribution. 

The achieved analytical formulations of the concerned GVW data can be employed for further 

investigations, e.g., establishment of live load model, structural reliability assessment, etc. 

Likewise, for type D, it is seen from Fig. 14 that the AIC value is almost stable when the 

number of component exceeds 4 for normal mixture, 4 for lognormal mixture, and 6 for Weibull 

distribution. Figs. 15 and 16 illustrate the PDFs and CDFs of the GVW monitoring data of type D. 

Thus, it is rational to choose the Weibull mixture with 6 components as the optimal probability 

distribution of the GVW monitoring data of type D. The estimated mixture parameters of each 

distribution for Type D are listed in Table 3. 

 

 

Fig. 11 AIC values (Type C) 
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Fig. 13 CDFs (Type C) 

 

 
Table 2 Estimated mixture parameters (Type C) 

Distribution 
Parameters 

Weight (wl) Mean value (μl) Standard deviation (σl) 

Normal 

0.0069 106.7257 49.9721 

0.5280 73.9460 18.7192 

0.4651 23.1658 12.5983 

Lognormal 

0.4801 3.3697 0.4768 

0.0032 19.1959 20.4447 

0.0958 2.3953 1.2382 

0.4210 4.3493 0.1870 

Weibull 

Weight (wl) Scale parameter (ηl) Shape parameter (γl) 

0.5020 36.4334 1.6777 

0.0134 78.0971 1.1359 

0.0117 113.1449 9.1976 

0.1398 91.7222 5.3845 

0.0889 26.8694 5.6875 

0.2441 78.3981 8.4090 

 

 

 

For type E, it can be found from Fig. 17 that the AIC value is almost stable when the number of 

component exceeds 3 for normal mixture, 4 for lognormal mixture, and 3 for Weibull distribution. 

Figs. 18 and 19 illustrate the PDFs and CDFs of the GVW monitoring data of type E. The Weibull 

mixture with 3 components is chosen as the optimal probability distribution of the GVW 

monitoring data of type E. The estimated mixture parameters of each distribution for type E are 

listed in Table 4. 
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Fig. 14 AIC values (Type D) 

 

 

Fig. 15 PDFs (Type D) 

 

 

Fig. 16 CDFs (Type D) 
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Fig. 17 AIC values (Type E) 

 

 

Fig. 18 PDFs (Type E) 

 

 

Fig. 19 CDFs (Type E) 
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Table 3 Estimated mixture parameters (Type D) 

Distribution 
Parameters 

Weight (wl) Mean value (μl) Standard deviation (σl) 

Normal 

0.7323 57.3749 22.6992 

0.1659 18.4347 6.7860 

0.0116 184.6148 49.6978 

0.0901 109.0656 21.6881 

Lognormal 

0.5332 4.2486 0.3141 

0.0655 4.3020 1.9464 

0.0006 31.0491 26.4164 

0.4007 3.3688 0.6262 

Weibull 

Weight (wl) Scale parameter (ηl) Shape parameter (γl) 

0.2304 95.9636 3.4687 

0.0862 16.7313 2.2526 

0.5457 61.4150 3.1978 

0.0182 73.8373 1.4372 

0.0832 22.7769 6.7938 

0.0364 220.2186 1.1147 

 

 
Table 4 Estimated mixture parameters (Type E) 

Distribution 
Parameters 

Weight (wl) Mean value (μl) Standard deviation (σl) 

Normal 

0.0069 106.7257 49.9721 

0.5280 73.9460 18.7192 

0.4651 23.1658 12.5983 

Lognormal 

0.4801 3.3697 0.4768 

0.0032 19.1959 20.4447 

0.0958 2.3953 1.2382 

0.4210 4.3493 0.1870 

Weibull 

Weight (wl) Scale parameter (ηl) Shape parameter (γl) 

0.5154 36.4334 1.6777 

0.1516 113.1449 9.1976 

0.3330 26.8694 5.6875 

 

 

4. Conclusions 
 

In this study, the statistical analysis of traffic loads and the probability modeling of the GVW 

data measured by the instrumented WIM system by use of the proposed GA-based finite mixture 

distributions have been addressed. The GA-based unknown mixture parameter estimation 

approach is developed for estimation of the parameters in mixture distribution models, and applied 

to model the vehicle load monitoring data attained from the WIM system instrumented on the arch 

Jiubao Bridge located in Hangzhou, China. The statistical distributions of the GVW data are 

derived by use of three kinds of finite mixed distributions (normal, lognormal and Weibull), and 

the mixture parameters are determined by the proposed GA-based method. The results show that 
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the stochastic properties of the vehicle load data measured by the field-installed WIM sensors are 

effectively characterized using the method of finite mixture distributions together with the 

developed GA-based mixture parameter identification approach. The multimodal characteristic of 

the GVW data can be well modeled by the proposed method which provides an effective technique 

for parameter identification of finite mixture distributions in modeling real-time GVW data. 

Moreover, the Weibull mixture distribution exhibits a superior performance in modeling 

assignments in accordance with the calculated AIC values. The stochastic properties of the GVW 

data derived from the field-instrumented WIM sensors are effectively characterized by the method 

of Weibull mixture distribution with the proposed GA-based mixture parameter identification 

approach. Meanwhile, the results of statistical analysis and probabilistic modeling of the 

site-specific traffic data from the WIM system will serve as a useful reference for bridge 

management department to conduct prompt structural condition assessment and effective 

transportation arrangement. 
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