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Abstract.    The health conditions of in-service civil infrastructures can be evaluated by employing structural 
health monitoring technology. A reliable health evaluation result depends heavily on the quality of the data 
collected from the structural monitoring sensor network. Hence, the problem of sensor fault diagnosis has 
gained considerable attention in recent years. In this paper, an innovative sensor fault diagnosis method that 
focuses on fault detection and isolation stages has been proposed. The dynamic or auto-regressive 
characteristic is firstly utilized to build a multivariable statistical model that measures the correlations of the 
currently collected structural responses and the future possible ones in combination with the canonical 
correlation analysis. Two different fault detection statistics are then defined based on the above multivariable 
statistical model for deciding whether a fault or failure occurred in the sensor network. After that, two 
corresponding fault isolation indices are deduced through the contribution analysis methodology to identify 
the faulty sensor. Case studies, using a benchmark structure developed for bridge health monitoring, are 
considered in the research and demonstrate the superiority of the new proposed sensor fault diagnosis 
method over the traditional principal component analysis-based and the dynamic principal component 
analysis-based methods. 
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1. Introduction 

 
Over the past two decades, advances in sensor technology and signal-processing techniques 

have witnessed the rapid development of structural health monitoring (SHM) methodology 
(Worden et al. 2008, Ni et al. 2010, Ni et al. 2012, Yi et al. 2013a, Li et al. 2014, Dessi and 
Camerlengo 2015). The health conditions of in-service civil infrastructures can be evaluated by 
employing the SHM system, after that some proper treating measures are implemented to ensure 
the safe and sustainable operation of the monitored infrastructure. Among various SHM 
technologies, the vibration based one has been most widely studied for estimating the structural 
damage information and modal parameters (Li and Law 2012, Yi et al. 2013b, Li et al. 2015 
Rahbari et al. 2015, Yamaguchi et al. 2015). In principle, the performance of an SHM system 
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depends heavily on the quantity and quality of the health-monitoring data acquired from the sensor 
network. Hence, the problem of optimal sensor placement has gained considerable attention in 
recent years (Yi et al. 2011, Soman et al. 2014, Yi et al. 2015). Based on the optimal sensor 
placement technique, the sensor network can be properly installed to the civil infrastructure to 
guarantee the quantity of the health-monitoring data. Another technique which is called the sensor 
fault diagnosis method, however, also deserves significant attention along with the functional 
degradation and disabler of the sensors installed to the monitored structure. As an important 
practical aspect of SHM, sensor fault diagnosis method can be used for showing whether the 
quality of the health-monitoring data collected from the sensor network is eligible for the 
subsequent structural health evaluation procedure. 

Unfortunately, limited attention has been paid to the sensor fault diagnosis technology, which is 
well studied in fault tolerant control area of smart civil structures (Wang and Song 2011, Huo et al. 
2012, Pereira and Serpa 2015), by researchers in the SHM field. Generally, sensor fault diagnosis 
technique includes two major sub-procedures, namely the sensor fault detection sub-procedure 
used to decide whether a fault or failure occurred in the sensor network and the sensor fault 
isolation sub-procedure employed to identify the faulty sensor among the sensor network. 
Considering that errors introduced by sensor faults cause a loss of performance and erroneous 
conclusions, Abdelghani and Friswell (2004) proposed two residual generation schemes. These are 
the modal filtering technique and the parity space technique of monitoring the additive type of 
sensor faults. The efficacy of these two approaches was then demonstrated on a simulated 
cantilevered beam and also on an experimental sub-frame structure. Abdelghani and Friswell 
(2007) studied another type of sensor fault, namely multiplicative faults. In this research, a new 
residual generation and evaluation technique for sensor fault detection was proposed, and a 
correlation index was then established to isolate the faulty sensor. This approach had been 
experimentally validated on a sub-frame structure. Kerschen et al. (2005) presented a data-driven 
sensor validation approach for SHM systems by applying principal component analysis (PCA) to 
model the structural monitoring data. They used the angle between the principal subspaces as the 
feature for sensor fault detection. The isolation of the sensor fault was implemented by removing 
one sensor in turn, and the faulty sensor was the removed sensor in the case with the minimum 
angle. Sharifi et al. (2010) proposed a PCA-based sensor fault diagnosis method in the residual 
subspace rather than the principal subspace specifically for smart structures. They computed the 
fault probability of each sensor with a Bayesian probabilistic decision to analyze these residuals. 
As single or multiple sensors could be estimated from the remaining sensors with sufficient 
training data from the sensor network, Kullaa (2010) proposed a method for sensor validation, i.e., 
sensor fault detection, isolation and correction, using minimum mean square error estimation. The 
combination of the spatial and temporal correlations of the sensor output data improved the 
performance of this approach. Considering the shortcomings of using only one 
latent-variable-based monitoring method (primarily the PCA-based technique), Hernandez-Garcia 
and Masri (2014) applied three latent-variable-based statistical monitoring approaches (the PCA, 
the independent component analysis, and the modified independent component analysis-based 
approaches) to detect and isolate faulty sensors in the SHM system. Hotelling’s 2T  or 2I  
statistic and the squared prediction error (SPE) statistic were used for each of these three methods. 
They were evaluated and compared using case studies from an analytical truss model and a 
cable-supported bridge. Rather than using physical redundancy, Smarsly and Law (2014) presented 
an autonomous and fully decentralized approach toward sensor fault diagnosis in wireless SHM 
systems. They used analytical redundancy, which is the inherent information in the multivariate 
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redundant measurement system. Each sensor output in this method was predicted using the output 
of other sensors based on the back propagation neural network. This was embedded in each of the 
wireless sensor nodes installed on the monitored structure, and the residuals between the real and 
predicted sensor output values were used to autonomously detect and isolate the bias and drift 
sensor faults in real time. Huang et al. (2015) proposed a sensor fault diagnosis method based on 
statistical hypothesis test and the missing variable approach. In this research, the sensor fault 
detection process was first represented as a statistical hypothesis-testing problem, after which two 
fault detectors were deduced through the Bayesian linear model and the generalized likelihood 
ratio test method to examine whether a fault occurred in the sensor network. The missing variable 
approach was finally used to build a fault isolation index to identify the faulty sensor. Multivariate 
statistical process control-based fault diagnosis technology has been widely studied in many fields, 
such as chemical process monitoring (Yin et al. 2012, Lau et al. 2013). The multivariate statistical 
process control methodology has immense potential particularly in sensor fault diagnosis for SHM 
systems, due to that the structural response is monitored inherently as a multivariate measurement 
process by the professionally designed sensor network. 

The PCA-based multivariate statistical process control is perhaps the most popular and broadly 
studied method for its theoretical simplicity and computational efficiency for model building. 
Nevertheless, the potential drawback of this method remains in two aspects: (1) it does not take the 
dynamic characteristic into account; (2) the two traditional fault detection statistics of it, i.e., the 

2T  statistic and the SPE statistic, are not sensitive to small or tiny faults. This paper presents a 
sensor fault diagnosis method, which takes the dynamic characteristic hidden in the 
health-monitoring data into account, based on the canonical correlation analysis (CCA) technique. 
To our best knowledge, this is the first application of CCA to harness the dynamic properties for 
developing sensor fault diagnosis method. The remainder of the paper is organized as follows. 
Section 2 briefly reviews the theoretical background of CCA. Section 3 first illustrates the 
dynamic characteristic of the structural accelerometer measurements through the auto-regressive 
model, and then employs the CCA technique for dynamic modeling of the health-monitoring data. 
Based on this, two statistics are built for sensor fault detection and two corresponding fault 
isolation indices are deduced to identify the faulty sensor. Section 4 elaborates the implementation 
process of the proposed sensor fault diagnosis method. Section 5 considers case studies using the 
benchmark structure developed for bridge health monitoring to validate the effectiveness and 
capability of the proposed sensor fault diagnosis methodology. Section 6 gives the summaries and 
conclusions in detail. 

 
 

2. Brief review of canonical correlation analysis 
 
CCA is a statistical technique to measure the underlying correlation between two sets of 

multidimensional variables. For the sake of completeness, a brief theoretical background of CCA 
is given in this section (Hardoon et al. 2004, Correa et al. 2010, Huang et al. 2010, Sweeney et al. 
2013). 

Considering two multidimensional datasets aX  and bX  with the same number of sampling 
points, CCA measures their linear relationships through their auto-covariance and cross-covariance 

matrices. In CCA, the dimensions am  and bm  of the respective data vectors a ax X  and 
b bx X  can be different, but they are both assumed to be zero-mean processes. In case they are 
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not, the centering procedure is easy to implement by removing their mean vectors from each 
data-point of them. 

CCA finds two bases in the am - and bm -dimensional spaces where ax  and bx  have the 

maximum correlation. More precisely, it first finds an am -dimensional projection vector 1u  and 

an bm -dimensional projection vector 1v  such that the 1-dimensional projected signals T
1

au x  

and T
1

bv x  are maximally cross-correlated. Therefore, the aim of CCA is to find the maximum 

correlation coefficient   between these two projected signals 

   
T
1 1

1 1 T T
1 1 1 1

, ab

aa bb

 


R

R R

u v
u v

u u v v
 (1) 

where  T= E a b
abR x x  is the cross-covariance matrix of ax  and bx ,  T= E a a

aaR x x  and 

 T= E b b
bbR x x  are their auto-covariance matrices, with E   representing the expectation 

operator. 
Obtaining the maximum correlation coefficient can be characterized as an optimization 

problem that finds the projection vectors 1u  and 1v  

 

1 1

T
, 1 1
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1 1
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1 1
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s.t. 1

1
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aa

bb


 
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                           (2) 

Next, CCA finds the projection vectors 2u  and 2v  such that the cross-correlation between 
T
2

au x  and T
2

bv x  is maximized, whereas T
2

au x  is uncorrelated with T
1

au x , and T
2

bv x  is 

uncorrelated with T
1

bv x . A similar optimization problem can then be established as 
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u u

v v

v v

                          (3) 

The subsequent projection vectors ju  and jv , where  min ,a bj m m , can be found through 

the same way with additional constraints T 0i aa j Ru u  and T 0i bb j Rv v  for 1,2,..., 1i j  . It 

turns out that these projection vectors, as well as the corresponding canonical correlation 
coefficients, can be obtained by solving the following eigenvalue decomposition problem 

   1 1 2
aa ab bb ba  R R R R u = u                            (4) 
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   1 1 2
bb ba aa ab  R R R R v = v                           (5) 

where  T T= E b a
ba abR Rx x . The eigenvalues 2  are squared canonical correlation 

coefficients and the eigenvectors u  and v  are normalized canonical correlation basis vectors. 
Generally, only the non-zero solutions are of interest, and their number r  is equal to the smaller 

of the dimensions of ax  and bx , i.e.,  min ,a br m m . 

 
 

3. Establishment of sensor fault diagnosis method 
 
To build a multivariate model, which considers and utilizes the dynamic or auto-regressive 

characteristics hidden in the health-monitoring data, CCA is introduced as a supervised 
dimensionality reduction technique. The sensor fault diagnosis method that mainly focuses on the 
fault detection and isolation objectives is then established. 

 
3.1 Dynamic characteristic in accelerometer measurement 
 
Because the accelerometer measurement is always employed as an important part of vibration 

monitoring for civil infrastructures, it is a research objective in this paper. The dynamic 
characteristic, reflecting the correlations between the currently observed and future possible 
accelerometer responses, is an essential property of the monitored structure. Therefore, it should 
be considered in building the multivariate statistical model, based on which a fault diagnosis 
method can be established, of the structural accelerometer measurements to promote the fault 
diagnosis performance. 

The auto-regressive model is a frequently applied technique that predicts the possible future 
response of a monitored structure based on the current measurements employing the dynamic 
characteristic. Given that   mt x  denotes an accelerometer measurement at time t , the 

auto-regressive model can be mathematically represented as follows (Thanagasundram et al. 2008, 
Roy et al. 2015) 

       
1

1 1 1
p

i
i

t t i t


     x A x e                                               (6) 

where iA  is the thi  model coefficient matrix,  1t x  is the future response to be predicted, 

 1t e  is the model residual error and p  is the model order that can be determined through the 

Akaike information criterion (Chiang et al. 2001). 
 
3.2 Dynamic modeling via canonical correlation analysis 
 
When the dynamic characteristic is about building a correlation model between two 

multivariate observation datasets, the CCA technique is used for this purpose. This section 
proposes to employ CCA to build a multivariate statistical model, which considers the dynamic 
characteristic hidden in the accelerometer measurements, to develop an innovative sensor fault 
diagnosis method with applications to SHM. 
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To model the dynamic characteristic hidden in the structural accelerometer measurements via 

CCA, the current and future observation vectors cx  and fx  at time t  are first defined as 
follows 

          TT T T, 1 ,..., 1c mpt t t t p      x x x x   (7) 

    1f mt t  x x  (8) 

where p  is the auto-regressive model order. The current and future observation datasets can then 
be assembled from the fault-free training dataset. 

A data pre-whitening procedure could be implemented for the current and future observation 
datasets to simplify the CCA computational process shown in Eq. 4 and Eq. 5 (Karhunen et al. 
2013). The pre-whitening procedure for the current and future observation vectors is 
mathematically represented as follows: 

     c c ct t
x Q x   (9) 

    f f ft t
x Q x  (10) 

where  c t

x  and  f t


x  are the whitened data-points of the current and future observation 

vectors, respectively, cQ  and fQ  are the corresponding whitening matrices. 

To calculate the whitening matrices cQ  and fQ , the principal component analysis technique 
is always utilized to model the datasets to be whitened: 

   T T= E c c c c c
cc R x x P Λ P   (11) 

  T T= E f f f f f
ff R x x P Λ P  (12) 

where ccR  and ffR  are the auto-covariance matrices of the current and future observation 

datasets, respectively, cP  and fP  are the transformation matrices of principal component 
analysis, cΛ  and fΛ  are the diagonal matrices that contain the variances of the principal 
components in descending order. The whitening matrices can then be represented as 

    1 2 Tc c c
Q Λ P                                                       (13) 

   1 2 Tf f f
Q Λ P                           (14) 

After the pre-whitening procedure, any two variables in the pre-whitened dataset are statistically 
uncorrelated. 

The CCA technique is then applied to model the correlations between the current and future 
observation datasets which are pre-whitened 

   1 1 2
cc cf ff fc  R R R R

   
u = u                        (15) 

   1 1 2
ff fc cc cf  R R R R

   
v = v                        (16) 
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where   T= E c c
ccR

  
x x  and  T= E f f

ffR
  

x x  are the auto-covariance matrices of the current 

and future observation datasets, respectively, after being pre-whitened,  T= E c f
cfR

  
x x  is the 

cross-covariance matrix of cx  and fx  with  T T= E f c
fc cfR R

  
x x . 

The auto-covariance matrices corresponding to the pre-whitened current and future observation 
datasets are actually two identity matrices, i.e., =cc mpR


I  and =ff mR


I . Considering that 

T
fc cfR R

 
, the CCA computational process shown in Eqs. (15) and (16) is then simplified as 

follows 

   T 2
cf cf R R

 
u = u                                                       (17) 

  T 2
fc fc R R

 
v = v                            (18) 

The eigenvalue decomposition problem shown in Eqs. (17) and (18) could be further reduced to 
a singular-value decomposition problem as follows 

   T T= E c f
cfR

  
x x = UΣV                        (19) 

where 1 2, ..., mp mp
mp

  U = u u u  is a matrix consisting of all the left singular vectors, 

 1 2, ..., m m
m

V = v v v  is a matrix consisting of all the right singular vectors, and 
T mp m   

Σ = Σ 0  is the singular-value matrix with  1 2diag , ,..., m  Σ =  a diagonal matrix 

and  1m m p 0  a zero-matrix. 
The canonical correlation variables z  and r , which respectively correspond to the current 

and future observation vectors, could then be generated as follows 

         T Tc c c ct t t t  
z U x U Q x Jx                                   (20) 

        T Tf f f ft t t t  
r V x V Q x Lx                  (21) 

where J  and L  are the canonical correlation generative matrices corresponding to the current 
and future observation vectors, respectively. They are mathematically represented as 

  T cJ U Q                                                         (22) 

 T fL V Q                             (23) 

Through the above two matrices, the canonical correlation variables could be calculated 
expediently. Every two components of these canonical correlation variables are also statistically 
uncorrelated for the following reasons 

     T T T= E E =c c
mpR

 
zz zz U x x U I                                     (24) 

    T T T= E E =f
mfR

 
rr rr V x x V I                    (25) 
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3.3 Fault detection scheme 
 
This section, based on the CCA model built through analyzing the fault-free measurement data, 

defines two fault detection statistics to monitor the quality of the current sensor output data and to 
detect the corresponding sensor faults. The current observation vector defined in the previous 
section is chosen to accomplish this purpose. 

The first m  components of the canonical correlation variable z  are defined as the systematic 
part that is closely correlated with the future observation vector and assembled into a column 
vector sz , as well as the others are defined as the noisy part and assembled into a column vector 

nz . Therefore, the canonical correlation variable z  could be represented as the following block 

form at time t  

       
T

T T
s nt t t   z z z                           (26) 

The generative process of the canonical correlation variable z  could also be mathematically 
represented as the following block form 

     
   s cs

n n

t
t t

t

   
    
    

z J
z x

z J
                       (27) 

or 

     c
s st tz J x                                                       (28) 

    c
n nt tz J x                            (29) 

where sJ  is called the system generative matrix which contains the first m  rows of J , and 

nJ  is called the noise generative matrix which contains the last  1m p   rows of J . 

The fault detection statistic for the systematic canonical correlation variable, i.e., the 2Ts  
statistic, is defined as 

   2 T T TT c c
s s s s s z z x J J x                        (30) 

If the health-monitoring data follows a Gaussian distribution, the control limit (or called the 

threshold) for 2Ts  could be calculated through the following F -distribution (Antoine and Çlinar 
1997) 

     
   

2 2

2
,lim ,

1
Ts m mp m

m m p
F

mp mp m
 





                    (31) 

where   is called the significance level, this parameter is generally set to a pimping value, e.g., 
0.01. 

The fault detection statistic for the noisy canonical correlation variable, i.e., the 2Tn  statistic, 
could be similarly defined as follows 
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   2 T T TT c c
n n n n n z z x J J x                          (32) 

If the health-monitoring data has a Gaussian distribution, the control limit for 2Tn  could also 

be calculated via the F -distribution as follows 

   
    

2 2

2
,lim ,2

1 1
Tn mp m m

m p m p
F

m p
 

 
                    (33) 

When the health-monitoring is not Gaussian distributed, the kernel density estimation (KDE) 
technique (Chen et al. 2000) could be employed to estimate the probabilistic distribution and then 

to calculate the control limits for both 2Ts  and 2Tn  statistics. In this paper, the KDE technique is 
used to compute the control limits as it can handle both Gaussian and non-Gaussian distributions. 

 
3.4 Fault isolation scheme 
 
After a fault is detected to occur in the sensor network, fault isolation procedure should be 

implemented to identify the specific faulty sensor. This section, through the contribution analysis 
methodology (Qin 2003), proposes two fault isolation indices that can be used to identify the 
faulty sensor among the sensor network. 

Eqs. (30) and (32) could be further represented in the following forms 

   2 T T TT =c c c c
s s s s x J J x x x                                             (34) 

  2 T T TT =c c c c
n n n n x J J x x x                       (35) 

where mp mp
s

  and mp mp
n

  are matrices corresponding to the system and noise 
generative matrices, respectively. Their definitions are used to derivate the contribution analysis 
based fault isolation indices 

  T
s s s J J                                                           (36) 

 T
n n n J J                              (37) 

According to Eqs. (34) and (35), the 2Ts  and 2Tn  statistics could be further decomposed into 
the following summation type 

  2 T T
, ,

1 1

T =
mp mp

c c c c
s i s i i s i

i i

x x
 

   x x                                          (38) 

 2 T T
, ,

1 1

T =
mp mp

c c c c
n i n i i n i

i i

x x
 

   x x                      (39) 

where ,
mp

s i   and ,
mp

n i   are the thi  columns of s  and n , respectively. 

Therefore, the contributions of the thi  variable in the current observation vector cx  to the 
2Ts  and 2Tn  statistics can be defined as ,cont s i  and ,contn i , respectively, and are given as 
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Canonical correlation analysis based fault diagnosis method… 

Three datasets are used for the fault detection sub-procedure, i.e., Training Dataset 1, Training 
Dataset 2 and the Testing Dataset. Training Datasets 1 and 2 are used for the training stage whereas 
the Testing Dataset is used for the monitoring stage. A flowchart of the fault detection 
sub-procedure is shown in Fig. 1. And the detailed implementation process is illustrated as 
follows: 

 
Training stage using Training Dataset 1: 
Step 1: Calculate the mean vector of Training Dataset 1 and then center this dataset by 

removing the mean vector from all data-points. 

Step 2: Construct the current and future observation vectors cx  and fx , respectively, at each 
time instant using Eq. (7) and Eq. (8), and then assemble the corresponding current and future 
observation datasets. 

Step 3: Calculate the whitening matrices cQ  and fQ for the current and future observation 
vectors, respectively, using Eqs. (13) and (14). 

Step 4: Solve the CCA problem shown in Eq. (19) using the singular-value decomposition 
technique, and compute the canonical correlation generative matrices J  and L , respectively, 
using Eqs. (22) and (23). 

Step 5: Define the first m  rows of J  as the system generative matrix sJ , define the last 

 1m p   rows of J  as the noise generative matrix nJ , and preserve sJ  and nJ  for the 

subsequent fault detection and isolation stages. 
 
Training stage using Training Dataset 2: 
Step 1: Center Training Dataset 2 by removing the mean vector of Training Dataset 1 from all 

data-points. 

Step 2: Construct the current observation vector cx  at each time instant using Eq. (7). 

Step 3: Compute the two fault detection statistics 2Ts  and 2Tn  defined in Eqs. (30) and (32) 

for the current observation vector cx  constructed in Step 2. 

Step 4: Compute and preserve the thresholds for both the 2Ts  and 2Tn  statistics using the 

KDE technique after the 2Ts  and 2Tn  statistics for all of the current observation vectors are 
computed. 

 
Monitoring stage using the Testing Dataset: 
Step 1: Center the Testing Dataset by removing the mean vector of Training Dataset 1 from all 

data-points. 

Step 2: Construct the current observation vector cx  at the current monitoring time instant 
using Eq. (7). 

Step 3: Compute the two fault detection statistics 2Ts  and 2Tn  defined in Eqs. (30) and (32) 

for the current observation vector cx  constructed in Step 2. 

Step 4: Decide whether there is a fault occurred in the sensor network by judging if the 2Ts  or 
2Tn  statistic exceeds their corresponding thresholds: go to the fault isolation sub-procedure if there 

is a fault or back to step 2 and continue to monitor the next current observation vector if there is 
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Canonical correlation analysis based fault diagnosis method… 

5.1 Diagnostic results for bias fault 
 
Sensors 1-8 were considered in turn as the research objects for the purpose of validation in this 

section. A fault case, where a bias fault occurred in each of the aforementioned 8 sensors with 
B=0.5 from 40 s to 80 s, was simulated. 

The receiver operating characteristic (ROC) curve technique (Lu et al. 2009) was used to 
evaluate and compare the fault detection performances of the two proposed fault detection 
statistics with the traditional principal component analysis (PCA)-based statistics (Qin 2003, Yin et 
al. 2012), as well as the dynamic principal component analysis (DPCA)-based statistics (Ku et al. 
1995). 

Generally, the area under the ROC curve (AUC) is applied to quantify the fault detection 
performance of a statistic. The AUC value of an arbitrary fault detection statistic ranges from 0.5 
to 1.0. When the AUC value equals 0.5, the fault detection performance of this statistic becomes 
the worst, i.e., the statistic is a random detector. When the AUC value equals 1.0, the fault 
detection performance of this statistic becomes the best, i.e., the statistic is a perfect detector. 

Table 3 shows the AUC values of the PCA-, DPCA- and CCA-based fault detection statistics 
for the bias fault case. The AUC values of the PCA- and DPCA-based statistics are just above 0.5, 
indicating that their fault detection performances are very poor. The AUC values of the CCA-based 
statistics, however, are very close to 1.0, indicating that the fault detection performances of the 
new proposed statistics are nearly perfect and preferable to the PCA- and DPCA-based ones. 

As a special example, the bias fault occurring in sensor 2 was studied in detail. Fig. 5(a) shows 
the fault-free waveform graph of sensor 2, whereas Fig. 5(b) shows the faulty sensor output with 
B=0.5. 

The fault detection results of the PCA- and DPCA-based 2T  and SPE statistics are shown in 
Fig. 6. The fault detection rates of these four statistics are 1.50%, 1.15%, 1.37% and 4.08%. This 
also demonstrates that their fault detection abilities are quite inferior. 

 
 
 

Table 3 Comparison of AUC values for the PCA-, DPCA- and CCA-based methods (Bias fault case) 

Sensor # 
PCA based method DPCA based method CCA based method 

2T  SPE  2T  SPE  2Ts  2Tn  

1 0.5662 0.5338 0.5843 0.6637 0.9954 0.9956 

2 0.5643 0.5338 0.5810 0.6539 0.9954 0.9956 

3 0.5635 0.5346 0.5875 0.6188 0.9954 0.9956 

4 0.5634 0.5398 0.5811 0.6520 0.9954 0.9956 

5 0.5635 0.5403 0.5808 0.6539 0.9954 0.9956 

6 0.5636 0.5353 0.5878 0.6168 0.9954 0.9956 

7 0.5646 0.5328 0.5809 0.6503 0.9954 0.9956 

8 0.5660 0.5347 0.5839 0.6608 0.9954 0.9956 
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