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Abstract.  In the present study, for first time the size dependent vibration behavior of a rotating functionally 
graded (FG) Timoshenko nanobeam based on Eringen‟s nonlocal theory is investigated. It is assumed that 
the physical and mechanical properties of the FG nanobeam are varying along the thickness based on a 
power law equation. The governing equations are determined using Hamilton‟s principle and the generalized 
differential quadrature method (GDQM) is used to obtain the results for cantilever boundary conditions. The 
accuracy and validity of the results are shown through several numerical examples. In order to display the 
influence of size effect on first three natural frequencies due to change of some important nanobeam 
parameters such as material length scale, angular velocity and gradient index of FG material, several 
diagrams and tables are presented. The results of this article can be used in designing and optimizing elastic 
and rotary type nano-electro-mechanical systems (NEMS) like nano-motors and nano-robots including 
rotating parts. 
 

Keywords:  bending vibration; Eringen‟s nonlocal theory; rotary functionally graded nanobeam; 

Timoshenko beam theory 

 
 
1. Introduction 
 

The experimental results have shown the disagreement between the classical continuum-based 

studies which proves that lacking the internal length scale parameters makes the classic theories 

incapable of predicting the behavior of structures in nano-scales accurately (Akgöz and Civalek 

2012). Thus, a number of theories have been introduced by scientists to define nano-systems 

behavior. Using the vehicles of global balance laws and the second law of thermodynamics 

Eringen introduced the nonlocal field theory which considers the behavior of a material in point 

not only dependent on that point, but also dependens on the state of all other points in the body 

(Eringen 1972, Eringen and Edelen 1972). Since then, Eringen‟s theory was employed to study 

micro and nano scaled structures for it includes the size parameters which are of significant 

importance in studying the small scaled materials. 

The nonlocal elasticity theory of Eringen (1983) is a common tool for analyzing structures in 

small scales. In this theory, unlike the classical theory, the stress at a reference point(x) in a body 
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depends not only on the strain of that point but also of all points of the body. So, many researchers 

have studied the nano-structures such as a nanobeam based on this theory. 

Reddy (2007) investigated the bending, buckling and vibration of nanobeam using Eringen‟s 

nonlocal theory. Civalek and Demir (2011) studied on the bending behavior of microtubules using 

Euler-Bernoulli beam model based on the Eingen theory. Nazemnezhad and Hosseini-Hashemi 

(2014) studied on the exact solution of nonlocal nonlinear vibration of FG nanobeams.  

Civalek and Akgöz (2013) investigated the behavior of micro graphene sheet‟s sector in elastic 

matrix. Nanomachines are of great importance in the study of nanotechnology. For example, the 

importance of nanomachines can be clearly observed in applications such as DNA nanomachines, 

programmable chemical synthesis and targeted drug delivery (van Delden et al. 2005, Bath and 

Turberfield 2007, Goel and Vogel 2008, Lee et al. 2010, Lubbe et al. 2011, Tierney et al. 2011, 

Chen et al. 2012). 

Rotating components are the main parts of most of the micro-scaled structures. Thus, the rotary 

effects is of great interests amongst researchers. The rotating single-walled carbon nanotube 

(SWCNT) with different hub radius was investigated by Murmu and Adhikari (2010). Using 

Euler-Bernoulli beam model, Narendar and Gopalakrishnan (2011) investigated the SWCNT with 

rotating effect based on Eringen nonlocal theory. Challamel and Wang (2008) studied the nonlocal 

effect on the bending behavior of rod. Moreover, Lim et al. (2009) considered the axial tortion to 

study nonlocal stress effect on a nanocantilever beam. Many researchers analyzed the flapwise 

bending vibration of rotating nanocantilever beams (Pradhan and Murmu 2010, Narendar 2012, 

Aranda-Ruiz et al. 2012). Most recently, Ghadiri and Shafiei (2015, 2015) studied the linear and 

nonlinear bending vibration of a rotating nanobeam with different boundary conditions by 

nonlocal Eringen‟s theory. Dehrouyeh-Semnani A (2015) studied the size effect on flapwise 

vibration of rotating microbeams. The rotary effects have also been studied in some researches for 

clamp-simply supported (propped cantilever) boundary condition (Murmu and Adhikari 2010, 

Narendar and Gopalakrishnan 2011). Effect of nonlocal and surface effects on vibration analysis of 

a rotating FG nanobeam was studied by Ghadiri et al. (2016). Ghadiri and Shafiei (2016) 

investigated the nonlocal effect on the vibrations of a rotating nanoblade that can be the basis of 

nano-turbine design. Kaya (2006) studied the free vibration behavior of a Timoshenko beam with 

rotating effect by differential transform (DTM) method. 

A functionally graded material (FGM) is a composite which is made of two or more different 

materials. FGMs, commonly used in various industrial applications such as, mechanic, civil, 

aerospace, biomedicines, electronics, etc. and have excellent mechanical and physical properties 

like lightness, high stuffiness, elasticity and ergonomic. In a FG microbeam, the volume fractions 

of materials are changed from one surface to another. With this change, mechanical and physical 

properties vary smoothly and continuously along the axis or through the thickness. Many 

researchers performed the dynamic and static analyses of FG macro, micro and nanobeams. Free 

vibration behavior of simply supported FG beam based on the higher order shear deformation and 

classical beam theories was presented by Metin Aydogdu (2007). Dewey H. Hodges (1981) have 

studied the free vibration of rotating beams by means of a finite-element method of variable order. 

Şimşek (2010) presented the first and higher order shear deformation FG beam models for 

different boundary conditions. 

Asghari et al. (2011) studied the bending vibration of the FG Euler–Bernoulli and Timoshenko 

microbeams based on the modified couple stress theory. The behavior of FG and axially FG beam 

was investigated by Alshorbagy et al. (2011). The small-scale effect on dynamic behavior of FG 

microbeams based on Timoshenko model was studied by Ke and Wang (2011). The effect of the 
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value of gradient index on vibration behavior of FG Timoshenko microbeam based on the strain 

gradient theory was studied by Ansari et al. (2011). Ke et al. (2012) presented the effect of 

von-Kármán geometric nonlinearity on nonlinear vibration of FG microbeam using modified 

couple stress theory. The free vibration behavior of FG Euler-Bernoulli nanobeam using finite 

element method and nonlocal elasticity theory was presented by Eltaher et al. (2012). Morever, 

Eltaher et al. (2013) based on nonlocal elasticity model presented the buckling analysis of FG 

nanobeam. Also, Şimşek and Yurtcu (2013) studied the static buckling and bending of FG nonlocal 

beam with analytical method. Rahmani and Pedram (2014) using nonlocal and Timoshenko model 

presented the modal analysis of FG nanobeam. A new shear correction factors are presented for FG 

Timoshenko microbeams by Akgöz and Civalek (2014a). Also, they studied on buckling of FG 

microbeam based on the modified couple stress and sinusoidal shear deformation model of beam 

(Akgöz and Civalek 2014b). Morever, effects of rotary inertia shear deformation of FG beam was 

investigated by Avcar (2015). Recently, Ebrahimi and Salari (2015a, b) studied the thermal 

analyses of FG nanobeam with exact solution in thermal environment. 

It is found that most of the previous studies on vibration analysis of FG nanobeams assumed to 

be stationary and ignored the rotary effects. As it is seen in the literature, investigation of vibration 

behavior of a rotating FG nanobeam based on the nonlocal elasticity theory is completely a new 

research and it hasn‟t been done before. Therefore in this study, the size dependent vibration 

behavior of a rotating FG Timoshenko nanobeam is presented. Also, the natural frequencies of 

cantilever nanobeams under changes of some parameters such as angular velocity, material length 

scale and FG index of Timoshenko shear deformation theories are verified. It is assumed that the 

FG nanobeam is made of ceramic and metal and the properties of FG materials vary through the 

thickness (z direction) according to the power law. Also to investigate material behaviors at micro 

scale, the nonlocal theory is applied. Hamilton‟s principle and the GDQM are utilized to derive 

cantilever boundary conditions and to solve governing equations, respectively. The effects of 

changes of some important parameters such as material length scale, angular velocity and FG 

index on the values of frequencies are studied. Moreover, the accuracy of the results is shown 

through several numerical examples. 

The results of this article can be refered for designing and optimizing the elastic and rotatin 

nono-electro-mechanical systems. 

 
 
2. Theory and formulation 
 

2.1 Nonlocal power-law FG nanobeam equations based 
 

The problem of interest is a rotating nanobeam whose length „L‟, height „h‟ and width „b‟ are 

located along x, z and y directions, respectively as shown in Fig.1. Considering FG Timoshenko 

nanobeams made of composing two different materials (in this paper metal and ceramic), the 

material and geometrical properties of the nanobeams are assumed to vary through the thickness 

(along z axis). This variation in properties can be defined as the power law which is presented as 

following below 

f c c m mP PV P V 
                             (1)

 

where Pm , Pc , Vm and Vc are the material properties and the volume fractions of the metal and the 
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ceramic constituents related by 

c mV V 1 
                              (2a)

 

The volume fraction of the ceramic constituent of the beam is assumed to be given by 

 
  
 

n

c

z 1
V

h 2                             (2b)

 

Here n is the power-law exponent which determines the material distribution through the 

thickness of the beam and z is the distance from the mid-plane of the FG beam. By using the Eqs. 

(1) and (2), Young's modulus (E), mass density (ρ) and Poisson‟s ratio (ν) can be described 

respectively as 

   

   

   

 
    

 

 
    

 

 
    

 

n

c m m

n

c m m

n

c m m

z 1
E z E E E

h 2

z 1
z

h 2

z 1
z

h 2

   

   
                      (3)

 

The top surface of the functionally graded nanobeam (at z = h/2) is pure ceramic (Si3N4), where 

the bottom surface of the FG nanobeam (z = -h/2) is pure metal (S). 

 
2.2 Kinematic relations 
 

The equations of motion are derived based on the Timoshenko beam theory according to the 

displacement field at any point of the beam written as 

     xu x , z ,t u x ,t z x ,t 
                     (4a)

 

   zu x , z ,t w x ,t
                          (4b)

 

where t is time, φ is the total bending rotation of the cross-section, u and w are displacement 

components of the mid-plane along x and z directions, respectively. Therefore, strain tensor, 

curvature tensor and rotation vector can be determined as follows 


 





xx

u
z

x
 

x




                            (5)
 


 


xz

w

x
 

                             (6)
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Fig. 1 Schematic of rotating cantilever nanobeam and material distribution over z plane and geometrical 

properties of nanobeam 

 

 

where 𝜀𝑥𝑥 and 𝛾𝑥𝑧 are the normal and shear strains, respectively. Based on Hamilton‟s principle, 

which states that the motion of an elastic structure during the time interval 𝑡1 < 𝑡 < 𝑡2 is such 

that the time integral of the total dynamics potential is extremum (Tauchert 1974) we have 

   
1

0

U T V dt 0

                        (7)

 

Here U is strain energy, T is kinetic energy and V is work done by external forces. The virtual 

strain energy can be calculated as 

    ij ij xx xx xz xz

V V

U dV dV      

               (8)

 

Substituting Eqs. (5) and (6) into Eq. (8) yields 

        
         

        

L

0

u w
U N M Q dx

x x x


    

           (9)

 

In which N is the axial force, M is the bending moment and Q is the shear force. These stress 

841



 

 

 

 

 

 

Farzad Ebrahimi and Navvab Shafiei 

 

resultants used in Eq. (9) are defined as 

    xx xx S xz

A A A

N dA , M zdA , Q K dA  

             (10)

 

The kinetic energy of Timoshenko nanobeam can be written as 

 
     

           
 

2 2L

x z

0 A

u u1
T z dAdx

2 t t


                 (11)

 

Also the virtual kinetic energy can be expressed as 

0 1L

20
2

u u w w u u
I I

t t t t t t t t
T dx

I
t t

           
                 

    
      



    


 

 

         (12)

 

where (𝐼0, 𝐼1, 𝐼2) are the mass moment of inertias, defined as follows 

      
2

0 1 2

A

I , I , I z 1, z, z dA

                     (13)

 

Rotary effect on the governing equation is evaluated. The variation of the work done 

corresponding to angular velocity that can be obtained by 

0

 

 
 

R

L
w w

NV dx
x x




                        (14)

 

Where N is obtained by 

   2   
L

A

R

x

r Az dN dA d 

                   (15)

 

where  ,  , r  and x  are beam density at certain point z, angular velocity, hub radius, beam 

length variation along x direction. By Substituting Eqs. (9), (12) and (14) into Eq. (7) and setting 

the coefficients of 𝛿𝑢, 𝛿𝑤 and 𝛿𝜑  to zero, the following Euler–Lagrange equation can be 

obtained 

2 2

0 12 2

  
 

  

N u
I I

x t t



                        (16a)
 

2 2

02 2

  
 

  

RQ w w
N I

x x t                       (16b)
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2 2

1 22 2

  
  

  

M u
Q I I

x t t



                      (16c)
 

Under the following boundary conditions 

0 0 0   N or u at x and x L             (17a) 

0 0 0   Q or w at x and x L
            (17b) 

0 0 0   M or at x and x L
            (17c) 

 

2.3 Nonlocal elasticity model for FG nanobeam 
 

In nonlocal elasticity, the stress at point x is considered to be a function of the strain field at 

every point in the body. For a homogeneous and isotropic elastic solid the nonlocal stress-tensor 

components 𝜎𝑖𝑗 at any point x in the body can be expressed as 

       ' , ' '


  ij ijx x x t x d x  

                  (18)

 

where 𝑡𝑖𝑗(𝑥′) are the classical, macroscopic second Piola-Kirchhoff stress tensor at point x 

represent to the components of the linear strain tensor 𝜀𝑘𝑙 

ij ijkl klt C 
                             (19)

 

In nonlocal elasticity, the stress at a point x is considered to be a function of the strain field at 

every point in the body. But, in the local model of elasticity, the effect of strain at other points is 

neglected. 𝛼(|𝑥́ − 𝑥|) and 'x x  are respectively nonlocal kernel and the Euclidean distance 

and τ is a constant given by 

0
e a

l


                               (20)
 

where e0 indicates a material constant,which represents the ratio between a characteristic internal 

length, a (such as lattice parameter, C–C bond length and granular distance) and a characteristic 

external one, 𝑙 (e.g., crack length, wavelength) trough an adjusting constant. When the local 

stress tensor is expressed in terms of the displacement gradients through the generalized Hooke‟s 

law, the displacements appearing on the right-hand side of Eq. (21) are assumed to be the nonlocal 

displacements. However, it is possible to represent the integral constitutive relations in an 

equivalent differential form as 

  2 2

01  kl kle a t
                      (21)

 

where 
2 is the Laplacian operator. Thus, the scale length e0a takes into account the size effect on 

the response of nanostructures. For an elastic material in the one dimensional case, the nonlocal 
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constitutive relations may be simplified as 

 
2

2

0 2


 



xx
xx xxe a E

x


 

                       (22)
 

 
2

2

0 2


 



xz
xz xze a G

x


 

                       (23)
 

where 𝜎 and ε are the nonlocal stress and strain, respectively. E is the Young‟s modulus, 

𝐺 = 𝐸 ⁄ 2(1 + 𝜐)  is the shear modulus (where 𝜐  is the poisson‟s ratio). For Timoshenko 

nonlocal FG nanobeam, Eqs. (22) and (23) can be rewritten as 

   
2

2

0 2
,


 



xx
xx xxe a E z T

x


 

                   (24)
 

   
2

2

0 2
,


 



xz
xz xze a G z T

x


 

                   (25)
 

Integrating Eqs. (24) and (25) over the nanobeam‟s cross-section area, the force-strain and the 

moment-strain of the nonlocal Timoshenko FG nanobeam theory can be obtained as follows 

 
2

2

0 2

  
  

  
xx xx

N u
N e a A B

x x x



                   (26)
 

 
2

2

0 2

  
  

  
xx xx

M u
M e a B D

x x x



                  (27)
 

 
2

2

0 2

  
   

  
xz

Q w
Q e a C

x x


                    (28)

 

In which the cross-sectional rigidities are defined as follows 

     2, , 1, , xx xx xx

A

A B D E z z z dA

                  (29)

 

  xz S

A

C K G z dA

                         (30)

 

where 𝐾𝑆 = 5 6⁄  is the shear correction factor. The explicit relation of the nonlocal normal force 

can be derived by substituting for the second derivative of N from Eq. (16(a)) into Eq. (26) as 

follow 

 
3 3

2

0 0 12 2

    
    

      
xx xx

u u
N A B e a I I

x x x t x t

 

             (31)

 

Also the explicit relation of the nonlocal bending moment can be derived by substituting for the 
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second derivative of M from Eq. (16.c) into Eq. (27) as follows 

 
2 3 3 2

2

0 0 1 2 12 2 2 2

      
      

        

R

xx xx

u w u w
M B D e a I I I I N

x x t x t x t x

 

   (32)

 

By substituting for the second derivative of Q from Eq. (16(b)) into Eq. (28), the following 

expression for the nonlocal shear force is derived 

 
3 3

2

0 0 2 3

    
      

      

R

xz

w w w
Q C e a I N

x x t x


             (33)

 

The nonlocal governing equations of Timoshenko FG nanobeam in terms of the displacement 

can be derived by substituting N, M and Q from Eqs. (31)-(33), respectively, into Eq. (16) as 

follows 

 
2 2 4 4 2 2

2

0 0 1 0 12 2 2 2 2 2 2 2
0

      
      

        
xx xx

u u u
A B e a I I I I

x x x t x t t t

  

       (34)

 

 
2 4 4 2

2

0 0 02 4 2 2 2
0

          
          

           

R R

xz

w w w w w
C e a N I N I

x x x x t x x t



   (35)

 

 
2 2 4 4

22

2 0 1 22 2 2 2 2 2

2 2

1 22 2
0

xx xx xz

u w u
B D C I e a I I

x x x x t x t

u
I I

t t

      
         

         

 
  

 

 
 



  (36)

 

 

 

3. Solution procedure (GDQM) 
 
Bellman et al. introduced differential quadrature method (DQM) in the early 1970s (Bellman 

and Casti 1971, Bellman et al. 1972) as an efficient and accurate method. The number of grid 

points determines the accuracy of the weight coefficients which affects the accuracy of DQM. In 

the preliminary formulations of DQM, weight coefficients were calculated by an algebraic 

equation system which limits the number of grid points. Shu (2000) presented simple explicit 

formula for the weight coefficients with infinite number of grid points leading to GDQM. Early 

applications of GDQ were limited to regular domain problems. Shu and Richards (1992) 

developed a domain decomposition technique to study the multi-domain problems. According to 

this method, the domain of the problem is divided into a number of sub-domains or elements, 

before discretizing each subdomain using GDQ. For this purpose, the following solution procedure 

is considered. The r-th order derivative of function 𝑓(𝑥𝑖) can be defined as (Shu 2000) 

     
1

p

r n
r

x x ij ir
j

f x
C f x

x










                      (37)
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From the above equation it can be understood that the main components of this method are 

weighting coefficients. In this method, the most important step is to find the weight coefficients. 

Where ijC ,  M x  and 
 r

C  are defined as 

   

   
1 i

ij

i j j

M x
C

x x M x



   

, 1 , 2 , . . . ,i j n
 and i j

             (38a) 

   1 1

1,

n

ij ij

j i j

C C
 

  
    

i j
                      (38b) 

   
1,

n

i i j

j i j

M x x x
 

 
                         (38c)
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1

1 1

r
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C
C r C C

x x
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
 

  
      

, 1 , 2 , . . . , ,i j n i j 
 and   2 1r n         (39a) 

   

1,

n
r r

ii ij

j i j

C C
 

  
   

, 1 , 2 , . . . ,i j n
 and   1 1r n             (39b) 

where n  is the number of grid points along x  direction and superscript r  is the order of the 

derivative and 
 r

C is the weighing coefficient along x  direction. In order to increase 

convergence speed, Chebyshev-Gauss-Lobatto technique has been defined as follows 

 

 

11
1 cos 1,2,3, ... ,

2 1
i

i
i n

N
 

  
            

1 , 2 , 3 , . . . ,i n
      (40) 

Finally, by using Eqs. (34)-(36) with boundary conditions and using Eigenvalue equation in the 

form of Eq. (41) the overall problem will be solved. 
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4. Result and discussions 
 

In this section, numerical results are presented for vibration behaviour of cantilever nanobeams 

with investigating angular velocity, small-scale parameter and power law index of functionally 

graded nanobeam composition effects. The Timoshenko beam model based on Eringen‟s nonlocal 

theory is utilized. Validations have been done by modifying utilized DQM and comparing with 

available literatures. The beam geometry has the following dimensions: L (length) = 10 nm, b 
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(width) =2 nm and h (thickness) = 1nm. By considering 𝑊 = 𝑤𝑒𝑖𝜔𝑡, relations described in Eqs. 

(42)-(44) are presented in the form of dimensionless parameters in order to have better judgment 

on results 

2 4 10

11

 
m

L
D



                            (42)

 

2 2 4 10

11

  
m

L
D

                           (43)

 

0
e a

L


                               (44)
 

where 2
10 11  c c

A A

m dA and D E z dA  and μ is nondimensional nonlocal parameter. 

To verify the accuracy of results, nondimensional frequency of non-rotating cantilever nanobeams 

are compared with results obtained by Wang et al. (2007) in Table 1. 

The verification of the results are shown in Table 2, where the first two frequencies of the 

Timoshenko nanobeam are compared with the results of Dehrouyeh-Semnani A (2015) and Shafiei 

et al. (2015, 2016) for a different range of angular velocities. As it can be seen, the results of the 

presented DQM have excellent agreement with the results of other papers. Finally, the results are 

presented for the parametric study considering different effects such as small scale, power law 

index of functionally graded nanobeam composition and nondimensional angular velocity. The FG 

nanobeam is composed of ceramic and steel and their properties are given in Table 3 (at 

T = 300 k). 

 

4.1 Cantilever FG-nanobeam 
 

4.1.1 Fundamental frequency 
Fig.2 shows the nondimensional fundamental frequency variation of cantilever nanobeam with 

respect to gradient index (n) for various angular velocities and nonlocal effects. It‟s observed that 

increasing n, means that the nanobeam composition contains more metal. It is seen that by 

increasing power law index of functionally graded nanobeam material distribution (n), 

nondimensional frequency for each small-scale and angular velocity decreases. Increasing the 

metallic volume fraction which reduces the total stiffness of the nanobeam is happened with 

gradient index. In both cases, the decreaseing the fundamental frequency is according to 

degradation of stiffness of the nanobeam. Also, in this boundary condition (cantilever) of the FG 

nanobeam, unlike other types of boundary conditions, it can be seen that the fundamental 

frequency increases with nonlocal parameter which is clearly shown in Fig.3. By comparing 

sections (a), (b), (c) and (d) from Fig. 2, it is observed that fundamental frequency increases with 

angular velocity, also, it is more clearly shown in Fig. 4. 

Fundamental frequencies obtained for various small-scale values of the nanobeam have been 

plotted in Fig. 3. It can be observed that higher frequency is obtained at higher angular velocities. 

Furthermore it can be observed that as nonlocal parameter increases, frequency also increases. By 

comparing sections (a), (b), (c) and (d) from Fig. 3, it is observed that fundamental frequency 
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decreases with gradient index.. In order to study the effect of angular velocity on behavior of FG 

nanobeam, the backbone curves of a cantilever nanobeam are depicted in Fig. 4 for various values 

of nonlocal and gradient index parameters. It can be seen that the angular velocity has a 

considerable effect on the bending vibration behavior of FG nanobeam. The fundamental 

frequency increases with angular velocity.  

 

 

 
Table 1 Comparison of results for nondimensional frequency, Ψ of cantilever nanobeam 

Nonlocal parameter 

(μ) 

Φ=0, Ψ1 Φ=0, Ψ2 

Present (Wang et al. 2007) Present (Wang et al. 2007) 

0 1.86102 1.8610 4.47341 4.4733 

0.1 1.86509 1.8650 4.35059 4.3506 

0.3 1.89999 1.8999 3.65938 3.6594 

0.5 2.00239 2.0024 2.89025 2.8903 

 

 

 

Fig. 2 Fundamental nondimensional frequency variation of cantilever nanobeam with respect to FG 

indexes nondimensional angular velocity for different nondimensional nonlocal parameter 
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Table 2 Comparison of results for nondimensional frequency, Ψ of rotating cantilever beam 

 
          Fundamental Frequency 

 
            Second Frequency 

Φ Present 

Dehrouyeh-Semnani (2015)  

and  

Shafiei et al.(2015, 2016)  
 

Present 

Dehrouyeh-Semnani 

(2015)  

and  

Shafiei et al.(2015, 2016)  

0 3.516024127 3.516 
 

22.03437512 22.035 

1 3.681657949 3.6816 
 

22.18089419 22.181 

2 4.137299432 4.1373 
 

22.61480281 22.615 

3 4.797278856 4.7973 
 

23.32014566 23.32 

4 5.584996142 5.585 
 

24.27323227 24.273 

5 6.449523977 6.4495 
 

25.44596417 25.446 

6 7.360344878 7.3604 
 

26.80896705 26.809 

7 8.299605386 8.2996 
 

28.33396811 28.334 

8 9.256792429 9.2568 
 

29.99526949 29.995 

9 10.22567529 10.226 
 

31.77038743 31.771 

10 11.20232093 11.202 
 

33.64023661 33.64 

 

 

 

Fig. 3 Fundamental nondimensional frequency variation of cantilever nanobeam with respect to FG 

indexes and nonlocal parameter for different nondimensional angular velocity 
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Table 3 Properties of utilized materials (at T=300(k)) 

Properties material 
Young‟s modulus 

𝐸(𝐺𝑝𝑎) 
Density 𝜌 (

3
/kg m ) Poisson‟s ratio   

Si3N4 322.27 2370 0.24 

SUS304 207.79 8166 0.3178 

 

 

 

Fig. 4 Fundamental nondimensional frequency variation of cantilever nanobeam with respect to 

nondimensional velocity and nonlocal parameter for different nondimensional FG indexes 

 

 

4.1.2 Second and third frequency 
Variations of the dimensionless second and third frequencies of the cantilever FG nanobeam 

with respect to angular velocity, gradient indexes (n) and nonlocal parameters are depicted in Figs. 

5-7 and Figs. 8-10, respectively. It‟s observed that the natural frequencies increase with Φ. Unlike 

fundamental frequency, if nonlocal parameter increases, the second and third frequency decrease. 

Also, it can be stated that angular velocity has a significant effect on the dimensionless natural 

frequencies, especially for lower mode numbers. On the other hand, it is revealed that the 

frequencies decrease with an increase in material gradient index due to decreasing in total stiffness 

of the nanobeam. 
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Fig. 5 second nondimensional frequency variation of cantilever nanobeam with respect to FG indexes 

nondimensional angular velocity for different nondimensional nonlocal parameter 

 

 

 

Fig. 6 Second nondimensional frequency variation of cantilever nanobeam with respect to FG indexes and 

nonlocal parameter for different nondimensional angular velocity 
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Fig. 7 Second nondimensional frequency variation of cantilever nanobeam with respect to nondimensional 

velocity and nonlocal parameter for different nondimensional FG indexes 

 

 

 

Fig. 8 Third nondimensional frequency variation of cantilever nanobeam with respect to FG indexes 

nondimensional angular velocity for different nondimensional nonlocal parameter 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

10

12

14

16

18

20

22

24

26



N
o
n

-d
im

e
n

si
o
n

a
l 

fr
e
q

u
e
n
c
y
, 
 

=0

 

 

n=0

n=0.5

n=1

n=2

n=4

n=8

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

10

12

14

16

18

20

22

24

26



N
o
n

-d
im

e
n

si
o
n

a
l 

fr
e
q

u
e
n
c
y
, 
 

=0.15

 

 

n=0

n=0.5

n=1

n=2

n=4

n=8

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

8

10

12

14

16

18

20

22



N
o
n

-d
im

e
n

si
o
n

a
l 

fr
e
q

u
e
n
c
y
, 
 

=0.3

 

 

n=0

n=0.5

n=1

n=2

n=4

n=8

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

6

8

10

12

14

16

18



N
o
n

-d
im

e
n

si
o
n

a
l 

fr
e
q

u
e
n
c
y
, 
 

=0.45

 

 

n=0

n=0.5

n=1

n=2

n=4

n=8

(b)(a)

(c) (d)

0 1 2 3 4 5 6 7 8

10

15

20

25

30

35

40

45

50

55

60

n

N
o
n

-d
im

e
n

si
o
n

a
l 

fr
e
q

u
e
n
c
y
, 
 

=0

 

 

=0

=0.1

=0.2

=0.3

=0.4

=0.5

0 1 2 3 4 5 6 7 8

10

15

20

25

30

35

40

45

50

55

60

n

N
o
n

-d
im

e
n

si
o
n

a
l 

fr
e
q

u
e
n
c
y
, 
 

=2

 

 

=0

=0.1

=0.2

=0.3

=0.4

=0.5

0 1 2 3 4 5 6 7 8

10

20

30

40

50

60

n

N
o
n

-d
im

e
n

si
o
n

a
l 

fr
e
q

u
e
n
c
y
, 
 

=4

 

 

=0

=0.1

=0.2

=0.3

=0.4

=0.5

0 1 2 3 4 5 6 7 8

10

20

30

40

50

60

70

n

N
o
n

-d
im

e
n

si
o
n

a
l 

fr
e
q

u
e
n
c
y
, 
 

=8

 

 

=0

=0.1

=0.2

=0.3

=0.4

=0.5

(b)(a)

(c) (d)

852



 

 

 

 

 

 

Application of Eringen’s nonlocal elasticity theory for vibration analysis… 

 

 

Fig. 9 Third nondimensional frequency variation of cantilever nanobeam with respect to FG indexes and 

nonlocal parameter for different nondimensional angular velocity 

 

 

 

Fig. 10 Third nondimensional frequency variation of cantilever nanobeam with respect to nondimensional 

velocity and nonlocal parameter for different nondimensional FG indexes 
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Table 4 shows the effect of Ks on the fundamental and second frequencies of FG nanobeams for 

different values of L/h. It is shown that increasing the L/h decreases the effect of Ks and increasing 

the nonlocal parameter increases the effect of Ks on fundamental and second frequencies. 

 

Table 4 Fundamental and second nondimensional frequency variation of cantilever nanobeam with respect 

to shear deformation factor with nondimensional nonlocal parameter for different nondimensional angular 

velocity, n=1, Φ=0 

  

Fundamental frequency Second frequency 

  

KS=1/12 1/6 2/6 4/6 5/6 6/6 KS=1/12 1/6 2/6 4/6 5/6 6/6 

L/h=5 

bμ=0 2.063713 2.25273 2.367054 2.430434 2.443665 2.452593 7.699379 9.575017 11.37308 12.79475 13.14831 13.40022 

bμ=0.2 2.0585 2.265436 2.392698 2.46394 2.478874 2.488964 5.996634 7.539379 9.016156 10.17667 10.46396 10.66833 

bμ=0.4 2.052093 2.317991 2.490722 2.590669 2.611925 2.626346 3.973277 4.970463 5.892976 6.597408 6.769458 6.891369 

L/h=10 

bμ=0 2.378773 2.443852 2.478267 2.495975 2.499558 2.501954 11.62919 13.1711 14.22132 14.84849 14.98379 15.07597 

bμ=0.2 2.405639 2.47899 2.518003 2.538138 2.542217 2.544946 9.179817 10.44362 11.30478 11.81957 11.93072 12.00648 

bμ=0.4 2.507766 2.611606 2.667976 2.697387 2.703372 2.707382 5.983967 6.750467 7.263353 7.56696 7.632256 7.67671 

L/h=20 

bμ=0 2.378773 2.443852 2.478267 2.495975 2.499558 2.501954 11.62919 13.1711 14.22132 14.84849 14.98379 15.07597 

bμ=0.2 2.405639 2.47899 2.518003 2.538138 2.542217 2.544946 9.179817 10.44362 11.30478 11.81957 11.93072 12.00648 

bμ=0.4 2.507766 2.611606 2.667976 2.697387 2.703372 2.707382 5.983967 6.750467 7.263353 7.56696 7.632256 7.67671 

L/h=40 

bμ=0 2.509745 2.514314 2.516607 2.517755 2.517985 2.518138 15.38637 15.57648 15.67411 15.72359 15.73354 15.74018 

bμ=0.2 2.553822 2.559035 2.561653 2.562964 2.563226 2.563402 12.25987 12.41765 12.49876 12.53988 12.54816 12.55368 

bμ=0.4 2.720437 2.72815 2.732028 2.733973 2.734362 2.734622 7.824804 7.917091 7.964469 7.988478 7.993305 7.996529 

L/h=10

0 

bμ=0 2.517706 2.518442 2.51881 2.518995 2.519031 2.519056 15.72146 15.75337 15.7694 15.77743 15.77904 15.78011 

bμ=0.2 2.562908 2.563749 2.564169 2.564379 2.564421 2.564449 12.53809 12.56464 12.57797 12.58466 12.58599 12.58688 

bμ=0.4 2.73389 2.735137 2.735761 2.736073 2.736135 2.736177 7.987431 8.002923 8.010703 8.014601 8.015381 8.015901 

 

 

5. Conclusions 
 

In this article, bending mechanical vibrational behavior of the rotating FG nanobeams based on 

Timoshenko beam theory and Eringen‟s nonlocal elasticity theory constitutive equations is 

investigated. The Hamilton‟s principle was used to obtain the governing equations and the related 

boundary conditions. Then generalized differential quadrature (GDQ) method was applied to 

discretize the governing differential equations corresponding to clamped–free boundary conditions. 

In this article, the influence of the several parameters such as angular displacement, FG gradient 

index and nonlocal parameter on the free vibration of rotating nanobeam was examined. 

The following main results could be highlighted from this paper:  

1. It should be noted that except fundamental frequency of cantilever FG nanobeam, 

nondimensional frequencies decrease with nonlocal parameter. 
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2. The non-dimensional frequency is decreased, while the nonlocal parameter increases. The 

reason is that the presence of the nonlocal parameter tends to decrease the stiffness of the 

nanobeam and finally decreases the values of non-dimensional frequency. But, in the first 
mode of the rotating cantilever nanobeam, the nonlocal parameter behavior is different and, 

with the increase in nonlocal parameter, non-dimensional fundamental  frequency 
increases. 

3. It is illustrated that the FG nanobeam model yields smaller natural frequency than the 

classical (local) beam model. Therefore, by increasing FG index, all frequencies decrease. 

We found that, the nonlocal parameter, rotary effect and the FG gradient index have significant 

roles and in any studies on nanobeams, they should be examined. As well, because of the lack of 

modality in cantilever rotating nanobeam, fundamental frequency behaves differently in some 

cases. Presented herein will be helpful for understanding the vibration features of nanobeams and 

can be useful for engineers who are designing nanoelectromechanical, nanosensors, nanoactuators 

and in which nanobeams act as basic elements. 
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