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Abstract.  This work presents a methodology to distribute piezoelectric material for structural vibration 
active control. The objective is to design controlled structures with actuators which maximizes the system 
controllability. A topology optimization was formulated in order to distribute two material phases in the 
domain: a passive linear elastic material and an active linear piezoelectric material. The objective is the 
maximization of the smallest eigenvalue of the system controllability Gramian. Analytical sensitivities for 
the finite element model are derived for the objective functions and constraints. Results and comparisons 
with previous works are presented for the vibration control of a two-dimensional short beam. 
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1. Introduction 
 

Vibration control has been subject of much research lately due to the increasing use of smart 

structures in several engineering applications. Piezoelectric ceramics are extensively used as the 

active part of smart materials, both for sensors and actuators (Kumar and Narayanan 2008, Gupta 

et al. 2011). Thus, there is a need for methodologies to place the active material within structures 

as sensors and actuators. Measures able to quantify the control effectiveness can be used to choose 

this optimal placement. The controllability of a linear system can be determined by evaluating the 

controllability Gramian. Thereby, the control actuators performance can be qualitatively predicted: 

the system is considered controllable if this Gramian is non-singular (Gawronski 2004). However, 

this concept is a pass/no-pass test and is not particularly useful for the problem of optimal location 

of actuators. 

Several authors have proposed performance indices based on optimal control theory. Hamdan 

and Nayfeh (1989) focused the problem of modal controllability measures using generalized 

angles between the eigenvectors of the system matrix and columns of the input matrix. This 
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measure was extended considering the physical significance of each mode and its respective 

degrees of controllability (Kim and Junkins 1991). An energy-based quantitative measure for 

controllability and observability was proposed by Hać and Liu (1993); a performance index was 

defined taking into account the total energy, which is highly dependent on the low-order modes, 

and a term proportional to the energy contribution of each mode. For systems with small damping 

coefficients and well-spaced natural frequencies, expected energies for each mode are related to 

the Gramian eigenvalues. Gawronski and Kim (1996) used Hankel singular value (HSV) to 

quantify the degree of controllability and observability for a set of sensors and actuators (S/A). For 

lightly damped structures, the singular values of individual S/A pairs can be used to approximate a 

more complex system. 

A pioneering work of simultaneous optimization of structure and control system was developed 

by Onoda and Haftka (1987) where a combined cost is minimized subject to a constraint on the 

magnitude of the response to a given disturbance which involves both the rigid-body and elastic 

modes. Ou and Kikuchi (1996) studied the optimal design of a controlled structure by means of the 

homogenization method and the displacement feedback law. Topology optimization for the design 

of piezoelectric transducers was treated by Silva and Kikuchi (1999). This formulation was based 

on a definition of the electromechanical coupling coefficient, which provides the piezoelectric 

effectiveness on the conversion of mechanical into electrical energy, or the converse. Different 

objective functions were defined aiming to maximize the response of a specific operating mode, to 

design the transducer with a specific resonance frequency or to a particular frequency bandwidth. 

Wang and Wang (2001) worked on the controllability of actuators in beam structures. This 

paper presented a quantitative index, obtained through a singular value decomposition (SVD) of 

the input matrix. This index provides information on the actuator energy to be supplied to the 

structure and can be used to determine the optimal location of piezoelectric actuators. The problem 

of vibration control using piezoelectric actuators can be extended to more complex structures, such 

as shell structures (Sohn et al. 2011). 

Some recent works have studied the design of piezoelectric devices by means of the topology 

optimization method. Takezawa et al. (2010) developed a structural topology optimization 

formulation for single- and multi-axis load cell structures using the SIMP and the projection 

methods. Ruiz et al. (2013), optimized the distribution of passive material and the polarization 

profile of bonded piezoelectric material layer, in order to maximize the sensor output for a static 

loading. The topology optimization of piezoelectric actuator/sensor attached to a thin-shell 

structure was studied by Zhang and Kang (2014) in order to improve the active control 

performance for reducing the dynamic response under transient excitations employing a constant 

gain velocity feedback control algorithm. Takezawa et al. (2014a) carried out the optimization of 

vibration energy harvester, and specifically, the poling direction of the material in order to avoid 

cancellations due to different electric potential signals. This formulation aims to maximize the 

electromechanical coupling coefficient. Since these devices are usually designed with piezoelectric 

material between electrodes, electric field cancellation can occur. The optimization of piezoelectric 

transducer layout for energy-recycling semi-active vibration control system was studied by 

Takezawa et al. (2014b) considering space structure composed of trusses. The objective function 

was defined as the integration of the square of all displacement over the whole analysis time 

domain. Silveira et al. (2015), proposed a smart structure topology design methodology using 

piezoelectric material to control structural vibration. For that, two material phases were considered: 

a passive elastic isotropic material and a piezoelectric material which composes the active fraction 

(actuators). Topology optimization was used to select either passive or active material in each 
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point of the structure maximizing the controllability Gramian trace for an LQR control system. 

In this work, the optimization methodology to distribute piezoelectric material for structural 

vibration active control (Silveira et al. 2015) is improved considering a new controllability 

measure. Although the latter work has obtained successful designs, a large trace does not 

necessarily imply a non-singular Gramian which is required for a system to be completely state 

controllable. By adopting the maximization of the smallest eigenvalue of the Gramian instead of 

its trace, the system controllability can be assured. A sequential linear programming (SLP) is used 

to solve the topology optimization problem. After this, the controller synthesis is performed and its 

performance is compared regarding the controllability measure used as objective function. 

 

 

2. Coupled finite element model 
 

The smart structure is considered a three-dimensional body composed by linear elastic and 

linear piezoelectric materials. The parameterization that defines the elastic properties (C), 

piezoelectric coupling properties (E), dielectric properties (ε) and density (γ) of the interpolated 

material is given by 

elaspzt CCC )(1=                           (1) 

pztEE
=                              (2) 

pztεε
=                               (3) 

elaspzt  )(1=                          (4) 

where ρ is the design variable (more details in section 4), Celas and Cpzt are the elastic properties of 

non piezoelectric and piezoelectric material respectively; Epzt and εpzt define the electromechanical 

coupling and dielectric properties of the piezoelectric material; γelas and γpzt are the density for each 

material. The convergence stability of the optimization process depends on the penalty exponents 

α, β and δ. Intrinsic and objective-dependent conditions for this problem were proposed by Kim et 

al. (2010). However, since we are interested in the discrete design the penalty exponent values 

used in this work followed Silveira et al. (2015) in order to validate the numerical implementation 

and compare their solutions. Thus, elastic isotropic material is obtained when ρ=0 and 

piezoelectric material is obtained when ρ=1. 

A continuum finite element model formulation (Allik and Hughes 1995) for infinitesimal 

strains is used. The global finite element model that governs the spatial movement and balance of 

electrical charges is given by 

fφKuKuCuM  uφuuuuuu =                     (5) 

qφKuK =φφ

T

uφ                            (6) 

where u and φ are, respectively, the vectors for mechanical and electrical degrees of freedom, Muu 

is the global mass matrix, Cuu is the global damping matrix, Kuu is the global stiffness matrix, Kuφ 

is the global piezoelectric coupling matrix, and Kφφ is the global dielectric capacitance matrix. 
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These matrices depend on the design variables ρ. Moreover, in Eqs. (5) and (6), f is the vector of 

external mechanical forces and q is the vector of electric charges. The electrical degrees of 

freedom are defined as the actuator known electrical inputs. Therefore, the term regarding the 

piezoelectric coupling was considered as an external force. 

In this work, the state-space representation is defined in modal coordinates. Therefore, the 

order of the system can be reduced, which is desirable when complex structures are modeled and 

analyzed by a finite element method. A truncated modal matrix can be used in the transformation 

from the nodal coordinates to modal coordinates. Since the poles of the reduced model are a subset 

of the poles of the full model, a reduced model of a truncated stable model always produces a 

stable reduced model (Gawronski 2004). Thereby, the displacement vector can be approximated by 

the superposition of the m most representative modes 

ii

m

i

ψηΨu 
=1

                         (7) 

where Ψ is the truncated modal matrix and η is the corresponding vector of modal coordinates.  

Assuming a structural viscous damping model to the flexible structure 

2/1

uu

2/1

uuuu 2= MZKC                          (8) 

and substituting Eq. (7) in (5), the truncated damped modal finite element model of the structure 

with piezoelectric actuators can be written as 

fΨφKΨηΩηΩZη
T

uφ

T2 =2                    (9) 

where Ω and Z are m× m diagonal matrices of natural frequencies and modal damping 

respectively. 

An important advantage of this type of model is its definition of damping properties. The 

damping matrix is usually not known, however is conveniently evaluated in the modal coordinates. 

More details concerning structural models in nodal and modal coordinates can be found in 

Gawronski (2004). 

 

 

3. Active control of structures 
 

3.1 State-space representation 
 
A linear time-invariant system of finite dimensions is described by the following system of 

constant coefficient linear differential equations (Gawronski 2004) 

c= BuAxx                           (10) 

Dxy =                            (11) 

where the N-dimensional vector x is the state vector, the s-dimensional vector u
c
 is the system 

input, and the r-dimensional vector y is the system output; A, B, and D are the system, input and 
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output matrices, respectively. 

The state-space representation carries information about the internal structure of the model, 

which is represented by the states. A state contains the minimal number of physical variables that 

allows calculating uniquely the output using the applied input (Gawronski 2004). Assuming the 

truncated modal displacements and velocities as state variables, the vector of state variables can be 

written as 

 T
= ηηx                              (12) 

Dealing with free vibrations, the open-loop system represented in Eq. (10) can be fully 

determined through the electrical input vector uc = φ, and the system and electrical input matrices, 

given by 










 ΩZΩ

I0
A

2
=

2
   









 uφ

T

0
=

KΨ
B                  (13) 

where all terms were previously defined. 

 

3.2 Linear quadratic regulator theory 
 
An effective way to design a feedback control system is using the optimal linear quadratic 

regulator (LQR), which is the simplest and the most frequently used formulation. Considering the 

system presented in Eq. (10), a linear state feedback is evaluated with a constant gain which 

minimizes a quadratic cost functional (Burl 1999, Preumont 2002) 

dtJ
f

t

)(
2

1
= cTcT

0
RuuQxx                       (14) 

where Q is a positive semi-definite weighting matrix for the state variables and R is a positive 

definite weighting matrix for the control inputs. 

Following Silveira et al. (2015), this work considers the LQR control theory in steady state, 

then the feedback gain matrix is given by G = R-1 
B

T 
P, where the matrix P is the solution of the 

algebraic Riccati equation 

0QPBPBRPAPA =T1T                      (15) 

Considering free vibrations of the smart structure, the closed-loop state-space equation can be 

written as 

xBGAx )(=                            (16) 

In this work, the number of states used for control and for observation are the same and 

depends on the analyzed case. Furthermore, these states are assumed to be completely observable 

and can be directly related to the outputs. 

A feedback control system based on a truncated model is not necessarily stable for the residual 

modes, which may cause unforeseen effects in the observation and control (spillover). These 
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problems can degrade the system performance to the uselessness point amplifying disturbances 

outside the bandwidth (Vasques and Rodrigues 2006). Methods to reduce the spillover effect are 

discussed by a number of authors (Balas 1978, Meirovitch 1990). However, this issue is not in the 

scope of this work, which considers all states known at any given time. 

 

3.3 Controllability of a structural modal model 
 
In control theory, controllability measures the ability of a particular set of actuators to control 

all the states of a system. For an asymptotically stable system, i.e., if all poles (eigenvalues) of A 

have negative real part, the system response is limited and the covariance matrix for steady state is 

bounded (Preumont 2002). Thus, the system response to a group of independent white noise of 

unit intensity is given by 

 dee
TT

0
c = AA

BBW 


                      (17) 

which is called controllability Gramian. For a general time-invariant system, as Eq. (10), one can 

obtain the controllability Gramian, more conveniently, from the Lyapunov equation (Gawronski 

2004) 

0BBAWAW =TT

cc                       (18) 

As in Eq. (15), the Gramian evaluation requires the solution of a Lyapunov equation which can 

be obtained through a well known algorithm (Bartels and Stewart 1972). The system is 

controllable if all states can be excited by the control input. This condition is fully satisfied if and 

only if Wc is positive definite (Preumont 2002). 

 

 

4. Topology optimization 
 

Topology optimization aims to distribute materials within a given fixed design domain V, for a 

given set of loads St and boundary condition Su, as shown in Fig. 1. This distribution is determined 

by the minimization of an objective function. 

 

 

 

Fig. 1 Topology optimization design 
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A controllability-based formulation for the topology optimization of smart structures 

The solution for a topology optimization, such as the one represented in Fig. 1, consists in 

subdomains Vd each one filled with one of the materials. The optimal material distribution is 

influenced by the given volume fraction constraints. Since the design domain is discretized into ne 

finite elements, the usual choice is to assume element-wise constant fraction. The design variables 

are defined in each finite element, where ρi is the pseudo-density for the i-th element. The discrete 

value (0 or 1) of ρi describes which material fills the respective finite element, according to the 

material interpolation. 

The integer optimization of the continuous problem is ill posed, and its spatial discretization 

might not converge with the mesh refinement. Therefore, it can be formulated a relaxed continuous 

optimization which introduce a constitutive parameterization that allows the design variables to 

assume intermediate values (Bendsøe 1989, Bendsøe and Kikuchi 1988). In order to enable the 

interpretation of the optimal distribution of material, it is desirable that the structure presents 

almost entirely piezoelectric or elastic isotropic material. Therefore, intermediate values of the 

design variable ρi are penalized in order to be forced toward either 0 or 1 (Bendsøe and Kikuchi 

1988, Bendsøe and Sigmund 1999, Sigmund and Petersson 1998). 

 

4.1 Proposed optimization formulation 
 

In most applications, a structure may be submitted to two types of disturbance: transient or 

persistent. Considering a transient disturbance, the control aims to return from the disturbed state 

to a desired state in a given time, using the minimum control effort. This condition is achieved by 

placing the set of actuators in a configuration where some norm of the controllability Gramian is 

maximized. For the latter case, the set of actuators must minimize the persistent disturbance, i.e., 

the energy transmitted to the structure from the actuators should be as large as possible. However, 

considering systems with small damping coefficients and well-spaced natural frequencies, either 

criteria can be employed for the actuator placement problem regardless the type of disturbance 

(Hać and Liu 1993, Leleu et al. 2001). 

The controllability Gramian Wc for a general set of parameters in state-space (A, B) is obtained 

by solving the Lyapunov equation presented in Eq. (19) (Gawronski 2004). The eigenvalues for 

this Gramian can be obtained through 

  0σIW =c jj     
                     (19) 

mjjj 1,2,...,=1=T
σσ

    
                 (20) 

where I is the identity matrix, λj is the j-th eigenvalue of Wc, and σj is its respective eigenvector. 

The controllability Gramian is assumed to be positive-definite throughout the optimization 

process. However, an eigenvalue close to zero indicates that a state might be in a critical condition, 

i.e., close to be uncontrollable. The proposed optimization formulation aims to maximize the 

controllability by choosing the best distribution of piezoelectric material (actuators) and ensure 

that the system will be completely controllable. Thus, the optimization problem can be written as 

1max 
    

                       (21) 

subject to 
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max= V
d

d
V 












ρ

    
                     (22) 

10  iρ     
                         (23) 

where λ1 is the smallest eigenvalue of Wc. This formulation takes into account the possibility of 

repeated eigenvalues (Wu et al. 2007) of the controllability Gramian. However, it is restricted to 

consider distinct eigenvalues for the modal problem. 

 

4.2 Sensitivity analysis 
 

The search for the optimal set of design variables uses an SLP algorithm. As a first order 

method, it requires the sensitivities of the objective function and constraints with respect to design 

variables. The sensitivity of the controllability Gramian can be obtained by solving a new 

Lyapunov equation for ∂Wc/∂ρi 

0
B

BB
BA

WW
A

A
WW

A =
T

T
T

cc

Tcc

iiiiii ρρρρρρ 




























  
       (24) 

In order to solve this equation, the sensitivities of the state-space parameters A and B with 

respect to design variables are required. These terms are straightforward and can be obtained by 

the derivatives of Eqs. (13) with respect to ρi. More details on these sensitivities can be found in 

Silveira et al. (2015). 

Considering the problem presented in Eqs. (19)-(20), eigenvalue derivatives with respect to ρi 

can be obtained by solving a new eigenanalysis problem (Wu et al. 2007) 

0γσ
W

σ =T

j

i

j

j

i

c
j

ρρ
























 

  
                   (25) 

The derivatives of the coupled finite element model with respect to the design variables are 

required to find the sensitivities of the state-space parameters A and B. The sensitivity of the 

global piezoelectric coupling matrix is obtained from the superposition of the elemental 

piezoelectric coupling matrices 









 d

ρρ i

e

i

e

φ

T
T

u

uφ
= B

E
Β

K

  
                     (26) 

where Bu is the matrix that relates mechanical strain with displacement and Bφ is the matrix that 

relates electric field with electric potential. The material parametrization, Eqs. (1)-(4), depends on 

the design variables ρi and therefore its sensitivity can be easily obtained. Likewise, other 

derivatives such as mechanical stiffness and mass matrices can be derived. 
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5. Numerical results 
 
5.1 Example structure and analyzed cases 
 

This section presents results for a example structure, a cantilever beam with rectangular cross 

section shown in Fig. 2, measuring 600 mm×  150 mm×  20 mm (length, height, and width). The 

beam was discretized using 4800 8-node nonconforming (Taylor et al. 1976) brick finite elements 

presenting three mechanical and one electrical degrees of freedom per node. In this study, only 

in-plane (xy) vibration modes are considered and controlled. 

The constitutive properties of the isotropic elastic material and the piezoelectric material are 

shown in Tables 1 and 2. The piezoelectric ceramic is polarized in z-direction and thus uses the 31 

mode. 

 

 
Table 1 Piezoelectric material properties (PZT-5A)* 

elastic constants (1010 N/m2)
 

C11 12.1 

C12 7.54 

C13 7.52 

C33 11.1 

piezoelectric constants (C/m2) 

E31 -5.4 

E33 15.8 

E51 12.3 

dielectric constants (F/m) 

ε0 8.85∙1012 

ε11/ε0 916 

ε33/ε0 830 

density (kg/m3) 

γpzt 7750 

* Rubio et al. (2009) 

 

 

Fig. 2 Finite element model (4800 brick elements) and faces configuration 
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(a) f1 = 349.8 Hz (b) f2 = 1747.3 Hz (c) f3 = 2278.4 Hz (d) f4 = 3980.7 Hz 

Fig. 3 Vibration modes considered in the control system. 

 

 
Table 2 Elastic material properties (Aluminum) 

Young’s modulus 71∙109 N/m2 

density 2700 kg/m3 

Poisson’s ratio 0.33 

 

 

Vibration modes with the four lower frequencies were assumed as the most representative for 

the dynamic response of the structure. For this particular structure, the natural vibration modes 

which are considered are: the first and second bending modes, the first extension mode, and the 

third bending mode, which have well-spaced natural frequencies. The modal shapes of these 

vibration modes are presented in Fig. 3 with their respective natural frequencies. 

For the dynamic analysis, modal damping ratios of 1.71%, 0.72%, 0.42% and 0.41% (Vasques 

and Rodrigues 2006) were considered for these four modes. For the controllability analysis, the 

number of modes m used to build the reduced model can assume values 1, 2, or 4. Considering that 

geometry does not change, both materials have similar stiffnesses, and the piezoelectric volume 

constraint is very small, there is no significant change on natural frequencies and modes during the 

optimization process. Thus, this example avoids the problem of repeated eigenvalues, which 

requires non-smooth sensitivity analysis and optimization methods (Seyranian et al. 1994). 

The number and position of independent electrodes are predefined. Cases with one, two and six 

independent electrodes were analyzed, i.e., number of control inputs s can assume values 1, 2, or 6. 

These different potential face configurations are represented in Fig. 4. In this figure, the gray areas 

represent the independent electrodes. The electrical degrees of freedom were ignored in the 

remaining (white) areas to enable the electrodes independence. 

Nine cases were studied according to the number of control inputs and modes used to build the 

reduced model. The description of these cases are summarized in Table 3. 

Sequential linear programming (SLP) was used to solve the optimization problem. SLP is an 

iterative algorithm, in which the non-linear problem is solved as a sequence of linear programming 

problems. 

 

   
(a) one control input (b) two independent control inputs (c) six independent control inputs 

Fig. 4 Potential face configurations 
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Table 3 Description of the analyzed cases 

Case  

No. 

Number of 

controlled modes (m)
 

Number of  

control inputs (s) 

1 1 1 

2 1 2 

3 1 6 

4 2 1 

5 2 2 

6 2 6 

7 4 1 

8 4 2 

9 4 6 

 

 

For the optimization process, the piezoelectric volume constraint was chosen as 8% for the 

piezoelectric volume constraint and a cubic penalization was used for both penalty exponents. The 

starting point for all cases was a uniform distribution of the design variable just obeying the 

constraint. The convergence criteria was defined as less than 2% maximum change of objective 

function and less than 4% maximum change of design variables, from one iteration to another. As 

the optimization problem is non-convex, the gradient-based programming guarantees only local 

minima. 

The weighting matrices of the LQR regulator are the same for every test case and given by 

(Silveira et al. 2015) 








 

)(0

0)(101
=

17

m

m

I

I
Q

   

)(= sIR
  

              (27) 

where I(m) is the m -dimensional identity matrix, and I(s) is the s-dimensional identity matrix. The 

large values of matrix Q components are explained by the difference in magnitude between 

displacements and voltages. However, these weighting matrices could have been tuned to achieve 

better response times and to respect the piezoelectric material polarization limit voltages or 

mechanical stresses. 
 

5.2 Optimal piezoelectric material distribution 
 

Optimal distribution of active piezoelectric material was obtained for the electrodes sets 

presented in Fig. 4. Reduced models with one, two, and four modes of vibration were considered. 

Both proposed and Silveira et al. (2015) formulations were implemented in order to compare their 

influence on the system controllability. In this section, white elements represent the elastic 

isotropic material and black elements represent the piezoelectric material. 

Fig. 5 presents the optimal topologies for the cases which consider only the first vibration mode. 

Cases 1, 2, and 3 refer to the different predefined configurations: one, two, and six independent 

electrodes.  

When only the first mode is considered in the control system, the proposed formulation leads to 
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piezoelectric material distributions which are similar to the optimal designs obtained in (Silveira et 

al. 2015). In case 1, with only one electrode in the whole structure, the piezoelectric material was 

concentrated near the bottom left corner. There is no significant difference between cases 2 and 3, 

with two and six independent electrodes, respectively. In these cases, the active material was 

concentrated near both upper and bottom left corners. Thus, it is possible to cause simultaneously 

both tensile and compressive strains providing a more effective vibration control. 

In Fig. 6, optimal topologies are presented for cases considering two vibration modes in the 

control system. For case 4, the proposed formulation seems to favor the second vibration mode 

since there is no piezoelectric distribution on the clamped face. Cases 5 and 6 present different 

actuator shapes although the effective electrodes are the same for both formulations. 

Cases 7, 8, and 9 are presented in Fig. 7, which shows the optimal topologies obtained 

considering four vibration modes. For these cases, the choice of objective function caused a 

significantly different distribution of active material. 

Solutions obtained through topology optimization with material interpolation often require post 

processing to interpret the optimal design. In these studied cases, this interpretation is relatively 

straightforward since there are few design variables with intermediate values (gray elements). 

Smoother optimal designs could have been achieved by using density or sensitivity filters 

(Sigmund 1997) but it would incur in a higher computational cost. 

 

 

 

Case 1 

  

Case 2 

  

Case 3 

  
 (a) Proposed formulation (b) Silveira et al. (2015) formulation 

Fig. 5 Optimal piezoelectric material distribution for 1-mode control cases 
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Case 4 

  

Case 5 

  

Case 6 

  
 (a) Proposed formulation (b) Silveira et al. (2015) formulation 

Fig. 6 Optimal piezoelectric material distribution for 2-mode control cases 

 

Case 7 

  

Case 8 

  

Case 9 

  
 (a) Proposed formulation (b) Silveira et al. (2015) formulation 

Fig. 7 Optimal piezoelectric material distribution for 4-mode control cases 
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5.3 Convergence of objective functions 
 

Changes in the values of objective functions throughout the iterations history are discussed in 

this section. Both controllability measures (CM) are presented in order to observe how is their 

behavior during the optimization process. For a better visualization, the objective function is 

represented by a solid line with circular markers while the other CM is represented by a dashed 

line with cross-shaped markers. The convergence history for case 5 is presented in Fig. 8 where 

can be observed that a maximization of a CM also caused an increase in the value of the other. 

The proposed formulation presented a slow and irregular convergence for case 7, as shown in 

Fig. 9. However, this maximization caused a significant increase in other CM. The converged CM 

values may indicate that the solution (b) is a local maximum of the problem. 

 

 

  
(a) Proposed formulation (b) Silveira et al. (2015) formulation 

Fig. 8 CM history for case 5 

 
 

  
(a) Proposed formulation (b) Silveira et al. (2015) formulation 

Fig. 9 CM history for case 7 
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(a) Proposed formulation (b) Silveira et al. (2015) formulation 

Fig. 10 CM history for case 8 

 
 

Fig. 10 exposes the convergence history for case 8. Unlike the previous case, the convergence 

curves present regular behavior and the maximum values of each CM are consistent with the 

maximization that was performed. 

 

5.4 Unit impulse response of a dynamic system 
 

Responses to an impulsive load on the free-end of the cantilever beam were obtained and are 

presented in this section. This study considers a discrete-time system and, consequently, the 

dynamic response is obtained with respect to a unit area input pulse lasting Ts (sampling time) 

assuming null values to the initial states. Although finite element method was used to evaluate the 

natural frequencies and its vibration modes to create the control models in state-space 

representation, it was not directly used in transient analysis. 

Figs. 11-16 show the responses in terms of the vertical displacement at the free-end of the beam 

and input signals. The displacements for the controlled structure in open-loop and closed-loop are 

represented by solid and dotted lines, respectively. To compare the performance of controlled 

structures (CS), two parameters are considered: maximum vertical displacement (Um) and the 

RMS value of vertical displacement (Urms), both measured on the free-end of the beam. The 

comparison between open-loop and closed-loop response is presented separately for each structure 

since the distribution of piezoelectric material can modify its dynamic characteristics. Relative 

reductions RUi for both maximum and RMS measures were also used for comparison analisys and 

they are defined as 

%100
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CL

i

OL
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UU
RU


                      (28) 

where the subscript i can refers to maximum m or rms measure and the superscripts OL and CL 

relates to the open-loop and closed loop responses, respectively.  

Fig. 11 presents the responses for case 5. In this case, for the CS (a) there is a reduction in Um 

of 15.5% while for the CS (b) the reduction is 12.0%. Considering the parameter Urms, for the CS 
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(a) it is observed a reduction of 63.7% while for the CS (b) the reduction is 57.7%. Fig. 12 

presents the respective input signals for this case. 

Responses for case 8 are presented in Fig. 13. For the CS (a) there is a reduction in Um of 

10.2% while for the CS (b) the reduction is 7.4 %. Considering the parameter Urms, for the CS (a) it 

is observed a reduction of 52.0% while for the CS (b) the reduction is 47.1%. Fig. 14 presents the 

respective input signals for this case. 

Fig. 15 presents the responses for case 9. In this case, for the CS (a) there is a reduction in Um 

of 8.5% while for the CS (b) the reduction is 18.7%. Considering the parameter Urms, for the CS (a) 

it is observed a reduction of 47.4% while for the CS (b) the reduction is 69.1%. Fig. 16 presents 

the respective input signals for this case. Fig. 17 presents the free tip displacement percentage 

reduction for all analyzed cases. The proposed formulation presents better performance for cases 

with less control inputs, which is the opposite trend of the formulation proposed by Silveira et al. 

(2015). 
 

  
(a) Proposed formulation (b) Silveira et al. (2015) formulation 

Fig. 11 Free tip displacement response to an impulsive load for case 5 

 
 

  
(a) Proposed formulation (b) Silveira et al. (2015) formulation 

Fig. 12 Control signal for case 5 
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(a) Proposed formulation (b) Silveira et al. (2015) formulation 

Fig. 13 Free tip displacement response to an impulsive load for case 8 

 

  
(a) Proposed formulation (b) Silveira et al. (2015) formulation 

Fig. 14 Control signal for case 8 

 

  
(a) Proposed formulation (b) Silveira et al. (2015) formulation 

Fig. 15 Free tip displacement response to an impulsive load for case 9 
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(a) Proposed formulation (b) Silveira et al. (2015) formulation 

Fig. 16 Control signal for case 9 

 

  
(a) RUm (b) RUrms 

Fig. 17 Comparison parameters reduction 

 
 
Moreover, case 9 was the only one where the proposed formulation presents significantly smaller 

reductions for both Um and Urms. It can be explained by the fact that the proposed formulation 

gives more importance to higher vibration modes (less controllables for this particular example) 

while Silveira et al. (2015) formulation gives more importance to lower modes, which are the most 

representative to the global dynamic response. One can note this by analyzing the topologies in Fig. 

7 where the solution for the proposed formulation presents active material close to points with 

maximum displacement of the fourth vibration mode. 

 
 

6. Conclusions 

 
This work presents a formulation based on the controllability Gramian for the optimal 

placement of piezoelectric actuators for structural vibration control. The proposed formulation 
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be ensured by using the smallest eigenvalue of Wc as the objective function to be maximized. 

Optimal topologies were presented for some cases where the number and location of the 

independent electrodes are predefined. These solutions were compared to the ones obtained 

through the formulation proposed by Silveira et al. (2015), where the trace of Wc is maximized. 

Using either the smallest eigenvalue or the trace of the Gramian as objective function, the 

optimization process leads to the same solution when only the first mode is considered to be 

controlled. This is explained by the choice of state variable vector which has dependent terms 

(modal displacement and velocity). There is a more significant difference regarding the choice of 

controllability measure to be maximized when more than one mode is considered in the control 

system. 

The optimal designs were used to synthesize a feedback control system using a linear quadratic 

regulator (LQR) in order to compare their control performance. Dynamic responses to an 

impulsive perturbation were presented for both formulations. Using Silveira et al. (2015) 

formulation it is improved the controllability of the most controllable states. On the other hand, 

following the proposed formulation leads to an improvement on the controllability of the less 

controllable mode. This condition guarantee that there will be none state in a critical situation, i.e, 

close to be uncontrollable. For the most analyzed cases it was observed that a maximization of one 

controllability measure contributes for an increase on the other, resulting thus in controllable 

systems regardless the choice of objective function. As expected, cases with control system 

considering four vibration modes presented difficulties to attenuate vibrations due to the 

compromise that is induced, i.e., the control system need to be effective at the same time for all 

modes. Individual electrodes to control each vibration mode could improve the global 

controllability for these cases. Therefore, the proposed formulation would fit better since each 

modal controllability can be directly related to a single eigenvalue of Wc. 
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