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Abstract.  This study presents a new approach of surrogate modeling for time-consuming finite element 
analysis. A surrogate model is widely used to reduce the computational cost under an iterative computational 
analysis. Although a variety of the methods have been widely investigated, there are still difficulties in 
surrogate modeling from a practical point of view: (1) How to derive optimal design of experiments (i.e., the 
number of training samples and their locations); and (2) diagnostics of the surrogate model. To overcome 
these difficulties, we propose a sequential surrogate modeling based on Gaussian process model (GPM) with 
self-adaptive sampling. The proposed approach not only enables further sampling to make GPM more 
accurate, but also evaluates the model adequacy within a sequential framework. The applicability of the 
proposed approach is first demonstrated by using mathematical test functions. Then, it is applied as a 
substitute of the iterative finite element analysis to Monte Carlo simulation for a response uncertainty 
analysis under correlated input uncertainties. In all numerical studies, it is successful to build GPM 
automatically with the minimal user intervention. The proposed approach can be customized for the various 
response surfaces and help a less experienced user save his/her efforts. 
 

Keywords:  surrogate modeling; Gaussian process model; self-adaptive sampling; sequential Bayesian 

framework; time-consuming FE analysis 

 
 
1. Introduction 
 

Various engineering problems (e.g., reliability analysis and uncertainty analysis) require a large 

number of the iterative finite element analysis. Especially in civil engineering, structures such as 

bridges and dams are massive and complex, so that their finite element analysis (FEA) may be 

sometimes expensive in terms of the computing time for a single run. 

In this context, a surrogate model has been gaining a considerable attention as a cost-effective 

substitute for a time-consuming FEA (Jones 2001, Queipo et al. 2005, Forrester et al. 2008, 

Forrester and Keane 2009). The surrogate model is a way to emulate an FEA in the form of a 

mathematical/statistical approximation by using an input/output (I/O) of the FEA. The input/output 

(I/O) of the FEA is typically referred to as response surface. The surrogate model is categorized as 

follows: (1) regression-based model such as polynomial function (Bucher and Bourgund 1990) and 
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(2) interpolation-based model such as radial basis function (Zhang et al. 2014) and Gaussian 

process model (DiazDelaO and Adhikari 2011, Dubourg et al. 2013). It is known that the 

interpolation-based surrogate model can approximate a response surface more accurately than the 

regression-based one, as the new training samples are added (Jones 2001). 

Conventional surrogate modeling uses training samples at once to construct a response-surface 

(i.e., model construction phase). As a conventional model construction, various design of 

experiments (DOEs) were investigated: (1) classic DOEs such as central composite designs (Box 

et al. 1978), Box-Behnken design (Box and Behnken, 1960) and optimal design (Kiefer and 

Wolfowitz 1959); and (2) space-filling design such as uniform design (Fang et al. 2000), Latin 

hypercube design (LHD) (Mckay et al. 1979), Orthogonal LHD (Ye 1998) and Generalized LHD 

(Dette and Pepelyshev, 2010). Once a surrogate model is constructed, a user should check the 

adequacy of the surrogate model by using additional validation samples (i.e., model diagnostic 

phase) (Bastos and O'Hagan 2009). 

Although a variety of the methods have been widely investigated in surrogate modeling, the 

conventional surrogate modeling has two difficulties from a practical point of view: (1) How to 

derive optimal design of experiments in the model construction phase (i.e., the number of training 

samples and their locations); and (2) Diagnostics of the surrogate model adequacy before using it 

as a substitute of FEA (i.e., model diagnostic phase). 

Firstly, a key element of surrogate modeling is how to generate the training samples. However, 

optimal number of samples and their location are not known, since a response surface is not 

known beforehand. In practice, a response surface may respond much more rapidly to changes at 

some regions of the input space than others (Xiong et al. 2007). Moreover, it is getting more 

challenging to determine the optimal number of the training samples and their locations, as the 

dimension of the input increases. Because no single method works best for every problem (Bucher 

and Most 2008, Goel et al. 2008), the conventional surrogate modeling performs the model 

construction process by trial-and-error method with user intervention. The efficiency of the 

conventional surrogate modeling is depending on the user’s knowledge and experience. 

Secondly, it is the most important to validate and assess the adequacy of the surrogate model. 

Diagnostics of the surrogate model can be found as follows: (1) independent validation data set 

(Bastos and O'Hagan 2009); and (2) resampling methods (Jackknifing (Kleijnen and van Beers, 

2004) and leave-one-out cross-validation (Rougier et al. 2009)). Typically, additional validation 

samples are typically required to evaluate the adequacy of the surrogate model (Bastos and 

O'Hagan 2009). Especially in interpolation-based model, they can reproduce target outputs of the 

training samples, additional validation samples are essential. Therefore, it requires computational 

efforts and user-intervention additionally in model diagnostic phase. 

To overcome the abovementioned difficulties, this paper presents a sequential surrogate 

modeling based on Gaussian process model (GPM) with self-adaptive sampling. The proposed 

method starts with initial and small training samples. Once surrogate model is constructed, three 

infill criteria are used in parallel to find the infill samples (i.e., self-adaptive sampling). Based on 

these infill criteria, sequential surrogate modeling enable not only further sampling to make GPM 

more accurate, but also evaluates the model adequacy within a sequential framework. 

The main contributions are summarized as follows: (1) the proposed method provides the 

optimal samples and their location automatically; (2) the proposed method integrates the model 

diagnostic phase into the model construction phase, so that the proposed method does not require 

the model diagnostic phase; and (3) the proposed method minimizes the user-intervention in both 

model construction and diagnostic phases. 
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The paper is organized as follows. Section 2 describes the background of the GPM and 

practical difficulties in surrogate modeling. In Section 3, the proposed approach is presented with 

the infill criteria and self-adaptive sampling. Section 4 verifies the proposed method by using 

mathematical test functions. The proposed method is also applied as engineering example to the 

Monte Carlo simulation (MCS) for a response uncertainty. Finally, it is concluded with Section 5. 

Hereafter, the bold-face letters indicates vectors or matrices. 

 

 

2. Gaussian process model 
 

The proposed method in this study uses GPM, also known as Kriging from Geostatistics (Krige 

1994). Since theoretical backgrounds of GPM is well established in the literatures (Jones et al. 

1998, Jones 2001, Kennedy and O'Hagan 2001, Kleijnen and van Beers 2004, Forrester et al. 2008, 

Forrester and Keane 2009), this section briefly introduces GPM. 

 

2.1 Background of Gaussian process model 
 

GPM assumes that an unknown output 𝑦̂(𝒙𝑛𝑒𝑤) as the Gaussian process random variable 

conditional on training samples (Kennedy and O'Hagan 2001) as shown in Fig. 1. GPM is modeled 

as 

𝑦̂(𝒙𝑛𝑒𝑤) = μ(𝐱) + Z(𝐱) with Z(𝐱)~GP(0, C(𝐱, 𝐱′))                 (1) 

where 𝒙𝑛𝑒𝑤 is an unknown output of interest; 𝜇(𝒙) is a deterministic component to capture the 

global trend (i.e., a constant or polynomial function); Z(𝒙) denotes a stochastic component of a 

zero mean stationary Gaussian process with a covariance function 𝑪(𝒙, 𝒙′). 
The covariance between any samples 𝑪(𝒙, 𝒙′) is derived as 

𝐂(𝐱, 𝐱′) = σ2𝝍(𝐱, 𝐱′)                               (2) 

where the constant variance σ2 provides overall dispersion relative to the mean of the Gaussian 

process and 𝛙(∙,∙) denotes the spatial correlation matrix. A typical choice of the correlation 

matrix 𝛙(∙,∙) is the k-dimensional Gaussian correlation function as 

 

 

 

Fig. 1 Prediction of Gaussian process model conditional on training samples 
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ψ(𝐱i, 𝐱j) = exp (−∑ θp ‖xp
i − xp

j
‖
2

k
p=1 )                       (3) 

where the subscript 𝑝 denotes the dimension of 𝒙, the superscript 𝑖 and 𝑗 indicate the 𝑖-th and 

𝑗-th training sample, respectively, and ‖xp
i − xp

j
‖
2
 is the Euclidean distance measure between 

two samples. θp is a vector to scale the correlation length in each dimension. It is known that the 

correlation length reflects the relative significance of each input. 

Gaussian process model determines the parameters 𝜇(𝒙), 𝜎2, and 𝜃𝑝 by maximizing the 

log-likelihood function. 𝜇(𝒙) is hereafter represented by 𝜇 for simplicity. To model GPM, 𝜇 

and 𝜎2 are estimated by maximum likelihood estimation. The estimators of 𝜇̂ and 𝜎̂2 are given 

in a closed form as 

𝜇̂ =
1𝑇𝝍−𝟏𝒀

1𝑇𝝍−𝟏𝟏
                                 (4) 

𝜎̂2 =
(𝒀−𝟏𝜇̂)𝑇𝝍−𝟏(𝒀−𝟏𝜇̂)

𝑛
                            (5) 

where 𝒀 = [y(𝒙1), … , y(𝒙𝑛)]𝑇, n is the number of the training samples, 𝟏 is the n-by-1 unit 

vector, and 𝝍 is the n-by-n symmetric matrix of ψij. With the estimates of 𝜇̂ and 𝜎̂2, 𝜃𝑝 is 

estimated by optimization by maximizing the log-likelihood function (Eq. (6)) 

𝑙𝑛 (𝐿(𝜇̂, 𝜎̂, 𝜃𝑝 )) = −
𝑛

2
𝑙𝑛(𝜎̂2) −

1

2
𝑙𝑛|𝝍| −

(𝒀−𝟏𝜇̂)𝑇𝝍−𝟏(𝒀−𝟏𝜇̂)

2𝜎2
                (6) 

Once 𝜇̂, 𝜎̂2 and 𝜃𝑝 are estimated, unknown output 𝑦̂(𝒙𝑛𝑒𝑤) is estimated by a weighted 

linear combination of all output already observed. Thus, Eq. (1) is rewritten a 

𝑦̂(𝑥𝑛𝑒𝑤) = 𝝁̂ + 𝝍̂
𝑇𝝍−𝟏(𝒀 − 𝟏𝝁̂)                       (7) 

where 𝝍̂ is an n-by-1 vector between training samples and an unknown sample (𝛙(𝐱i, 𝒙𝑛𝑒𝑤)). A 

detailed derivation of Eqs. (4), (5) and (7) is given in Jones (2001). 

 

2.2 Practical difficulties in surrogate modeling 
 

Although GPM is very flexible to represent a smooth hyper-surface, it is invalid correctly to 

predict an output in some situations (Xiong et al. 2007, Bastos and O'Hagan 2009, Gramacy and 

Lee 2012). From a practical point of view, these difficulties of surrogate modeling are as follows: 

(1) invalid assumption of GPM (in a non-stationary response surface); (2) insufficient training 

samples to capture a response surface; and (3) additional computational costs due to diagnostics of 

model adequacy. 

Firstly, the assumption of a stationary Gaussian process may be inappropriate. In practice, FEA 

output may respond much more rapidly to changes in the particular region than others. To illustrate 

this problem, the mathematical test function is adopted from Gramacy and Lee (2012). As shown 

in Fig. 2(a), the test function is a one-dimensional non-stationary function as given in 

𝑓(𝑥) =
𝑠𝑖𝑛(10𝜋𝑥)

2𝑥
+ (𝑥 − 1)4,   0.5 ≤ x ≤ 2.5                    (8) 

where Eq. (8) has a chirp component which the frequency of the output decreases along input x. 

Due to the assumption of stationary covariance, GPM approximate the smooth shape and fails to 
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approximate the true function. 

Secondly, insufficient training samples may construct an inappropriate GPM, even if the 

stationary assumption is reasonable. As the dimension of the input space increases, the number of 

training samples increases exponentially (i.e., curse of dimensionality (Bellman 2003)). Therefore, 

the training samples sometimes may be sparse. To show the concept of sparseness in 

higher-dimensional space, 10 samples are randomly generated by Eq. (8) and GPM is constructed 

by 10 times with the different sample configurations. As shown in Fig. 2(b), it is clear that the 10 

training samples are not sufficient for GPM to represent this function accurately. In general, it is 

impossible to understand how many samples are required to represent a response surface in 

high-dimensional input space, since the hyper-surface of the response surface is not known in 

advance. 

Lastly, it is very important to validate and assess the model adequacy before using it as a fast 

surrogate of FEA. Due to their flexibility, the outputs on the training samples are exactly the same 

as the corresponding predictions of GPM. Generally, the diagnostic is commonly based on 

comparison between FEA outputs and GPM prediction for some test data, known as the validation 

data (Bastos and O'Hagan 2009). Other diagnostics are also found based on resampling methods 

(Kleijnen and van Beers, 2004, Rougier et al. 2009). To perform these diagnostic methods, it 

requires computational efforts additionally. 

 

 

3. Sequential surrogate modelling with self-adaptive sampling 
 

In this section, we present a sequential surrogate modelling with self-adaptive sampling to 

address the difficulties abovementioned in Section 2.2. The proposed approach is based on a 

Bayesian framework, since candidate samples for infill are inferred by a current GPM. The 

proposed approach not only enables further sampling to make GPM more accurate, but also 

evaluates the model adequacy within a sequential sampling framework. First, we introduce the 

infill criteria for further sampling to improve the GPM. Then, we present the proposed sequential 

framework with the toy problem (i.e., Eq. (8)). 

 

 

  
(a) non-stationary response surface and (b) sparseness of training samples 

Fig. 2 Practical challenges with an unknown response surface 
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3.1 Infill criteria for self-adaptive sampling 
 

By virtue of the treatment of an unknown output as a realization of Gaussian process, the infill 

criteria are developed to evaluate the prediction uncertainty and improvement of a current best 

value in global optimization (Jones 2001, Forrester et al. 2008, Forrester and Keane 2009). In the 

proposed method, three infill criteria are used for self-adaptive sampling: (1) Mean squared error, 

(2) Expected improvement on minimum, and (3) Expected improvement on maximum. 

Mean squared error (MSE) at an unknown output is interpreted as prediction uncertainty and it 

is estimated as 

𝑠̂2(𝒙) = 𝜎̂2[𝟏 − 𝝍̂𝑻𝝍−𝟏𝝍̂]                          (9) 

As shown in Fig. 1, MSE is portrayed by the red shaded area. It is easily found that the 

prediction uncertainty at an unknown sample is generally large at the region which the training 

samples are sparse. MSE can be used as a measure of the sparseness of the training samples in the 

input space as shown in Fig. 3(a). The full derivation of MSE is presented in Sacks et al. (1983). 

Expected improvement (EI) is an infill criterion to evaluate how much improvement of the 

current GPM is expected if a new sample is obtained. It is developed in computationally intensive 

optimization. The reference value is required to compute EI. Usually, the minimum in the training 

samples (y 𝑖𝑛) is used. As illustrated in Fig. 3(b), the EI value corresponds to the probability that 

GPM prediction (𝑦̂(𝒙𝑛𝑒𝑤)) may be better than y 𝑖𝑛 (i.e., shaded area). At any unknown sample 

with a current GPM, the probability of an improvement upon y 𝑖𝑛 is quantified by the integrating 

the Gaussian distribution with mean 𝑦̂(𝒙𝑛𝑒𝑤) and variance 𝑠̂2(𝒙𝑛𝑒𝑤). The EI on minimum is 

derived in the closed form as 

EI 𝑖𝑛(𝒙𝑛𝑒𝑤) = (ymin − ŷ(𝒙𝑛𝑒𝑤))Φ(
ymin−ŷ(𝒙𝑛𝑒𝑤)

ŝ(𝒙𝑛𝑒𝑤)
) + ŝ(𝒙𝑛𝑒𝑤)ϕ(

ymin−ŷ(𝒙𝑛𝑒𝑤)

ŝ(𝒙𝑛𝑒𝑤)
)      (10) 

where Φ(x) and  (x) are the Gaussian cumulative distribution function (using error function) 

and probability density function respectively. The derivation of EI can be found in literatures of 

global optimization, which has been given in Jones et al. (1998) and Forrester et al. (2008). 

Expected improvement on a maximum (EI 𝑖𝑛) is also derived in the same way and it is 

EI 𝑎𝑥(𝒙𝑛𝑒𝑤) = (ŷ(𝒙𝑛𝑒𝑤) − ymax)Φ(
ŷ(𝒙𝑛𝑒𝑤)−ymax

ŝ(𝒙𝑛𝑒𝑤)
) + ŝ(𝒙𝑛𝑒𝑤)ϕ(

ŷ(𝒙𝑛𝑒𝑤)−ymax

ŝ(𝒙𝑛𝑒𝑤)
)     (11) 

where ymax is the maximum in the training samples. 
 

3.2 Sequential surrogate modeling with self-adaptive sampling 
 

Sequential surrogate modeling with self-adaptive sampling is based on a Bayesian framework, 

since candidate samples for infill are inferred by a current GPM. Three infill criteria are used as 

follows:   E, EI 𝑖𝑛, and EI 𝑎𝑥. The inferred sample from MSE is served only to reduce the 

regions which are likely higher uncertain (i.e., global exploration), while inferred samples from 

EI 𝑖𝑛 and EI 𝑎𝑥 balance the local exploitation of current best values and global exploration. As 

the proposed approach goes along sequentially, the inferred samples improve the current GPM to 

approximate a response surface more accurately. 

 

 

616



 

 

 

 

 

 

Self-adaptive sampling for sequential surrogate modeling… 

 

 

  
(a) mean square error (  E) (b) expected improvement on minimum (EI 𝑖𝑛) 

 
(c) expected improvement on maximum (EI 𝑎𝑥) 

Fig. 3 Infill criteria for self-adaptive sampling 

 

 

The inferred samples are also used as a diagnostic to evaluate the adequacy of the current GPM. 

As shown in Fig. 4(a), there is the deviation between true outputs ( ) and corresponding GPM 

predictions ( ̂) under an inadequate GPM. Through sequential model updates by the inferred 

samples, the predictions of inferred samples are getting close to true outputs as shown in Fig. 4(b). 

As the validation measures for the diagnostic, R-squared value ( 2) and root mean square error 

(RMSE) are used in the proposed approach. R-squared value is also known as the coefficient of 

determination. It measures how well the plot between observed outputs and their prediction fits the 

1:1 line. It is the proportion of total variation of outputs explained by the prediction model and 

expressed as 

 2 = 1 −
SSE

SST
= 1 −

∑ (y(𝐱i)−ŷ(𝐱i))
23

i=1

∑ (y(𝐱i)−y̅)
23

i=1

,    0 ≤  2 ≤ 1               (12) 

where   E is the sum of squares of residuals,   T is the total sum of squares. ŷ(𝒙𝑖) and y(𝐱i) 
denote the prediction value from the current GPM and true output at the inferred samples. 𝑦̅ is the 

average value of y. R
2
 ranges from 0 to 1. The larger value close to one indicates the more accurate 

prediction model; See Fig. 4(b). 
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Another measure is RMSE that aggregates the magnitude of the residuals into a single measure 

of the prediction accuracy. The smaller value close to zero means the higher prediction accuracy. 

   E = √
∑ (y(𝐱i,val)−ŷ(𝐱i,val))

2nval
1

nval
                          (13) 

In practice, it is impossible to obtain the ideal values of R
2
 (i.e., one) and RMSE (i.e., zero) due 

to numerical truncation error and the nature of approximation (i.e., small deviation also known as 

code uncertainty (Kennedy and O'Hagan 2001)). Therefore, thresholds are adopted to evaluate 

whether the current GPM approximates a response surface accurately or not. If both  𝑘
2  and 

   E𝑘 are satisfied with predefined thresholds, the current GPM is considered to be adequate. 

Especially, RMSE may fluctuate greatly at the early stages. So there is a risk that the proposed 

approach stops prematurely. To avoid such an undesired stopping, stall generation (# stall) with 

two stopping criteria are used as given in 

 𝑘
2 ≥  𝑇ℎ𝑟𝑒𝑠ℎ

2                               (14) 

|   E𝑘 −    E𝑘+1| ≤ Δ   E𝑇ℎ𝑟𝑒𝑠ℎ(1 + |   E𝑘|)                (15) 

where the subscript 𝑘 indicates the 𝑘-th infill stage and Thresh indicates the predefined threshold. 

Especially, Eq. (15) is a lower bound on the relative change of the RMSE value as a measure of the 

convergence. Since two stopping criteria are very unstable at the initial phase with an inaccurate 

GPM, two stopping criteria ( 2 and relative change of RMSE) are complementary measures at the 

initial phase of the propose method. In addition, the stall generation also works for a diagnostic 

measure to evaluate whether GPM is adequate or not, once adequate GPM meet the two stopping 

criteria sequentially within the stall generation. 

 

  
(a) under inadequate GPM (b) under adequate GPM 

Fig. 4 Convergence to adequate Gaussian process model with the proposed approach 

618



 

 

 

 

 

 

Self-adaptive sampling for sequential surrogate modeling… 

 

 

 

Fig. 5 Flowchart of the proposed approach 

 

 

The procedure of the proposed approach is illustrated in Fig. 5. At initialization, there are four 

setups to be predefined by user: initial DOE (X1); thresholds ( 𝑇ℎ𝑟𝑒𝑠ℎ
2  & Δ   E𝑇ℎ𝑟𝑒𝑠ℎ); and stall 

generation (# stall). After, the rest of the algorithm is performed automatically. 

To illustrate the proposed approach, Eq. (8) is revisited as the toy example, which is a 

non-stationary 1D-function. To represent the concept of sparseness in high-dimensional space, four 

initial training samples are used.  𝑇ℎ𝑟𝑒𝑠ℎ
2  and Δ   E𝑇ℎ𝑟𝑒𝑠ℎ are set to 0.98 and 0.05 respectively. 

Stall generation (# stall) is set to 3. 

The progress of the proposed approach is shown in Fig. 6. The left side describes the 

convergence history to the true function, while the right side shows the infill criteria with the 

inferred samples. Shaded area of the right side expresses the uncertainty of each prediction with 3 

sigma-level. MSE allocates the candidate (red marker) to the higher uncertainty region (i.e., large 

standard error), while EI 𝑖𝑛 and EI 𝑎𝑥 allocate the candidates (magenta and green markers) to 

the regions which is likely to improve the best values of the current GPM. It is observed that GPM 

is getting converged to the true function by the sequential GPM updates. 
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(a) GPM before candidates for infill 

 
(b) updated GPM after 3 infill stage (adding 9 samples for infill) 

 
(c) updated GPM after 7 infill stage (adding 21 samples for infill) 

Fig. 6 Progress in the approximation of updated Gaussian process model 

 

 

After the 11 infill stage, the proposed approach is stopped with a total of 37 samples: 4 initial 

samples and additional 33 samples for infill. Although the initial DOE is insufficient to 

approximate the true function (See Fig. 6(a)), the differences between the true values and the final 

GPM predictions are not recognized and the corresponding residuals are almost zero (See bottom 

plot of Fig. 7). 
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Fig. 7 Final updated Gaussian process model by the proposed approach (After the 11 infill stage) 

 

 
4. Numerical study 

 
In this section, we evaluate the efficiency and effectiveness of the proposed approach with 

mathematical test functions and an engineering application. To simulate the sparseness of training 

samples, small initial samples are generated randomly by LHD. In all examples,  𝑇ℎ𝑟𝑒𝑠ℎ
2  and 

Δ   E𝑇ℎ𝑟𝑒𝑠ℎ are set to 0.98 and 0.05, respectively. 

For the mathematical test functions, stall generation is set to 3 and a total of 10,000 validation 

samples are generated by independently and identically distributed uniform distributions. On the 

other hand, in the engineering application, a total of 30,000 random samples are generated under 

various input uncertainties, and the generated samples are used for Monte Carlo simulation (MCS). 

The response uncertainty from both MCS, based on direct FEA and surrogate model, are compared 

to evaluate the performance of the proposed approach. 

 
4.1 5-dimensional test function 
 

The test function with five input variables is given in Eq. (16) (Friedman 1991). It is apparent 

that there is a strong interaction effect that decays at different rates due to 10 s n( 𝑥1𝑥2) in the 

test function. It is evaluated on a hypercube with 𝑥𝑖=1,..,5  [0, 1]. As the training samples, 20 

samples are randomly generated and the proposed approach is performed. It is repeated by 10 

times. 

𝑓(𝑥) = 10 s n( 𝑥1𝑥2) + 20(𝑥3 − 0.5)
2 + 10𝑥4 + 5𝑥5               (16) 

The total number of the required samples ranges 68 from 134, since each repetition starts with 

the different subset of the initial samples. Mean and standard deviation of the training samples is 

102.8 and 20.75, respectively (See Fig. 8(c)). 
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10,000 validation samples are used to evaluate how well final GPMs approximate the true 

function. Under the identical validation samples, 10 GPMs are used to estimate the predictions. To 

remove the scale-dependent problem in RMSE (Hyndman and Koehler 2006), RMSE is 

normalized by the range of the true outputs, N   E =    E/(𝑦 𝑎𝑥 − 𝑦 𝑖𝑛). 
Fig. 8 shows that 10 GPMs exhibit the highly accurate approximation of the true function. 

Among the final GPMs, the best and worst GPMs are selected and used to plot the true outputs 

versus predictions as shown in Fig. 9. It is shown that two GPMs reproduce the true output with 

the negligible deviations. 

 

4.2 8-dimensional test function 
 

The test function with eight input variables is given in 

𝑓(𝑥) = 4(𝑥1 − 2 + 8𝑥2 − 8𝑥2
2)2 + (3 − 4𝑥2)

2 + 16√𝑥3 + 1(2𝑥3 − 1)
2 

+∑ 𝑖8
𝑖=4 ln(1 + ∑ 𝑥𝑗

𝑖
𝑗=3 )                         (17)  

It is highly curved in some variables and is less curved in other variables. It is evaluated on a 

hypercube with x𝑖=1,…,8  [0, 1]. As the training samples, 80 samples are randomly generated and 

the proposed approach is performed. It is also repeated by 10 times. 

 

 

   
(a) R-squared value (b) normalized RMSE (c) number of final samples 

Fig. 8 Validation of 10 Gaussian process models (10,000 validation samples) 

 

 

 

Fig. 9 Prediction versus true outputs 
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It is observed that the computed NRMSE is larger than those in Fig. 8(b) and the number of 

final samples is also quite increased. The total number of the required samples ranges 92 from 152, 

since each repetition starts with the different subset of the initial samples. Mean and standard 

deviation of the training samples is 113.9 and 23.15 respectively (See Fig. 9(c)). 

As in the previous test, all GPMs can reproduce the true outputs within the highly acceptable 

deviations as shown in Fig. 11, although the input dimension increases and the true function is 

much complicated than Eq. (16). 

 

4.3 Response uncertainty analysis based on MCS with correlated input parameters 
 

 As an engineering application, a three-bay-five-story frame structure is investigated. The 

geometric representation of the structure is illustrated in Fig. 12. Using SAP2000, a finite element 

model (FEM) is modeled by the frame element and fixed supports. Frame elements are grouped 

into four groups (C1, C2, B1, and B2). Such grouping is chosen to make the response surface 

complicated. In Fig. 12, Groups are represented by different colors. Based on this grouping, there 

are 13 input parameters: three point loads (P1~P3); two Young’s moduli (E4, E5); four moments of 

inertia (I6~ I8); and sectional areas (A10~A14). 

 

 

   
(a) R-squared value (b) normalized RMSE (c) number of final samples 

Fig. 10 Validation of 10 Gaussian process models (10,000 validation samples) 

 

 

 

Fig. 11 Prediction versus true outputs 
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Fig. 12 Geometric representation 

 

 
Table 1 Statistical information of input uncertainty 

Description Notation Distribution Mean, 𝝁 St dev, 𝛔 COV, % Interval, [min max] 

Load (KN) 

P1 Rayleigh 133.45 40.04 30% [53.38 333.63] 

P2 Rayleigh 88.97 26.69 30% [35.59 222.43] 

P3 Rayleigh 71.18 21.35 30% [28.47 177.95] 

Young’s 

Modulus 

(MPa) 

E4 Normal 21,738 1,956 9% [10,869 32,606] 

E5 Normal 23,796 2,142 9% [11,898 35,695] 

Moment of 

inertia 

(m
4
) 

I6 Normal 0.0081 0.0008 10% [0.0041 0.0122] 

I7 Normal 0.0115 0.0012 10% [0.0058 0.0173] 

I8 Normal 0.0232 0.0023 10% [0.0116 0.0348] 

I9 Normal 0.0259 0.0026 10% [0.0130 0.0389] 

Sectional 

area 

(m
2
) 

A10 Normal 0.0312 0.0025 8% [0.0156 0.0468] 

A11 Normal 0.3716 0.0297 8% [0.1858 0.5574] 

A12 Normal 0.3725 0.0298 8% [0.1863 0.5588] 

A13 Normal 0.4181 0.0334 8% [0.2091 0.6272] 
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Table 1 shows the 13 input parameters and their statistical uncertainty. Additionally, it is 

assumed that some parameters are correlated as follows: Young’s modulus (   ,  = 0.9 with 

𝑖  𝑗); sectional properties of the identical element (   ,  = 0.95); and all other section properties 

(   ,  =    ,  =    ,  = 0.13  with 𝑖  𝑗 ). To generate the correlated random samples, the 

Gaussian copula model is used. In order to make the response surface complicated, the upper and 

lower bounds are chosen more than 3 standard deviations from the mean. 

With the 13 input parameters, Monte Carlo simulation (MCS) with the 30,000 random samples 

is performed to estimate the uncertainty of the horizontal displacement at the top floor. The 

structural analysis on generated random samples is performed by the open application 

programming interface (OAPI) of SAP2000 linked with MATLAB 2014a. 

For surrogate modeling, two cases with different sample size are considered. The first case with 

50 initial samples is referred to “Case A”, while the other case starts with 100 initial samples and it 

is referred to “Case B”. Initial samples of both cases are generated within the upper and lower 

bounds as tabulated in Table 1 (See 7th and 8th columns). The proposed approach is performed to 

each case. 

The number of infill samples and total training samples are tabulated in Table 2. Although both 

cases start with different initial sample, the proposed approach is finished with the similar number 

of training sample: 237 (case A) and 196 (case B). It implies that GPM requires around 200 of the 

number of training sample to approximate the true response surface with sufficient accuracy. 

As shown in Fig. 13, the responses of FEA ( 𝑇𝑟 𝑒) is plotted against to those of the final GPM 

( 𝐺  ). As given in Eq. (18), Percent bias (PBIAS) is the average tendency of the simulated data 

( ̂) to their observed data ( ) (Moriasi et al. 2007). Positive values indicate the underestimation 

bias of the prediction, and negative values indicate the overestimation bias. It is found that both 

GPMs can produce the target response accurately. In both cases, the good agreements between 

 𝑇𝑟 𝑒 and  𝐺   is observed with 0.99 of the  2 and 0.64% of PBIAS. 

PBIA (%) =
∑(𝑌̂−𝑌)

∑𝑌
× 100                          (18) 

Fig. 14 shows the empirical distributions of the response. It is observed that both empirical 

estimates from  𝑇𝑟 𝑒  and  𝐺   are matched well. Lastly, the statistical parameters of the 

response are computed as tabulated in Table 3. The estimates of statistical parameters are also 

matched well with maximum 3.5% of the relative error. Based on these comparisons, the final 

GPMs from the proposed approach reproduce the true outputs with the acceptable deviations 

automatically. 

 

  
(a) Case A: 50 initial samples (b) Case B: 100 initial samples 

Fig. 13 Prediction versus true outputs (X-axis: true output, Y-axis: GPM prediction) 
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Table 2 Total number of the sample evaluation 

 Initial samples size Infill samples size Total samples size 

Case A 50 177 (59 infill stages) 237 

Case B 100 96 (32 infill stages) 196 

 
Table 3 Comparison of the statistical parameters 

 FEA 
Case A (50 initial samples) Case B (100 initial samples) 

GPM Relative error
*
 GPM Relative error

*
 

Mean 0.0245 0.0247 -0.64 % 0.0244 0.62 % 

Standard 

deviation 
0.0069 0.0066 3.35 % 0.0068 0.98 % 

Skewness 0.7308 0.7059 3.40 % 0.7118 2.60 % 

Kurtosis 3.6875 3.6638 0.64 % 3.5961 2.48 % 

*(
FEA−GPM

𝐹𝐸 
× 100) 

 

 

 

 

 

 
(a) Case A: 50 initial samples (b) Case B: 100 initial samples 

Fig. 14 Frequency distributions of responses 
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Table 4 Summary statistics of computational prediction time 

Computation time (sec) Direct finite element analysis Gaussian process model 

Mean 10.41 0.0036 

Standard deviation 0.26 0.0057 

 

 
Table 5 Comparison for the computational efficiency 

 Surrogate modeling Uncertainty analysis 
Estimated total 

time 

Direct FEA 
0 sec 

(0 FEA × 10.41 sec) 
312,300 sec 

(30,000 FEA × 10.41 sec) 
312300 sec 

(86.75 hours) 

GPM by proposed 

method (Case A) 

2467.17 sec 

(237 FEA × 10.41 sec) 

108 sec 

(30,000 GP  ×
0.0036 sec) 

2575.17 sec 

(0.72 hours) 

 

 

In order to show the computational efficiency of the proposed method over the direct FE 

analysis, the total time of performing uncertainty analysis is estimated. Under the identical 

computational environment (Intel(R) Xeon(R) E5-2660 v2 processor running with 2.20 and 2.90 

GHz, 16 GB RAM, and Windows7 OS), the average prediction times of both FEA and GPM are 

estimated by a total of 30 simulations and tabulated in Table 4. The prediction time needed for 

FEA is 10.41 seconds on average. On the other hand, the prediction time of GPM is around 0.0036 

seconds. 

Based on these prediction times, a comparison between computation costs for the direct FEA 

and the GPM by proposed method is tabulated in Table 5. The total number of the required FEA in 

the proposed method is 237 (i.e., case A), as tabulated in Table 2. Once GPM is constructed, 

additional FEA is not required. In contrast, direct FEA only requires 30,000 times of FEA in 

uncertainty analysis. Uncertainty analysis with direct FEA takes around 86.75 hours to complete, 

while uncertainty analysis with GPM takes around 0.72 hours. It implies that GPM by the 

proposed method can reduce computational times and resources dramatically with highly 

acceptable predictive capability. 

 

 

5. Conclusions 
 

A variety of the methods have been widely investigated in surrogate modeling to reduce the 

computational cost under an iterative codes analysis. Although the various methods are available, 

there are still difficulties in surrogate modeling from a practical point of view: (1) How to generate 

the training samples; and (2) diagnostics of the surrogate model. Because prior knowledge on a 

true response surface behavior is not available, the trial-and-error approach with the user 

intervention is required. 

In this regard, we propose the sequential surrogate modeling with self-adaptive sampling for 

time-consuming finite element analysis. The novelty of the proposed approach is the generative 
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learning ability about a true response surface in a Bayesian framework. The proposed approach 

uses infill criteria in parallel to infer the candidate samples to improve the surrogate model. 

To demonstrate the applicability of the proposed approach, it is numerically tested with the 

mathematical test functions and engineering application: (1) the non-stationary 1-D test function; 

(2) 5-D test function with the strong interaction effect; (3) the highly non-linear 8-D test function; 

and (4) Monte Carlo simulation for the response uncertainty under the 13 correlated random inputs. 

Good agreement between the true outputs and predictions is observed in all numerical examples. 

The proposed approach provides not only further sampling for the better approximation, but also 

diagnostics of model adequacy under the insufficient samples and complicated response surface. 

The proposed approach seems to be promising to build a surrogate model automatically with 

the minimal user intervention. The generative learning ability about a true response surface can 

enable the proposed approach to be customized for the various response surfaces. Therefore, it is 

expected that less experienced user with surrogate modeling can significantly save the time and 

efforts. 
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