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Abstract.  The ambient vibration measurement is an output-data-only dynamic testing where natural 
excitations are represented, for instance, by winds and typhoons. The modal identification involving 
output-only measurements requires the use of specific modal identification techniques. This paper presents 
the application of a reliable method (the Stochastic Subspace Identification – SSI) implemented in a general 
purpose software. As a criterion toward the robustness of identified modes, a bio-inspired optimization 
algorithm, with a highly nonlinear objective function, is introduced in order to find the optimal deployment 
of a reduced number of sensors across a large civil engineering structure for the validation of its modal 
identification. The Ting Kau Bridge (TKB), one of the longest cable-stayed bridges situated in Hong Kong, 
is chosen as a case study. The results show that the proposed method catches eigenvalues and eigenvectors 
even for a reduced number of sensors, without any significant loss of accuracy. 
 

Keywords: ambient vibration; cable-stayed bridge; modal frequencies; mode shapes; parameter 

identification; sensor deployment 

 
 
1. Introduction 
 

Structural health monitoring (SHM) is an active area of research in civil engineering. Several 

system identification techniques have been developed over the past few decades, and their 

application is growing with the availability of instrumentation on civil infrastructures (Vicario et al. 

2015). Typically, the goal is to estimate parameters of a mathematical model of the structure under 

study. Parameters identification through dynamic measurements is a discipline originally 

developed in mechanical and aerospace engineering (Ewins 1986, Ljung 1987, Juang 1994), but in 

the context of civil engineering, the structures (such as bridges and buildings) behave with their 

own features. 

The parameters to be estimated by dynamic measurements are mainly of a modal nature, such 

as frequencies, damping ratios, and mode shapes. They will serve as a basis for the input to the 

finite element modal updating, in detecting and locating damage, as well as in assessing structural 

safety under special scenarios, as for instance large earthquakes and wind loads. 
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There are three main classes of structural dynamic testing, (1) forced vibration testing, (2) free 

vibration testing, and (3) ambient vibration testing. The first relies on artificial items, such as drop 

weights, vibrodynes, and shakers, to excite the structure. For large infrastructures these devices are 

either unavailable or too expensive. In the second class, a free vibration condition is induced, by 

assessing adequate initial conditions. The main drawback using both these techniques is that the 

traffic along the infrastructure has to be stopped for a rather long period. The third class of 

methods does not require the interruption of the service, because it uses the disturbance, either 

wind or traffic, as an excitation (Ren et al. 2004b). 

The output-only modal identification methods can be classified into two main groups, namely, 

frequency domain methods and time domain methods (Peeters and De Roeck 2001). Typically, 

modal parameters identification is carried out from both input and output measurements through 

the frequency response functions (FRFs) in the frequency domain, and impulse response functions 

(IRFs) in the time domain. In civil engineering, sensors are usually installed at different locations, 

and record the dynamic response (i.e., the output) of the structure. But, to determine the input or 

the excitation level on the real structure in service conditions is a difficult task. A further benefit 

from the output-only data is the saving in equipment, since no tools are needed to excite the 

structure. The ambient vibration measurement is an output data-only dynamic testing where 

natural excitations are induced by winds and typhoons. 

Ambient vibration testing was adopted to study many large-scale bridges. Amongst others, one 

mentions: the Golden Gate Bridge (Abdel-Ghaffer and Scanlan 1985); the Faith Sultan Mehmet 

Suspension Bridge (Brownjohn et al. 1992); the Tsing Ma Suspension Bridge (Xu et al. 1997); the 

Vasco da Gama Cable-Stayed Bridge (Cunha et al. 2001); the Kap Shui Mun Cable-Stayed Bridge 

(Chang et al. 2001); the Roebling Suspension Bridge (Ren et al. 2001); the steel girder arch bridge 

(Ren et al. 2004); the Hakucho Suspension Bridge (Siringoringo and Fujino 2008); the Humber 

Bridge (Brownjohn et al. 2010); the Tamar Suspension Bridge (Koo et al. 2013), and the Vincent 

Thomas Suspension Bridge (Karmakar et al. 2015). 

When adopting the results derived from ambient vibration tests, only response data are caught, 

because the loading condition on the structure remains unknown. The modal analysis, that involves 

output-only measurements, requires the use of particular modal identification techniques, which 

deal with the small magnitude of ambient vibration contaminated by noise without the knowledge 

of input forces.  

The benchmark launched in (Ni et al. 2015) aims to study the mechanism behind the 

output-only modal identification, deficiency in modal identifiability, and criteria to evaluate 

robustness of the identified modes, but also to apply various methods of output-only modal 

identification. 

Herein, the stochastic subspace identification-data driven method (SSI-data) as implemented in 

MACEC (Reynders et al. 2014) is used to identify modal parameters. The results are then 

combined with a metaheuristic bio-inspired tool, namely the Firefly Algorithm (Yang 2013), and 

an optimal reduced sensor deployment is pursued. The aim is to identify the same number of 

modal parameters (thus showing the robustness of the achieved results), but with a more 

sustainable economic effort. A strongly nonlinear objective function that takes into account not 

only the eigenvalues, but also the eigenvectors is introduced, and this is why the solution of the 

optimization problem is searched via a metaheuristic algorithm. 
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2. Governing relations 
 

2.1 Stochastic Subspace Identification (SSI) 
 

Ambient excitation testing requires elaborations by a modal parameter identification method 

able to deal with ambient vibration measurement. Among them, the authors selected the stochastic 

subspace identification (SSI) method, well-implemented in the computational tool utilized: 

MACEC (Reynders et al. 2014) working within the software environment MATLAB®  (Matlab 

2015). 

The reader is referred to (Van Overschee and De Moor 1996, Peeters and De Roeck 1999, Chen 

and Huang 2012, Reynders et al. 2014) among others. 

A structural dynamic model is described by a set of linear second-order differential equations 

with constant coefficient, by introducing the classical equation of motion with a time-dependent 

vector of input forces. 

Such equation can be rewritten as a first-order system of differential equations, as a state-space 

representation 

     x t Ax t Bu t                              (1) 

where  x t  is the state vector, A is the state matrix and B is matrix of the excitation coefficient. 

Moreover, the output vector,  y t , can be a part of, or a linear combination of system states, as 

     y t Cx t Du t                             (2) 

where C and D are the real output influence coefficient matrix and the out control influence 

coefficient matrix, respectively. Eqs. (1) and (2) provide a continuous-time state-space model of 

the dynamic system. The sample time and noise are always influencing the measurements. Hence, 

after the sampling such a model modifies into 

1
ˆ ˆ

k k k

k k k

x Ax Bu

y Cx Du

  

 
                               (3) 

where kx  is the discrete time state vector, Â  is the discrete state matrix, and B̂  is the discrete 

input matrix. Then, Eq. (3) represents a discrete-time state-space model of a dynamic system. 

A further issue is the process noise due to the disturbance and the modeling inaccuracies. If the 

stochastic components (i.e., noise) are included, Eq. (3) can be extended to consider also a process 

noise kw  and a measurement noise kv  drawn as a continuous-time stochastic state-space model 

1
ˆ ˆ

k k k k

k k k k

x Ax Bu w

y Cx Du v

   

  
                           (4) 

Since it is difficult to find the individual process and measurement noise in an accurate way, 

some assumptions have to be made. Thus, the process noise kw  and the measurement noise kv  

are assumed to be of zero-mean, white and with covariance matrices. 

Dealing with practical civil engineering problems, only the responses of the structure are 
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measured when adopting output-only techniques, while the input sequence ku  remains 

unmeasured. When ambient vibration tests are performed, it is impossible to distinguish the input 

term ku  from the noise terms kw  and kv . The result is a purely stochastic system 

1
ˆ

k k k

k k k

x Ax w

y Cx v

  

 
                               (5) 

The input is now implicitly modeled by the noise terms (the second terms in the right hand side 

of the above equation). By the way, any assumption related to the white noise has to be explicit. 

The consequence reveals that the such assumption is violated. 

Eq. (5) is the basis for the time-domain system identification through ambient vibration 

measurements. The subspace method is able to identify the state space matrices based on the 

measurements and using the QR-factorization, singular value decomposition (SVD) and least 

square, as numerical techniques. Thus, the QR-factorization results in a significant data reduction, 

while the SVD rejects the noise. Once the mathematical description of the structure, i.e., the state 

space model, is defined, the modal parameters are determined: natural frequencies, damping ratios 

and mode shapes. 

 

2.2 The MACEC software 
 

Modal analysis of a structure develops along three principal steps that are the data collection, 

the system identification and the determination of modal features, such as eigenvalues, damping 

ratios, mode shapes and so forth. MACEC, a toolbox of MATLAB®  (Matlab 2015), is a powerful 

tool developed by the Catholic University of Leuven in Belgium (Reynders et al. 2014) that 

manages with every step in the modal analysis procedure, and saves for the data collection.  

Such tool is herein applied in order to verify the modal parameter under the first set of 

blind-data provided for this benchmark study. 

 

2.3 A bio-inspired approach for structural optimization 
 

The Firefly Algorithm (FA) is a bio-inspired swarm intelligence method that was developed 

studying the social behavior of fireflies (Yang 2010). This is a gradient-free algorithm and that 

means there is no use of derivatives. This feature makes this method very useful in solving 

optimization problems with strong non-linearity. The greatest advantage of such tools is that they 

do not trap in any local minimum or maximum (as occurring for same basic genetic algorithms 

(Casciati 2008 and Casciati 2014)), thus reaching the best value of the objective function. This 

novel method was firstly introduced for continuous optimization (Yang 2013), and later extended 

to discrete problems, such as structural control (among the others (Casciati and Elia 2015a, 

Talatahari et al. 2014, Zhou et al. 2015)).  

In general, FA combines three main strategies: attractiveness, brightness, and distance between 

each firefly. Indeed, it can be idealized with three main assumptions: first, each firefly is unisex, 

thus any firefly is attracted by the others nevertheless the sex; second, the objective function 

determines the brightness of a firefly; and third, the attractiveness is determined by the brightness, 

i.e., when the maximum (or minimum) of the fitness (objective) function is achieved the brighter 

firefly attracts the less brighter ones. 

 

526



 

 

 

 

 

 

Optimal reduction from an initial sensor deployment along the deck of a cable-stayed bridge 

 

3. A policy for sensor reduction 
 

3.1 Problem statement 
 

In the present paper, the actual sensor deployment at the bridge deck has been taken into 

account and the possibility of reducing the number of sensors maintaining enough modal 

information is pursued. Indeed, one of the goals of the benchmark consists of identifying the 

second mode when normal excitation is occurring. At this stage, this mode is found only during 

typhoon conditions. 

As from Fig. 1, where the system architecture of the proposed method is sketched, one needs to 

specify: 

a) the input of the optimization tool; 

b) the objective function. 
 

 

 

Fig. 1 System architecture 
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3.2 Symbolism 
 

Dealing with SHM, means assessing the performance of a structure, knowing its response 

under dynamic excitation. Well-known modal analysis tools, employed for linear systems, are 

applied for obtaining the modal features, i.e., mode shapes and frequencies.  

For dealing with the inverse problem, a numerical approach, which consists of performing a 

finite element analysis where some variables have to satisfy the requirement of minimizing the 

discrepancies with the measured response, is proposed. For instance, an objective function, which 

is minimized when the difference of the measured and generated modal parameters, is formulated 

(Casciati and Elia 2015b). 

Traditional modal analyses can be applied to linear system to achieve their own modal features 

(i.e., frequencies and mode shapes). Such parameters are denoted with the subscript „F‟ because 

they are referred to the scenario where the complete set of devices is installed. 

Namely, F  states the 1N   vector of natural frequencies, while 
F  the N N  matrix of 

corresponding modal shapes.  

Whereas, the scenario where a lower number of devices is considered shall be stated with the 

subscript „NF‟, where both eigenvalues and eigenvectors are stored in a 1N   vector, NF , and 

in a N N  matrix,  NF x , respectively, where x  denotes the vector of the positions of the 

grid node ordered as in Fig. 3. 

 

3.3 Formulation of the objective function 
 

The objective function formulated can be easily written in its scalar form as the difference 

between the full and not full scenarios as 

 
  

2
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              (6) 

where the i-th element is given by 1 i  so that the lower frequencies are prioritized over the higher 

one that are disturbed by measurement noise. This term can be adopted equal 1 when adopting 

only few frequencies. In this paper, only the first eight eigenvalues will be considered. Alternative 

expressions for Eq. (6) incorporate the spectra instead of the modes and this allows one to account 

for the actual damping. A comparison between the two different formulations is still in progress. 

The second term in Eq. (6) plays and important role because, after a weighted calibration, it 

enhances the convergence of the method. This is confirmed by the numerical results presented in 

the following sections. A weight factor, w, is introduced and calibrated resulting into an optimal 

value of 1. It ensures good results in terms of convergence of the method.  

It is worth noting that the norm of a matrix is not uniquely defined when considering the 

eigenvectors. Furthermore, according to (Nair et al. 2006), the norm of a N N matrix G is 

computed as 
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2

2
1

1,...,

norm greatest eigenvalue of 

or

norm max ij
j N

i N

l

l G



 




 

G G G

G

                    (7) 

Thus, when the l2norm is applied to the j-th column of matrix G, it becomes the traditional 

norm of a vector. In a mathematical way, the reader finds    2

2 1,...,
norm j j iji N

l G


  G G  

with 1,...,j N . Hence, the second term in the right hand side of Eq. (6) is also expressed in 

matrix form as 

 
2

, ,

2
1

,

max
j F j NF

j N

j F

w
 

 
 
 
 

x 


                            (8) 

Finally, the optimization problem is posed as follow 

 minimize 

under the constraint: Lb Ub

F

 

x

x x x
                       (9) 

where xLb and xUb are the 1ns  vectors of the lower and the upper bounds of each variable in the 

design parameter space, respectively. 

Since the problem presents highly nonlinearity, the minimization of the objective function in Eq. 

(6) is reached by the adoption of a metaheuristic tool, namely the Firefly Algorithm (FA). 

 

 

4. Ting Kau Bridge 
 

4.1 Actual deployment of accelerometers 
 

The Ting Kau Bridge (TKB) is a three-tower cable-stayed bridge situated in Hong Kong that 

spans from the Tsing Yi Island to the Tuen Mun Road (Bergermann et al. 1996). The two main 

central spans are 448 m and 475 m long, respectively and there are two side-spans of length 127 m. 

The bridge deck is divided into two carriageways 18.8 m width. Along the deck, there are three 

slender single-leg towers 170 m, 198 m, and 158 m high, respectively. Two steel girders along the 

edges of the deck with steel crossgirders every 4.5 m, and a concrete slab on the top form each 

carriageway. Furthermore, there is a 5.2 m gap between the two parallel carriageways: they are 

linked each to the other every 13.5 m by connecting crossgirders. Finally, 384 stay cables in four 

cable planes support the deck. 

A unique feature of the bridge consists in the arrangement of the three single-leg towers, 

strengthened by longitudinal and transverse cables, with a stabilizing function. There are 8 

longitudinal stabilizing cables used to diagonally connect the top of the central tower to the Ting 

Kau and Tsing Yi Towers (the length reaches 465 m), whereas 64 cables are utilized to strengthen 

the three towers in the transverse (lateral) direction (Ni et al. 2015). 

During the bridge construction, as well as after its completion in 1999 (Wong 2004, Ko et al. 
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2005), more than 230 sensors were installed on the TKB, within a long-term SHM system 

conceived by the Hong Kong SAR Government Highways Department. Accelerometers, 

anemometers, strain gauges, temperature sensors, GPS, and weigh-in-motion sensors are deployed 

across the bridge as in Wong and Ni et al. (Wong 2007, Ni et al. 2011). 24 uniaxial, 20 biaxial, 1 

triaxial accelerometers are permanently installed at the deck of the four spans, on the longitudinal 

stabilizing cables, on the top the three towers, and at the base of the central tower. They form a 

total of 67 accelerometers channels and they monitor the dynamic response of the bridge itself. In 

the paper, only the data collected by the accelerometers placed at the deck are considered. Fig. 2 

shows the placement of the accelerometers and the anemometers on the bridge deck, within the 

general layout of the bridge. 

In each of the sections from A to P in Fig. 2, two accelerometers are installed on the east and 

west side of the longitudinal steel girders, respectively. They measure the vertical acceleration, 

while another accelerometer is installed on the central crossgirder and it measures the transverse 

acceleration. The sampling frequency is 25.6 Hz. Furthermore, 7 anemometers are installed at the 

top of each of the three towers and two on two main spans. Ultrasonic anemometers are installed 

on the east and west side of the deck and the sampling frequency of each anemometer is 2.56 Hz. 

Fig. 3 shows the actual deployment of accelerometers at the bridge deck. 

 

 

 

 

Fig. 2 Deployment of accelerometers and anemometers at bridge deck 

 

 

 

 

Fig. 3 Actual deployment of accelerometers on the bridge deck 
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4.2 Existing recorded data 
 

The benchmark on the data collected in 10 years of monitoring on the Ting Kau Bridge was 

lauched in (Ni et al. 2015) and its companion document posted in the web (Dept. of Civil Eng. 

2015). Initially this latter document was listing the identified frequencies in Table 1, from where 

some frequencies were removed as spurious in the currently appended document. They are marked 

by a star in the table. The frequencies were identified having available 6 sets of data under weak 

wind conditions, 5 sets of data under typhoon conditions and other sets of monitoring acceleration 

data (also called “blind dataset”) coming without any specification on the excitation conditions. 

These data were collected in different period and under different wind speeds duration. The first 

set of these blind data was utilized in this purpose in order to explain the properties of output-only 

methods. 

 

4.2.1 The identified modal frequencies 
The data driven stochastic subspace identification (data-driven SSI) technique is regarded as 

the most powerful class of the known identification techniques for natural input modal analysis in 

the time domain (Brincker et al. 2006). Such technique has been applied to identify the modal 

frequencies and modal shapes of the Ting Kau Bridge and it works directly with the recorded time 

domain signals. It is able to identify the space models from the output data only by the application 

of robust numerical techniques among which the QR factorization, the singular value 

decomposition and least squares, once the formulation of the state space model is achieved used 

with the 24 accelerometers in Fig. 2, the identified frequencies are listed in Table 1. 

Next section provides more details on the technique in view of the further bits of information 

makes available. 

 

 

 
Table 1 First eight eigenvalues and damping ratios from the first blind-set data for 24 sensors (records of 

duration 1 hour without a non-particular condition of external excitation) extracted by MACEC and 

compared with Ni et al. (2015) 

Eigenvalue Frequency [Hz] 

(MACEC) 

Frequency [Hz] 

(Ni et al. 2015) 

Damping ratio [%] 

(MACEC) 

1 0.160* - 1.34 

2 0.162 0.162 2.85 

3 0.178* - 4.63 

4 0.223 0.226 2.68 

5 0.268 0.257 4.93 

6 0.286 0.288 4.46 

7 0.307 0.300 1.91 

8 0.357 0.358 2.46 
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4.2.2 From the actual situation to the reduced one 
In Section 2, the actual deployment of the devices was provided. The current deployment 

permits one to carry out a general analysis, which by the software MACEC. The attention is 

focused on the first eight eigenvalues as stated in Table 1. 

In each analysis, both eigenvalues and eigenvectors are output quantities parameters.  

Assume now that one relies on 16 sensors only. For the deployment in Fig. 3, the eigenvalues in 

Table 1 are obtained by the same algorithm, together with the corresponding eigenvectors. 

 

 

  

  

  

  

Fig. 4 First 8 eigenvectors in case of 24 sensors at the bridge deck 
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5. Proposed method 
 

5.1 Study on the actual situation 
 

The control parameters of the applied metaheuristic tool are summarized in Table 2. The 

randomization number, the maximum attractiveness and the absorption coefficient are maintained 

constant in each the performed analysis, such as in most of the implementations found in literature. 

Under these assumptions, the convergence of the solution is achieved with a small 

computational burden. 

 

5.2 Use of MACEC on the whole set of data 
 

First of all the grid, the number and the position of the degrees of freedom, and the type of 

finite element used for carrying out the analyses (beam or surface) are set. Fig. 5 shows the bridge 

deck implemented in MACEC. 

 

 
Table 2 Control parameters of the Firefly Algorithm 

Control parameters of FA Adopted value 

NP, size of the initial population of fireflies 100 

Imax, maximum number of iterations 40 

δ, randomization number 0.5 

βmin, minimum attractiveness 0.2 

γ, absorption coefficient 1.0 

 

 

 

Fig. 5 Bridge deck configuration in MACEC 
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Fig. 6 Stabilization diagrams for 24 sensors 

 
After a phase where the signal is processed, the modal parameters are extracted from the modal 

analysis toward a stabilization diagram. Fig. 6 shows such diagram, which contains all the modal 

parameters. Fig. 6 also shows a comparison between the full stabilization diagram and the 

stabilization diagram where only stable modes are denoted. In the upper figure, different dots 

represent both stable modes and modes that satisfy all stabilization criteria except for the damping 

and mode shape differences. While in the lower figure, modes that fulfill all the criteria are 

represented, and they coincide with the set provided within the benchmark study. Then the selected 

first eight eigenvalues are extracted, and they are compared with the ones found by exploiting the 

first blind-dataset provided in this benchmark study. 

Before applying this step, robust numerical technique as the QR factorization and the singular 

value decomposition are applied and the singular values for the maximum system order are 

obtained. For sake of completeness, each analysis is performed on a Windows 7 notebook, 64-bit, 

2.67 GHz Intel®  Core™ i7 processor with 4GB ram. 
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5.3 Reducing the number of sensors on the bridge deck 
 

Once the complete model is defined, i.e., with 24 sensors, the process of reduction that consists 

in the elimination of some sensors (for instance 8 sensors) starts. These sensors can be considered 

superfluous, but the new deployment guarantees efficiency in terms of collection of modal 

parameters.  

Furthermore, this purpose wants to minimize the economic effort, but always maintaining the 

lifeguard and the control of the structure. 

The adopted procedure for the sensor deployment is the same to the previous one explained, 

and the algorithm parameters are kept constant for each analysis. 

According to the objective function, the 16 sensors model is compared with the 24 sensors one 

and several deployments are proposed. 

The best solution considers a value of the objective function and a deployment vector as shown 

in the following statement 

0.0793

[2 3 4 5 6 7 8 9 10 16 17 18 19 21 22 24]sens

z

x




                 (10) 

Such the new configuration guarantees, albeit with a minimum error, to note the model 

parameters and hence to have a lower economic impact. The new stabilization diagram and the 

new sensor deployment are shown in Figs. 7 and 8. 

 

 

Fig. 7 Stabilization diagram for 16 sensors 

 

 

Fig. 8 New proposed deck sensor configuration from MACEC 
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Table 3 Identified modal damping ratios under unknown excitation for a reduced set of 16 sensors (the 

optimal one) 

Frequency [Hz] Damping ratio [%] 

0.161 1.46 

0.167 2.94 

0.171 4.63 

0.228 3.10 

0.267 4.87 

0.283 5.19 

0.292 5.37 

0.382 5.21 

 
 

For such configuration, also the value of the damping ratios are shown in Table 3. 

Both Tables 1 and 3 frame the first eight frequencies obtained from the deployment of 24 and 

16 sensors respectively, under the same excitation (i.e., the first set of the blind-data). Such these 

values can be comparable and one can observe that also reducing the number of sensors, the 

second mode is identified, so one of the challenge of this benchmark is correctly pursued. 

For the evaluation of the eigen-properties of the system, namely frequencies and damping ratios 

as shown in Table 3, the approach presented in Reynders and De Roeck (Reynders and De Roeck 

2008), has been adopted. 

For sake of completeness, a comparison between the two different scenarios is presented in 

Table 4. 

Finally, the path to convergence of the objective function is shown in Fig. 9. 

 
Table 4 Comparison between the frequencies for two different sensors deployment at the bridge deck, where 

the second set with optimal sensor deployment (with 16 sensors) 

Eigenvalue 
Frequency [Hz] 

with 24 sensors 

Frequency [Hz] 

with 16 sensors 

1 0.160 0.161 

2 0.162 0.167 

3 0.178 0.171 

4 0.223 0.228 

5 0.268 0.267 

6 0.286 0.283 

7 0.307 0.292 

8 0.357 0.382 
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Fig. 9 Path to convergence 

 

 

5. Conclusions 
 

This paper was prepared within the benchmark study on the cable-stayed bridge located in 

Hong Kong, namely the Ting Kau Bridge. 

An application to a modal analysis method with a bio-inspired metaheuristic algorithm is herein 

implemented. Such application is adopted with a highly nonlinear objective function in order to 

find an optimal sensor deployment across a large civil engineering structure. 

The results have shown that the proposed method identifies the frequencies, even adopting a 

reduced number of sensors. In terms of computational burden and convergence, the performance 

of the adopted optimization tool is fully satisfactory.  
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