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Abstract.  Modal identification based on ambient vibration data has attracted extensive attention in the past 
few decades. Since the excitation for ambient vibration tests is mainly from the environmental effects such 
as wind and traffic loading and no artificial excitation is applied, the signal to noise (s/n) ratio of the data 
acquired plays an important role in mode identifiability. Under ambient vibration conditions, certain modes 
may not be identifiable due to a low s/n ratio. This paper presents a study on the mode identifiability of an 
instrumented cable-stayed bridge with the use of acceleration response data measured by a long-term 
structural health monitoring system. A recently developed fast Bayesian FFT method is utilized to perform 
output-only modal identification. In addition to identifying the most probable values (MPVs) of modal 
parameters, the associated posterior uncertainties can be obtained by this method. Likewise, the power 
spectral density of modal force can be identified, and thus it is possible to obtain the modal s/n ratio. This 
provides an efficient way to investigate the mode identifiability. Three groups of data are utilized in this 
study: the first one is 10 data sets including six collected under normal wind conditions and four collected 
during typhoons; the second one is three data sets with wind speeds of about 7.5 m/s; and the third one is 
some blind data. The first two groups of data are used to perform ambient modal identification and help to 
estimate a critical value of the s/n ratio above which the deficient mode is identifiable, while the third group 
of data is used to perform verification. A couple of fundamental modes are identified, including the ones in 
the vertical and transverse directions respectively and coupled in both directions. The uncertainty and s/n 
ratio of the deficient mode are investigated and discussed. A critical value of the modal s/n ratio is suggested 
to evaluate the mode identifiability of the deficient mode. The work presented in this paper could provide a 
base for the vibration-based condition assessment in future. 
 

Keywords:  mode identifiability; cable-stayed bridge; ambient vibration; fast Bayesian FFT method; 

uncertainty 

 
 
1. Introduction 
 

Structural health monitoring (SHM) has attracted increasing attention in the past two decades 

with the purpose of monitoring structural performance and conducting condition assessment of 
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objective structures (Brownjohn et al. 2005, Ko and Ni 2005, Li et al. 2006, Ni et al. 2011, Koo et 

al. 2013). Among a variety of structural response, acceleration plays an important role in deriving 

the baseline properties of a structure. In general, there are three ways to collect structural 

acceleration response, i.e., ambient, free and forced vibration tests (Au and Ni 2014). Ambient 

vibration tests have been widely practiced since they are more economical and convenient in 

comparison with the other two. For large-scale bridges, the SHM system is commonly designed to 

collect various structural responses including acceleration. A lot of research has been pursued on 

the analysis of acceleration response data acquired by SHM systems (Li et al. 2006, Bao et al. 

2010, Cross et al. 2013, Ni et al. 2015b).  

With the collected acceleration data, modal identification is usually the first step to identify the 

modal parameters (Brownjohn et al. 2010), which can be further used for model updating and 

vibration-based damage detection (Lam et al. 2014). Various methods have been proposed for 

extracting modal properties from acceleration response. Among them the frequency domain 

decomposition (Brincker et al. 2001) is a commonly used technique in the context of frequency 

domain, while the stochastic subspace identification (SSI) (Peeters and De Roeck 2001) is a 

popular one in the time domain. A fast Bayesian FFT method has recently been developed (Au 

2011, Au 2012a, b, Au and Zhang 2012a, Zhang et al. 2015), which considers ambient modal 

identification as an inference problem where probability is used as a measure for the relative 

plausibility of outcomes. One important merit of this method is that it can calculate the posterior 

uncertainty of the modal parameters analytically, making it possible to evaluate the accuracy and 

reliability of the identified modal parameters. This method has been applied for modal analysis of 

different kinds of structures (Au and Zhang 2012, Au et al. 2012a, b, Au et al. 2013, Zhang et al. 

2016, Ni et al. 2016).  

In ambient modal identification, mode identifiability is a key issue worth investigating (Ni et al. 

2015a). Signal to noise (s/n) ratio is an important factor affecting the identifiability. If the s/n ratio 

for a specific mode is too low, the identification of this mode will be of high uncertainty, and even 

being unidentifiable. The measurement noise usually stems from the deployed sensors, signal 

cables, and data acquisition systems. One efficient way of improving the s/n ratio is to lower the 

noise corruption. On the other hand, increasing the excitation intensity is equally efficient. For 

bridge structures, the excitation level during a typhoon or earthquake is usually much higher than 

ambient vibration excitations. As a result, some deficient modes that cannot be identified under 

normal wind conditions may become identifiable during typhoons. In this study, a benchmark 

problem on the mode identifiability of a cable-stayed bridge is addressed by the fast Bayesian FFT 

method. Three groups of data acquired from the bridge are used in the study: the first group 

includes ten data sets with six under normal wind conditions and four under typhoon conditions; 

the second group includes three data sets with wind speeds of about 7.5 m/s; and the third group is 

blind data with unknown wind condition, which serves to check the conclusions drawn from the 

analysis on the first two groups of data. The posterior uncertainties of the identified modal 

parameters are evaluated by the fast Bayesian FFT method, and the modal s/n ratio is obtained by 

the identified modal frequency, damping ratio, power spectral density (PSD) of modal force and 

PSD of prediction error to examine the mode identifiability of the deficient mode. A critical value 

of the s/n ratio is suggested to judge whether or not a specific mode is identifiable. 
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2. Ting Kau Bridge 
 

The benchmark study is based on the field monitoring data from the cable-stayed Ting Kau 

Bridge, which is 1170 m long in total with two main spans of 448 m and 475 m, respectively. A 

long-term structural health monitoring system has been deployed on the bridge to monitor the 

structural performance under in-service conditions. Sensors permanently instrumented on the 

bridge include accelerometers, anemometers, displacement transducers, temperature sensors, strain 

gauges, GPS and a weigh-in-motion sensing system. Accelerometers were installed at different 

locations of the bridge including the deck of the two main spans and two side spans, the 

longitudinal stabilizing cables, the top of the three towers, and the base of the central tower. In the 

present study, only the acceleration responses at the bridge deck are addressed. As shown in 

Figure 1, a total of 24 uniaxial accelerometers have been deployed on the bridge deck, where 16 

located at the east and west sides of the longitudinal steel girders (Locations 1, 3, 4, 6, 7, 9, 10, 12, 

13, 15, 16, 18, 19, 21, 22 and 24) are along the vertical direction, while 8 located at the central 

crossgirder (Locations 2, 5, 8, 11, 14, 17, 20 and 23) are in the transverse direction. The sampling 

rate was set as 25.6 Hz. The wind data measured from anemometers situated at the bridge deck and 

tower top are also utilized in the analysis. The sampling rate of the wind data was set as 2.56 Hz. 

As mentioned before, three groups of data are available for this study. The first group of 10 data 

sets is summarized in Table 1 and the second group of three data sets with wind speeds of about 

7.5 m/s is shown in Table 2. The third group consists of six blind data sets without knowledge 

about the wind condition. The data length for each set is 1 hour. From Table 1, it is seen that the 

wind speeds under typhoons are much higher than those under normal wind conditions. The first 

two groups of data serve to investigate the mode identifiability of the bridge while the third one is 

utilized to verify the conclusions drawn from the analysis on the first two groups of data. 

 

 

 
(a) 

 
(b) 

Fig. 1 (a) Layout of accelerometers on bridge deck and (b) Plan view of sensor configuration (Ni et al. 

2015a) 
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Table 1 Wind information for data in Group 1 

Condition Sample Data Mean hourly wind speed (m/s) 

Normal wind 

conditions 

Sample 1 Data 1 2.00 

Sample 2 Data 2 3.40 

Sample 3 Data 3 3.34 

Sample 4 Data 4 3.41 

Sample 5 Data 5 6.17 

Sample 6 Data 6 4.20 

Typhoons 

Maggie Data 7 12.11 

Sam Data 8 15.62 

York 1 Data 9 21.72 

York 2 Data 10 15.91 

 

 
Table 2 Wind information for data in Group 2 with wind speeds of about 7.5 m/s 

Condition Data Mean hourly wind speed (m/s) 

Typhoons 

Data 1 7.36 

Data 2 7.77 

Data 3 7.43 

 

 

3. Bayesian method 
 

The fast Bayesian FFT method is adopted in the present study to perform output-only modal 

identification. The algorithm is outlined as follows (Au and Zhang 2012, Au et al. 2013). For the 

detailed theory, please refer to Au (2011, 2012a, b) and Zhang and Au (2013).  

The measured acceleration responses are assumed to be composed by the theoretical response 

and a prediction error 

jjj exx  ̂
                                (1)

 

where 
n

j Rx and 
n

j Re (j=1,2,…, N ) denote the theoretical acceleration response and 

prediction error, respectively, with n  being the number of measured degrees of freedom (DOFs) 

and N being the number of sampling points. The fast Fourier Transform (FFT) of jx̂ is expressed 

by 

474



 

 

 

 

 

 

Mode identifiability of a cable-stayed bridge based on a Bayesian method 

 

∑
--

-
N

j

jk N

jk
π

N

t
F

1=

]
)1)(1(

2exp[ˆΔ2
= ix                      (2) 

where i2 = -1; tΔ  is the sampling interval; k=1,…, Nq  with Nq =int[N/2]+1, Nq  is the Nyquist 

frequency index; int [.] denotes the integer part. 

Let [ ] n
kkk RFF 2Im;Re= ∈Z  represent a vector consisting of the real and imaginary parts of 

kF . In this method, only the FFT data in a selected frequency band dominated by the target modes 

are used for modal identification, and they are denoted by {Zk}. Let θ denote a vector of modal 

parameters to be identified. It includes modal frequencies, damping ratios, mode shapes, PSD 

matrix of the prediction error and PSD of modal force. Based on Bayes’ Theorem, given the 

dataset, the conditional posterior probability density function (PDF) of θ can be expressed by 

   ( | ) ( ) ( | )k kp p pθ Z θ Z θ
                           (3)

 

where ( )p θ  is the prior PDF of θ . For a large amount of data, the likelihood function varies 

fast compared to the prior PDF, and therefore it dominates the posterior PDF (Au et al. 2013). The 

prior information is assumed to be uniform, and then the posterior PDF  ( | )kp θ Z  is 

proportional to the likelihood function  ( | )kp Z θ . Thus, the most probable value (MPV) of θ  

can be determined by maximizing  ( | )kp Z θ . 

Assuming large N and small tΔ , the FFTs at different frequency bands are shown to be 

asymptotically independent and follow a Gaussian distribution (Schoukens and Pintelon 1991, 

Yuen and Katafygiotis 2003). Consequently, )}({ θZkp  can be expressed by 


 

k
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where det(.)  denotes the determinant of its argument 

2
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C I
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              (5) 

is the covariance matrix of 
mn

mk R ×
21 ∈],...,,[=  ; φφφΦZ  is the mode shape matrix with m 

being the number of modes in a selected frequency band; Se is the PSD of the prediction error; 
n

n R2

2 ∈I is a 2n by 2n identity matrix; 
mm

k R ×∈H  is the transfer matrix and the (i, j) element 

of this matrix can be expressed as 

2 1 2 1( , ) [( 1) 2 ] [( 1) 2 ]k ij ik i ik jk j jki j S           H i i
               (6) 

where the frequency ratio  ;f/= kiik fβ  if  is the ith modal frequency; fk is the FFT frequency 

abscissa; i
 

denotes the ith damping ratio; Sij is the cross PSD between the ith and jth modal 

excitations. The negative log-likelihood function (NLLF) L(θ) is usually used to perform the 
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optimization 

11
( ) [ln det ( ) ( ) ]

2

T

k k k k

k

L  θ C θ Z C θ Z

                     (7) 

so that 

 ( | ) exp[ ( )]kp L θ Z θ
                          (8) 

Theoretically, the MPV of θ  including modal frequency, damping ratio, mode shape, PSD of 

the prediction error, PSD of modal force can be determined by minimizing the NLLF. It is found 

that, however, the minimization process is ill-conditioned and the computational amount grows 

with the number of measured DOFs. To make this method workable in practice, fast algorithms 

have been developed, allowing very quick calculation of the MPV (Au 2011, Au 2012a, b, Zhang 

and Au 2013). The associated posterior covariance matrix can also be determined as the inverse of 

the Hessian matrix, and it can be calculated analytically on the basis of the NLLF. This further 

makes it possible to quantitatively evaluate the posterior uncertainties of the modal parameters 

under identification.   

 

 

4. Data analysis 
 

4.1 Modal identification on the data of Group 1 
 

Modal analysis is performed by the fast Bayesian FFT method on each data set. Figs. 2(a) and 

2(b) show the time history of the acceleration responses from the first three channels for Sample 1 

and Typhoon York 1, respectively. It was interesting to note that the responses from Chanel 1 and 

Chanel 3 in the vertical direction under normal wind conditions have larger magnitude than those 

under typhoon conditions.  

 

  
(a) Channels 1 to 3 for Sample 1 (b) Channels 1 to 3 for Typhoon York 1 

Fig. 2 Accelerometer responses obtained from typical channels 
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Fig. 3 Root power density spectra of response data in Sample 1 

 

In contrast, the responses in the transverse direction under normal wind conditions are a little 

smaller than those obtained during typhoon events. This is because the bridge was closed without 

traffic operation during the typhoon attack. It turns out that the effect due to traffic loading is more 

significant than that due to strong wind in the vertical direction. In the transverse direction, 

however, the effect of typhoon is dominant.  

To investigate the responses in the frequency domain, the root PSD spectra for the data in 

Sample 1 and Typhoon York 1 are obtained and plotted in Figs. 3 and 4, respectively. From the 

spectra, it is found that the first mode is about 0.16 Hz, and some peaks in Fig. 4 are more obvious 

than in Fig. 3 (such as the mode around 0.22 Hz). The modal responses for certain modes are much 

larger during the typhoons than during normal wind conditions. 

 

 

 

Fig. 4 Root power density spectra of response data in Typhoon York 1 
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Fig. 5 Mode shape of the 1st mode from Sample 1 (0.161 Hz, 1.17%) 
 

 

Fig. 5 to Fig. 14 show the modal parameters for ten modes identified using the data in Sample 1. 

In each figure, the left subfigure represents the motion in the vertical direction, while the right one 

represents the motion in the transverse direction. The first mode identified is a vertical mode with 

a modal frequency of 0.161 Hz and damping ratio of 1.17%. The mode shape in the vertical 

direction forms a sine wave. No obvious motion is observed in the transverse direction. The modal 

frequency and damping ratio of the second mode identified are 0.227 Hz and 0.73% respectively. 

This is a coupled torsional mode in the vertical direction and lateral mode in the transverse 

direction. It is seen that the motion in the vertical direction is a little strange. This may be 

attributed to the low s/n ratio as reflected in Fig. 3. The detailed reason will be discussed later. The 

third mode is a lateral mode with a modal frequency of 0.257 Hz and damping ratio of 1.32%. A 

sine wave is shown in the transverse direction. This is the second lateral mode of the bridge and 

there is almost no motion in the vertical direction. The fourth mode shown in Fig. 8 is the third 

lateral mode with a modal frequency of 0.288 Hz and damping ratio of 1.04%. Similar to the 

second mode, this mode is also coupled with torsional behavior. The motion in the transverse 

direction tends to be one and a half sine waves. Different from the second mode, the torsion 

mainly occurs at both sides of the deck section. The fifth mode shown in Fig. 9 is a predominantly 

vertical mode with a modal frequency of 0.300 Hz and damping ratio of 0.46%. The shape of this 

mode is similar to the first mode at the two sides of the deck section, but there is almost no motion 

at the four locations in the middle span. There is slight motion in the transverse direction. The 

sixth mode shown in Fig. 10 is the fourth lateral mode with a modal frequency of 0.310 Hz and 

damping ratio of 0.49%. This mode is also coupled with torsional behavior. The seventh to tenth 

are the modes mainly in the vertical direction, and with slight motion in the transverse direction. 

The modal parameters shown above are consistent with those obtained by a FEM analysis 

provided in Supplemental Document 1 of the benchmark problem and identified in a previous 

study by Ni et al. (2015a). 

Figs. 15 and 16 show the posterior uncertainties of the identified modal frequencies and 

damping ratios for the first to fourth modes from the 10 data sets. The identified results from each 

data set are shown with a dot at the posterior MPV and an error bar covering two posterior 

standard deviations. It is seen that the posterior uncertainties of modal frequencies are much 

smaller than those of damping ratios, implying that the identification of the former quantity is 

more accurate. For the first, third and fourth modes (the second mode will be discussed later), the 

variation of the identified modal parameters is relatively small. The posterior uncertainty is 

consistent with the ensemble variability of their MPVs over different setups and therefore the 
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Bayesian and frequentist perspectives roughly agree. The error bars for the third and fourth modes 

from some data sets, such as the third mode from Data 5 and 9 and the fourth mode from Data 6 

are larger than those from other data sets, but the variations are consistent for both modal 

frequency and damping ratio.  

 

 

 

 

Fig. 6 Mode shape of the 2nd mode from Sample 1 (0.227 Hz, 0.73%) 

 

 

 

 

Fig. 7 Mode shape of the 3rd mode from Sample 1 (0.257 Hz, 1.32%) 

 

 

 

 

Fig. 8 Mode shape of the 4th mode from Sample 1 (0.288 Hz, 1.04%) 
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Fig. 9 Mode shape of the 5th mode from Sample 1 (0.300 Hz, 0.46%) 
 

 

 

Fig. 10 Mode shape of the 6th mode from Sample 1 (0.310 Hz, 0.49%) 

 

 

 

Fig. 11 Mode shape of the 7th mode from Sample 1 (0.357 Hz, 1.13%) 

 

 

Fig. 12 Mode shape of the 8th mode from Sample 1 (0.372 Hz, 0.46%) 
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Fig. 13 Mode shape of the 9th mode from Sample 1 (0.385 Hz, 2.09%) 

 

 

Fig. 14 Mode shape of the 10th mode from Sample 1 (0.396 Hz, 0.46%) 
 

 

 

 

  
(a) 1st mode (b) 2nd mode 

Fig. 15 Identification result (±2 standard derivation error bar) of modal frequency and damping ratio 
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(a) 3rd mode (b) 4th mode 

Fig. 16 Identification result (±2 standard derivation error bar) of modal frequency and damping ratio 

 

 

 

Fig. 17 Mode shape of the 2nd mode from Sample 2 (0.227 Hz, 4.56%) 
 

It is worth mentioning that the second mode is quite different from the other three modes. The 

error bars corresponding to Data 2, 3, 4, 5 and 6 are obviously larger than those for other data sets, 

especially for the results from Data 3 and 4. The MPVs of modal frequencies are still acceptable; 

however, this is not the fact for the damping ratio with a value higher than 10%. Recall that these 

five data sets correspond to the samples under normal wind conditions. The considerably large 

error bars mean that under normal wind conditions, the identified modal parameters for this mode 

are not accurate or reliable. The posterior uncertainty of modal parameters obtained from Data 1 is 

reasonable, but the mode shape as shown in Fig. 6 is a little strange. Recall that from the PSD 

spectra, the second mode is not obvious under normal wind conditions. To make a further 

investigation, the mode shape identified from Sample 2 is obtained as shown in Fig. 17, where the 

motion in both vertical and transverse directions is different from that shown in Fig. 6. Similarly, 

the mode shapes of the second mode identified from Samples 3 to 6 are also different from each 

other. This indicates that the second mode might not be identifiable under normal wind conditions. 

In contrast, there is an obvious peak for the second mode in the PSD spectra obtained using the 

data from Typhoon York 1. Fig. 18 shows the mode shape of the second mode identified using the 

typhoon data. It is observed that the identified mode shape is more reasonable in terms of the 

modal motion in both directions.  
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Fig. 18 Mode shape of the 2nd mode from Typhoon York 1 (0.227 Hz, 0.40%) 

 

 
Table 3 MAC values between the mode shapes identified from data sets of Group 1 (2nd mode) 

Mode 2 Data1 Data2 Data3 Data4 Data5 Data6 Data7 Data8 Data9 Data10 

Data1 1.000 0.386 0.498 0.302 0.370 0.254 0.855 0.852 0.846 0.855 

Data2 0.386 1.000 0.681 0.338 0.111 0.324 0.341 0.374 0.351 0.333 

Data3 0.498 0.681 1.000 0.235 0.299 0.313 0.349 0.376 0.376 0.349 

Data4 0.302 0.338 0.235 1.000 0.592 0.343 0.008 0.016 0.013 0.006 

Data5 0.370 0.111 0.299 0.592 1.000 0.731 0.322 0.330 0.318 0.303 

Data6 0.254 0.324 0.313 0.343 0.731 1.000 0.348 0.374 0.375 0.331 

Data7 0.855 0.341 0.349 0.008 0.322 0.348 1.000 0.998 0.995 0.996 

Data8 0.852 0.374 0.376 0.016 0.330 0.374 0.998 1.000 0.995 0.992 

Data9 0.846 0.351 0.376 0.013 0.318 0.375 0.995 0.995 1.000 0.995 

Data10 0.855 0.333 0.349 0.006 0.303 0.331 0.996 0.992 0.995 1.000 

 

 

To compare the identified results from all the 10 data sets, the modal assurance criterion (MAC) 

among the mode shapes of the second mode identified respectively by the 10 data sets is calculated 

and shown in Table 3. It is seen that the MAC values among the results from the first six data sets 

are much less than 1, verifying the conclusion that the identified mode shapes are different from 

each other. For the results from the last four data sets, the MAC values among them are quite close 

to 1 (larger than 0.99), indicating that the identified mode shapes are identical. Note that the mode 

shapes of the second mode obtained by the data sets from Sample 1 and Typhoon York 1 are 

similar as shown in Figs. 6 and 18, with the MAC value between the mode shapes obtained by 

these two data sets being larger than 0.8. From the discussion above, it can be concluded that 

under normal wind conditions, the second mode is not identifiable. It can be well identified only 

when the wind speed reaches a certain value. 
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Table 4 Signal to noise ratios in different modes and data sets (Group 1) 

  Mode 

Data  
1 2 3 4 5 6 7 8 9 10 

1 1194  12  46  82  48  113  201  222  15  40  

2 580  6  28  101  66  92  175  94  101  37  

3 607  3  77  58  27  56  168  201  94  38  

4 2689  3  145  111  73  77  314  456  66  77  

5 696  4  23  47  45  45  365  194  21  50  

6 698  4  135  15  34  53  488  167  19  49  

7 1528  720  247  181  39  261  145  128  99  57  

8 1150  603  306  102  44  124  465  87  34  84  

9 1096  518  48  55  84  64  294  106  101  97  

10 933  551  210  116  60  314  217  151  46  25  

 

 

 

Fig. 19 Relationship between wind speed and s/n ratio for the 2nd mode 

 

 

One explanation is that the s/n ratio for the second mode under normal wind conditions is too 

low. This issue will be discussed in detail in the following. In the fast Bayesian FFT method (Au 

2011), the modal s/n ratio has been defined as follows 

24 


eS

S


                                  (9) 

where S denotes the PSD of modal force; eS  denotes the PSD of the prediction error; and   

denotes the damping ratio. Table 4 shows the s/n ratio calculated for different modes and from 

different data sets. It is seen that the s/n ratios obtained from the data acquired during typhoons 

tend to be larger than those obtained under normal wind conditions, especially for the second 

mode where a significant difference of the s/n ratio is observed among the data sets. The s/n ratio 
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values under the typhoon conditions are in the order of magnitude of a few hundred while they are 

less than or equal to 12 under normal wind conditions. This indicates that the s/n ratio is a useful 

quantity to evaluate the mode identifiability. If the s/n ratio is too small, the mode would not be 

identifiable. To further investigate this issue, the relationship between wind speed and s/n ratio is 

plotted in Fig. 19. It is observed that higher wind speed corresponds to larger s/n ratio. Based on 

these results, currently it is difficult to give an exact s/n ratio to judge the mode identifiability. 

Since the majority of the s/n ratio values corresponding to the identifiable cases in Table 4 are 

larger than 50, it is suggested to roughly take 50 as the bottom line to judge whether or not a mode 

is identifiable. 

 

4.2 Modal identification on the data of Group 2 
 

The three data sets of Group 2 are used to perform further investigation. One common feature 

of these data is that the corresponding wind speeds are all around 7.5 m/s. This is a critical value 

given in a previous study by Ni et al. (2015a) to examine whether the second mode is identifiable. 

The Fast Bayesian FFT method is applied again to these data sets. Table 5 shows the MAC values 

between the identified mode shapes of the second mode from the three data sets. It is seen that the 

MAC values between Data 2 and Data 3 are quite close to 1, while this is not the fact for those 

between Data 1 and Data 2 and between Data 1 and Data 3. Table 6 shows the s/n ratio calculated 

based on the identified modal parameters. The values of the s/n ratio for the second mode obtained 

from the three data sets are all larger than the critical value of 50 suggested in the previous section, 

although the value from Data 1 is only 77. As a result, the second mode shall be identifiable from 

all the three data sets. To confirm this, the mode shapes of the second mode identified from the 

first two data sets are plotted in Figs. 20 and 21, respectively. It is seen that the second mode is just 

marginally identifiable from Data 1, with the motion in the vertical direction being similar to that 

from Data 2; however, the motion in the transverse direction identified by the two data sets is 

different from each other.  

 
Table 5 MAC values between the mode shapes identified from data sets of Group 2 (2nd mode) 

Mode 2 Data1 Data2 Data3 

Data1 1.000  0.572  0.578  

Data2 0.572  1.000  0.995  

Data3 0.578  0.995  1.000  

 
Table 6 Signal to noise ratios in different modes and data sets (Group 2) 

Mode 

Data  
1 2 3 4 5 6 7 8 9 10 

1 1581  77  6  48  124  106  943  153  46  45  

2 2491  191  654  90  57  255  406  110  51  76  

3 1232  1154  830  997  26  847  130  38  38  31  
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Fig. 20 Mode shape of the 2nd mode from Data 1 of Group 2 (0.229 Hz, 1.25%) 

 

 

 

 

Fig. 21 Mode shape of the 2nd mode from Data 2 of Group 2 (0.228 Hz, 1.13%) 

 

 

4.3 Modal identification on the data of Group 3 
 

In this benchmark study, six blind data sets are also used to verify the conclusions obtained in 

the above sections. The blind data are provided without knowledge about the wind condition. 

Table 7 shows the MAC values between the identified mode shapes of the second mode from the 

six blind data sets. It is seen that the values from the first four data sets are larger than 0.6, 

especially for Data 1, 2 and 4 whose MAC values are quite close to 1 (larger than 0.98). By 

plotting the mode shapes identified using these three data sets, it is found that they are all 

consistent and reasonable. The mode shape obtained from Data 3 is also obtained and shown in Fig. 

22. In this figure, the motion in the vertical direction is agreeable while the one in the transverse 

direction is not. This means that the mode is marginally identifiable. Table 8 shows the s/n ratio 

obtained from the six blind data sets. The values for the second mode from Data 1 and 2 are larger 

than 1,000, indicating that the mode is reliably identifiable from these two data sets. For Data 3, 

the value is equal to 28, which is slightly less than the critical value. It is found that only the mode 

shape in the vertical direction is identifiable from this data set. For Data 4, the value is marginally 

larger than the critical value, but the mode shape is identifiable as expected. Data 5 and 6 give rise 

to very low s/n ratio for the second mode; they are unable to provide correct identification of the 

mode shape.  
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Table 7 MAC values between the mode shapes identified from data sets of Group 3 (2nd mode) 

Mode 2 Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 

Data 1 1.000  1.000  -0.635  0.988  -0.145  -0.127  

Data 2 1.000  1.000  -0.625  0.989  -0.154  -0.143  

Data 3 -0.635  -0.625  1.000  -0.643  0.105  0.022  

Data 4 0.988  0.989  -0.643  1.000  -0.180  -0.214  

Data 5 -0.145  -0.154  0.105  -0.180  1.000  0.343  

Data 6 -0.127  -0.143  0.022  -0.214  0.343  1.000  

 

 
Table 8 Signal to noise ratios in different modes and data sets (Group 3) 

   Mode 

Data  
1 2 3 4 5 6 

1 9873  5966  957  1076  164  777  

2 6169  2441  1063  390  49  865  

3 1315  28  13  47  93  57  

4 679  92  255  69  24  128  

5 1788  3  122  119  46  87  

6 938  4  28  32  27  115  

 

 

 

Fig. 22 Mode shape of the 2nd mode from Data 3 of Group 3 (0.225 Hz, 2.16%) 

 

 

5. Conclusions  
 

The mode identifiability of a cable-stayed bridge using ambient vibration data has been studied 

by the fast Bayesian FFT method. The acceleration response data acquired from the bridge under 

normal wind conditions and under typhoon conditions are used for this study. It is found that the 
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second mode is a deficient mode which cannot be reliably identified when using the data acquired 

under normal wind conditions. With the identified most probable values (MPVs) and the 

associated posterior uncertainties of modal parameters from the fast Bayesian FFT method, the 

signal to noise (s/n) ratio values are derived to evaluate the mode identifiability of target modes. 

Based on the modal analysis results from thirteen non-blind data sets, a critical value equal to 

about 50 is suggested for the s/n ratio to examine the mode identifiability of the second mode 

given measured acceleration data from the bridge.  

The modal s/n ratio and its critical value have been verified using six blind data sets without 

knowledge about the wind condition. It is found that the first two data sets lead to very high values 

of the s/n ratio (much higher than the critical value) for the second mode, indicating the capability 

of reliably identifying the mode shape from these two data sets. The third and fourth data sets 

generate the s/n ratio values for the second mode close to the critical value: one is slightly less than 

the critical value and the other is slightly larger than the critical value. As a result, it is marginal to 

identify the second mode by using these two data sets. Because of giving rise to very low values of 

the s/n ratio (much lower than the critical value) for the second mode, the fifth and sixth data sets 

are definitely unable to correctly identify the mode shape of the second mode. The above 

conclusions have been confirmed by comparing the identified mode shapes from the blind data 

with those from the non-blind data acquired under typhoon conditions.  
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