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Abstract.  In this study, the Bayesian probabilistic framework is investigated for modal identification and 
modal identifiability based on the field measurements provided in the structural health monitoring 
benchmark problem of an instrumented cable-stayed bridge named Ting Kau Bridge (TKB). The 
comprehensive structural health monitoring system on the cable-stayed TKB has been operated for more 
than ten years and it is recognized as one of the best test-beds with readily available field measurements. The 
benchmark problem of the cable-stayed bridge is established to stimulate investigations on modal 
identifiability and the present paper addresses this benchmark problem from the Bayesian prospective. In 
contrast to deterministic approaches, an appealing feature of the Bayesian approach is that not only the 
optimal values of the modal parameters can be obtained but also the associated estimation uncertainty can be 
quantified in the form of probability distribution. The uncertainty quantification provides necessary 
information to evaluate the reliability of parametric identification results as well as modal identifiability. 
Herein, the Bayesian spectral density approach is conducted for output-only modal identification and the 
Bayesian model class selection approach is used to evaluate the significance of different modes in modal 
identification. Detailed analysis on the modal identification and modal identifiability based on the 
measurements of the bridge will be presented. Moreover, the advantages and potentials of Bayesian 
probabilistic framework on structural health monitoring will be discussed. 
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1. Introduction 
 

Structural health monitoring of civil engineering infrastructures has received extensive 

attention for decades (Balageas et al. 2010, Brownjohn 2007, Chang et al. 2003, Doebling et al. 

1996, Haldar 2013, Karbhari and Ansari 2009, Li and Ou 2011, Sohn 2004). Numerous 

methodologies have been proposed to accomplish various objectives of structural health 

monitoring. Benchmark studies on worldwide infrastructures offer open platforms for comparison 

among different structural health monitoring algorithms and strategies (Johnson et al. 2004, Ko 
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and Ni 2005, Li et al. 2014, Ni et al. 2009, Zhou et al. 2013). 

The structural health monitoring system on a cable-stayed bridge named Ting Kau Bridge 

(TKB) was devised by the Highways Department of the Hong Kong SAR Government to monitor 

the structural integrity and performance under in-service condition. The structural response and 

operating condition have been monitored with more than 230 sensors including accelerometers, 

strain gauges, displacement transducers, anemometers, temperature sensors, GPS and 

weigh-in-motion sensors (Ko and Ni 2005, Ni et al. 2011, Wong 2004, Wong 2007). Long-term 

monitoring of the cable-stayed bridge has been conducted for more than ten years and the database 

is recognized as one of best test-beds with readily available field measurements. Based on the 

instrumented TKB, the structural health monitoring benchmark problem has been established for 

the investigation of modal identifiability (Ni et al. 2011). In contrast to the blooming development 

of output-only modal identification methods, the identifiability of the modal identification was 

scarcely studied so the special theme of this benchmark problem is to stimulate mechanism studies 

on modal identifiability. The measurements include acceleration responses acquired by the 

accelerometers mounted on the bridge deck and the wind conditions captured by the anemometers 

installed on the cable tower and bridge deck. Therefore, the modal identifiability can be 

investigated under different excitation conditions. 

In this paper, we address this benchmark problem with the Bayesian probabilistic framework. 

Bayesian inference provides a rigorous framework to investigate the modal identifiability of 

dynamical systems (Beck 2010, Beck and Katafygiotis 1998, Box and Tiao 1973, Grigoriu 2012, 

Yuen 2010, Yuen and Kuok 2011) and it has been widely applied in different engineering 

disciplines (Au and Zhang 2012, Au et al. 2012a, 2012b, 2013, Chiachío et al. 2014, Grigoriu and 

Field 2008, Hoi et al. 2009, Li et al. 2004, Mu and Yuen 2015, Ng et al. 2015, Sohn and Law 1997, 

Papadimitriou et al. 2011, Yan et al. 2009, Yuen et al. 2013, Yuen and Kuok 2015, 2016). An 

appealing feature of Bayesian inference is that not only the optimal values of the modal parameters 

can be obtained but also the associated estimation uncertainty can be quantified in the form of 

probability distribution. The uncertainty quantification provides the necessary information to 

evaluate the reliability of the parametric identification results as well as modal identifiability. In 

this paper, the Bayesian spectral density approach (Katafygiotis and Yuen 2001) and the Bayesian 

model class selection approach (Beck and Yuen 2004) are utilized and investigated in this study. In 

particular, the Bayesian spectral density approach is applied for output-only modal identification. 

This frequency-domain approach utilizes the statistical characteristics of the discrete Fourier 

transform to construct the likelihood function of the modal parameters. Then, the Bayesian model 

class selection approach is used to evaluate the identifiability of different modes in modal 

identification. This approach gives the quantitative expression of the plausibility of the modal 

models with different number of modes. By comparing these plausibilities, the significance of 

different modes can be ranked. The formulation of the two applied Bayesian approaches and the 

detailed analysis of the cable-stayed bridge field measurement will be presented in the following 

sections. 

 

 

2. Formulation  
 
2.1 Bayesian spectral density approach for output-only modal identification 
 

The Bayesian spectral density approach (Katafygiotis and Yuen 2001) is a frequency-domain 
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output-only modal identification approach and it can also be applied for model updating of 

nonlinear dynamical systems using stationary response measurements (Yuen and Beck 2003). It 

utilizes the statistical properties of the discrete Fourier transform to construct the likelihood 

function of the modal parameters. By applying the Bayesian spectral density approach on the 

measured structural response, the optimal modal parameters and the associated estimation 

uncertainty can be obtained. Successful applications on field structural health monitoring studies 

demonstrated the efficacy of the approach (Kuok and Yuen 2012, Kuok and Yuen 2013). The 

formulation of this approach is presented as follows. 

Consider a linear dynamical system with 𝑁𝑑 degrees of freedom (DOFs) and its equation of 

motion is given by 

𝑴𝒙̈ + 𝑪𝒙̇ + 𝑲𝒙 = 𝑻0𝑭                             (1) 

where 𝑴, 𝑪 and 𝑲 are the mass, damping and stiffness matrix, respectively; 𝑻0 is a force 

distributing matrix; and the external excitation 𝑭 is modeled as zero-mean Gaussian white noise 

vector process with spectral intensity matrix 𝑺𝐹(𝜔) = 𝑺𝐹0. Using modal analysis, the generalized 

coordinates 𝒙  are transformed to the modal coordinates with 𝒙(𝑡) = 𝚽𝒒(𝑡)  where 𝒒 =

[𝑞1, 𝑞2, … , 𝑞𝑁𝑑
]

𝑇
 is the modal coordinate vector and 𝚽 = [𝝓1, 𝝓2, … , 𝝓𝑁𝑑

]
𝑇

 is the mode shape 

matrix. Therefore, the equation of motion in Eq. (1) can be uncoupled 

𝑞̈𝑟 + 2𝜁𝑟𝜔𝑟𝑞̇𝑟 + 𝜔𝑟
2𝑞𝑟 = 𝑓𝑟,   𝑟 = 1,2, … , 𝑁𝑑                      (2) 

where 𝜔𝑟, 𝜁𝑟 and 𝑓𝑟 are the modal frequency, damping ratio and modal force of the 𝑟-th mode, 

respectively. The modal force vector 𝒇 = [𝑓1, 𝑓2, … , 𝑓𝑁𝑑
]

𝑇
 can be obtained: 𝒇 = (𝑴𝚽)−1𝑻0𝑭 so 

it is also a zero-mean Gaussian white noise vector process and its spectral intensity matrix is 

𝑺𝑓(𝜔) = 𝑺𝑓0 = (𝑴𝚽)−1𝑻0𝑺𝐹0𝑻0
𝑇(𝑴𝚽)−𝑇. 

Let Δ𝑡 denote the sampling time interval and 𝒒(𝑛) denote the discrete structural response at 

time the 𝑛 -th time step. The measurement data set consists of 𝑁  discrete time instants: 

𝒀𝑁 = *𝒚(𝑛), 𝑛 = 0,1,2, … , 𝑁 − 1+. At the 𝑛-th time step, the measurement 𝒚(𝑛) contains 𝑁𝑜 

channels of structural response corrupted by the measurement noise 𝜺 

𝒚(𝑛) = 𝑳0𝒒(𝑛) + 𝜺(𝑛)                            (3) 

where 𝑳0 is the observation matrix comprised of zeros and ones to pick up the measured DOFs. 

The measurement noise 𝜺  is modeled as zero-mean Gaussian independent and identical 

distributed (i.i.d.) process with covariance matrix 𝚺𝜀. 

The uncertain modal parameter vector to be identified is denoted as 𝜽 and it is comprised of 

the structural modal parameters (i.e., modal frequencies, damping ratios and mode shape 

components) of the contributing modes and the characteristic parameters of the spectral intensity 

of the excitation and the measurement noise. To identify the uncertain modal parameter vector 𝜽, 

a discrete estimator of the power spectral density matrix is utilized (Katafygiotis and Yuen 2001) 

𝑺𝑦,𝑁(𝜔𝑘) =
Δ𝑡

2𝜋𝑁
∑ 𝒚(𝑛)𝒚(𝑛′)𝑇 exp,−𝑖𝜔𝑘(𝑛 − 𝑛′)Δ𝑡-𝑁−1

𝑛,𝑛′=0                 (4) 

where 𝜔𝑘 = 𝑘Δ𝜔, 𝑘 = 0,1, … , 𝑁𝑛𝑞𝑦  with 𝑁𝑛𝑞𝑦 = 𝐼𝑁𝑇(𝑁/2) and Δ𝜔 = (2𝜋)/(𝑁Δ𝑡). Assume 

that 𝑁𝑠 independent sets of i.i.d. time histories are available: 𝒀 = {𝒀𝑁
(𝑠)

, 𝑠 = 1,2, … , 𝑁𝑠}, the 

corresponding spectral density matrix estimator 𝑺𝑦,𝑁
(𝑠) (𝜔𝑘), 𝑠 = 1,2, … , 𝑁𝑠, can be calculated by 
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using Eq. (4) and the averaged spectral density estimator can be obtained by using 

𝑺𝑦,𝑁
𝑎𝑣𝑔(𝜔𝑘) =

1

𝑁𝑠
∑ 𝑺𝑦,𝑁

(𝑠) (𝜔𝑘)𝑁𝑠
𝑠=1                           (5) 

Given that 𝑁𝑠 ≥ 𝑁𝑜, the averaged spectral density matrix estimator 𝑺𝑦,𝑁
𝑎𝑣𝑔(𝜔𝑘) follows the 

central complex 𝑁𝑜 -variate Wishart distribution with  𝑁𝑠  DOFs and its probability density 

function (PDF) is (Katafygiotis and Yuen 2001) 

𝑝(𝑺𝑦,𝑁
𝑎𝑣𝑔(𝜔𝑘)|𝜽, 𝐶) =

𝜅1|𝑺𝑦,𝑁
𝑎𝑣𝑔

(𝜔𝑘)|
𝑁𝑠−𝑁𝑜

|𝐸[𝑺𝑦,𝑁(𝜔𝑘)|𝜽,𝐶]|
𝑁𝑠

exp .−𝑁𝑠tr {𝐸[𝑺𝑦,𝑁(𝜔𝑘)|𝜽, 𝐶]
−1

𝑺𝑦,𝑁
𝑎𝑣𝑔(𝜔𝑘)}/     (6) 

where the constant 𝜅1 = 𝜋−
𝑁𝑜(𝑁𝑜−1)

2 𝑁𝑠
𝑁𝑜(𝑁𝑠−𝑁𝑜)

/ ∏ (𝑁𝑠 − 𝑠)!
𝑁𝑠
𝑠=1 ; 𝐸,∙-  is the mathematical 

expectation; |∙| and tr*∙+ denote the determinant and trace of a matrix, respectively; 𝐶 is the 

model class to specify the concerned modes. With a properly selected frequency range Ξ, the 

averaged spectral density estimator in 𝑺Ξ
𝑎𝑣𝑔

= {𝑺𝑦,𝑁
𝑎𝑣𝑔(𝜔𝑘), 𝜔𝑘 ∈ Ξ}  are approximately 

independent (Yuen et al. 2002) and its PDF is given by 

𝑝(𝑺Ξ
𝑎𝑣𝑔

|𝜽, 𝐶) = ∏ 𝑝(𝑺𝑦,𝑁
𝑎𝑣𝑔(𝜔𝑘)|𝜽, 𝐶)𝜔𝑘∈Ξ                       (7) 

Using the Bayes‟ theorem, the posterior PDF of the uncertain modal parameter vector 𝜽 is 

𝑝(𝜽|𝑺Ξ
𝑎𝑣𝑔

, 𝐶) = 𝜅2𝑝(𝜽|𝐶)𝑝(𝑺Ξ
𝑎𝑣𝑔

|𝜽, 𝐶)                      (8) 

where 𝜅2 is a normalizing constant such that integrating the right hand side over the parameter 

space yields unity; 𝐶  is the model class to be presented in Section 2.2; 𝑝(𝜽|𝐶)  and 

𝑝(𝑺Ξ
𝑎𝑣𝑔

|𝜽, 𝐶) are the prior PDF and likelihood function, respectively. The prior PDF 𝑝(𝜽|𝐶) 

represents the prior information of the modal parameters in 𝜽. The posterior PDF can be well 

approximated by a Gaussian distribution with mean 𝜽̂ and covariance matrix 𝚺𝜽̂ (Box and Tiao 

1973, Yuen 2010). The optimal parameter vector 𝜽̂ can be determined by maximizing the 

posterior PDF. To enhance the computation condition, an objective function is defined as the 

negative logarithm of the posterior PDF without taking the terms that do not depend on the 

uncertain parameters (Katafygiotis and Yuen 2001) 

𝐽(𝜽) = − ln 𝑝(𝜽|𝐶) + 𝑁𝑠 ∑ ln|𝐸[𝑺𝑦,𝑁(𝜔𝑘)|𝜽, 𝐶]| + tr {𝐸[𝑺𝑦,𝑁(𝜔𝑘)|𝜽, 𝐶]
−1

𝑺𝑦,𝑁
𝑎𝑣𝑔(𝜔𝑘)}𝜔𝑘∈Ξ  (9) 

The optimal parameters vector 𝜽̂ can be obtained equivalently by minimizing the objective 

function 

𝜽̂ = arg min𝜽 𝐽(𝜽)                         (10) 

Furthermore, the covariance matrix 𝚺𝜽̂ can be calculated by taking the inverse of the Hessian 

of the objective function evaluated at 𝜽 = 𝜽̂ 

𝚺𝜽̂ = 𝑯(𝜽̂)
−1

                             (11) 

where 𝑯(𝜽̂) ≡ 𝛁𝐽(𝜽)𝛁𝑇|𝜽=𝜽̂ . With the uniform prior PDF, the elements of 𝑯(𝜽̂)  can be 

expressed as 
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𝐻(𝑟,𝑟′)(𝜽̂) = −
𝜕2 ln 𝑝(𝜽|𝐶)

𝜕𝜃𝑟𝜕𝜃𝑟′

+ 𝑁𝑠 [ ∑
𝜕2

𝜕𝜃𝑟𝜕𝜃𝑟′
{ln|𝐸[𝑺𝑦,𝑁(𝜔𝑘)|𝜽, 𝐶]| + 𝑡𝑟 .{𝐸[𝑺𝑦,𝑁(𝜔𝑘)|𝜽, 𝐶]

−1
𝑺𝑦,𝑁

𝑎𝑣𝑔(𝜔𝑘)}/}

𝜔𝑘∈Ξ

]

𝜽=𝜽̂

 

(12) 

By applying the Bayesian spectral density approach to the measured structural acceleration 

response, the modal parameters can be identified and the associated estimation uncertainties can be 

quantified. 

 

2.2 Bayesian model class selection approach for modal identifiability 
 

To investigate the significance of different modes on modal identification, the Bayesian model 

class selection approach (Beck and Yuen 2004) is utilized. This approach has been applied to 

various engineering problems (Chiu et al. 2012, Hoi et al. 2013, Mu et al. 2014, Yuen and Kuok 

2010, Yuen and Mu 2015). Herein, a model class is referred to a modal model with a specified 

number of modes to be identified. In Bayesian model class selection, the plausibility is used as a 

relative measure to evaluate the modal models for modal identification. By comparing the 

plausibilities, the modal models can be ranked and the most plausible one can be determined. As a 

result, one can determine the significant modes. 

Let {𝐶1, 𝐶2, … , 𝐶𝑁𝑐
} denote the model class candidate set and 𝐶 is a particular candidate. 

Using the Bayes‟ theorem, the plausibility of model class 𝐶 is expressed as 

𝑃(𝐶|𝐷) =
𝑝(𝐷|𝐶)𝑃(𝐶)

𝑝(𝐷)
             𝐶 ∈ {𝐶1, 𝐶2, … , 𝐶𝑁𝑐

}                (13) 

where 𝐷 is the dynamical measurements of the underlying structure. The prior plausibilities 

satisfy ∑ 𝑃(𝐶𝑗)
𝑁𝑐
𝑗=1 = 1 . The denominator 𝑝(𝐷)  is a normalizing constant such that 

∑ 𝑃(𝐶𝑗|𝐷)
𝑁𝑐
𝑗=1 = 1. The factor 𝑝(𝐷|𝐶) is called the evidence for the model class 𝐶 provided by 

the data 𝐷. By taking uniform prior (i.e., 𝑃(𝐶) = 1/𝑁𝑐), the plausibility 𝑃(𝐶|𝐷) is proportional 

to its evidence so maximizing the plausibility is equivalent to maximizing the evidence. Based on 

the law of total probability, the evidence 𝑝(𝐷|𝐶) is given by 

𝑝(𝐷|𝐶) = ∫ 𝑝(𝐷|𝜽, 𝐶)𝑝(𝜽|𝐶)𝑑𝜽
Θ

                      (14) 

where 𝜽 = 𝜽(Θ) ∈ ℝ𝑁𝜃  is the parameter vector in the parameter space Θ and it represents 

different models in the model class 𝐶. The PDF 𝑝(𝐷|𝜽, 𝐶) is the likelihood function and 𝑝(𝜽|𝐶) 

is the prior PDF of the uncertain parameter vector 𝜽  specified by the user. For globally 

identifiable cases (Beck and Katafygiotis 1998, Yuen 2010), the posterior PDF for 𝜽 given a large 

amount of data 𝐷 can be well approximated as Gaussian so the integral in Eq. (14) can be 

approximated by Laplace‟s asymptotic approximation (Beck and Yuen 2004) 

𝑝(𝐷|𝐶) ≈ 𝑝(𝐷|𝜽̂, 𝐶)ℱ                           (15) 

where 𝜽̂ is the optimal parameter vector. The maximum likelihood  𝑝(𝐷|𝜽̂, 𝐶) quantifies the 
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data fitting performance of the model class 𝐶 and it can be obtained by using the Bayesian 

spectral density approach. The Ockham factor ℱ  is a natural penalty against complicated 

parameterization (Beck and Yuen 2004, Gull 1988) 

ℱ = 𝑝(𝜽̂|𝐶)(2𝜋)𝑁𝜃/2|𝑯(𝜽̂)|
−1/2

                     (16) 

where 𝑯(𝜽̂) is the Hessian matrix given by Eq. (12). Consequently, the evidence of a model class 

represents the overall performance of data fitting capability (measured by the maximum likelihood) 

and the robustness of the model class (measured by the Ockham factor). By substituting the modal 

identification results into Eq. (15), the evidence of each model class can be obtained. Therefore, 

the plausibilities of the model classes can be calculated with Eq. (13). By comparing the 

plausibilities of all the model classes, the optimal model class is the one with the highest 

plausibility. The most plausible model class possesses the optimal balance between data fitting 

capability and robustness to modeling error (Grigoriu 2012, Yuen 2010, Zellner et al. 2001). 

 

 

3. Application to the structural health monitoring benchmark study of Ting Kau 
Bridge 
 

3.1 Background information of the monitoring system and measurement database 
 
The layout of the Ting Kau Bridge (TKB) for this benchmark problem is shown in Fig. 1. It is a 

three-tower cable-stayed bridge with two main spans of 448 m and 475 m and two side spans of 

127 m each. The bridge deck contains two carriageways with identical width of 18.8 m. The 

locations of the monitoring sensors are specified in Fig. 1. Twenty-four channels of acceleration 

response were measured at widely spread locations of the bridge. In particular, the accelerometers 

were distributed in eight deck sections. In each section, one accelerometer was placed at the 

central line to measure the transverse acceleration of the crossgirder and two accelerometers were 

placed on the two sides of the bridge deck to measure the vertical acceleration at the girders. For 

the wind condition, seven anemometers were installed to record the wind speed and wind direction. 

As shown in Fig. 1, three anemometers were mounted at the top the three towers and the other four 

were placed on the bridge deck. 

The database of the benchmark study contains sixteen independent sets of field measurements 

of the TKB. The first ten sets of data contained both the acceleration response data and wind speed 

data. Specifically, Data Sets 1 to 6 were monitored under calm wind condition while Data Sets 7 to 

10 were monitored under severe wind condition. On the other hand, Data Sets 11 to 16 are blind 

data containing only acceleration response data. These six data sets were captured under different 

wind conditions but the monitored date and time as well as the corresponding wind condition are 

not provided on purpose. The monitored duration of each data set was one hour. The sampling 

frequency of the acceleration response and the wind speed were 25.6 Hz and 2.56 Hz, respectively. 

Detailed descriptions about the structure, the sensing system and the monitored data sets of 

benchmark study can be found in (Ko and Ni 2005, Ni et al. 2015, Wong 2004). 

According to the locations of the accelerometers (shown in Fig. 1), the acceleration 

measurements can be categorized into three groups: Group I refers to the measurements at 

locations 1, 4, 7, 10, 13, 16, 19 and 22; Group II refers to the measurements at locations 2, 5, 8, 11, 

14, 17, 20 and 23; and the measurements of the remaining eight channels are categorized as Group 
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III. The measurements in Groups I and III are vertical response of the two sides of the bridge deck 

while the measurements in Group II are transverse acceleration at the central line of the bridge 

deck. The acceleration response histories measured at location 10 (Group I), 11 (Group II) and 12 

(Group III) shown in Fig. 2. The left column corresponds to calm wind condition (Data Set 4) 

while the right column corresponds to severe wind condition (Data Set 7). Fig. 3 shows the 

standard deviation of the acceleration response and the averaged wind speed of the first ten data 

sets. In this figure, the three lines in the upper subplot represent the average of each group of 

sensors, and the two lines in the lower subplot represent the average of the three anemometers at 

the tower and that of the two anemometers at the bridge deck. These values are summarized in 

Table 1. It is found that the averaged standard deviation of the acceleration response obtained from 

the accelerometers in Groups I and III are almost identical while those from Group II are 

significantly smaller. In other words, the vertical acceleration response of the bridge decks has 

higher amplitude than the transverse acceleration at the central line. From the wind speed statistics 

in Table 1, the measurements at the towers are generally higher than the deck especially under 

typhoon wind loading (Data Sets 7 to 10) due to the elevation difference of the anemometers. It is 

observed that the amplitude of the acceleration of Data Sets 1, 3, 4, 5 and 6 are serval times higher 

than the others for all Groups I, II and III. It is interesting to note that these five data sets were 

obtained under calm wind condition, indicating that the traffic loading induces dominating effect 

on the response of the bridge. Under the severe wind loading, the bridge was closed and no 

vehicles were allowed to pass through. For Data Set 2, the measurements were obtained on a 

public holiday of the Lunar New Year. This reveals that the structural acceleration is more 

dominated by heavy traffic loading. Table 2 shows the standard deviation of the acceleration 

response of the six blind data sets (Data Sets 11 to 16). 

 

 

 

 

Fig. 1 Layout of Ting Kau Bridge with the locations of the monitoring sensors (provided by Ni et al. 2015) 
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Fig. 2 Acceleration measurements of Data Sets 4 and 7 of Sensors 10, 11 and 12 

 

 

Consistent with the first ten data sets, the vertical acceleration of the bridge decks (Groups I 

and III) were higher than the transverse acceleration at the central line (Group II). On the other 

hand, the amplitude of the acceleration for Data Set 15 achieved the level of other data sets 

monitored under calm wind condition and heavy traffic loading. However, the amplitudes of all 

other data sets are similar as the results obtained under the condition with limited traffic loading 

(Data Set 2). In the following, the modal identification results from the Bayesian spectral density 

approach will be presented. 
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Fig. 3 Standard deviations of the acceleration response and averaged wind speed 
 

Table 1 Statistics of the measured acceleration response and wind speed 

Data 

Set 

Monitoring Period 

(hh:mm-hh:mm, 

dd/mm/yyyy) 

Standard deviation of acceleration 

(m/s2) 
Mean wind speed (m/s) 

Group I Group II Group III Tower Deck 

1 
15:00-16:00, 

28/12/1999 
0.092 0.009 0.091 2.835 1.716 

2 
15:00-16:00, 

18/02/1999 
0.022 0.003 0.023 5.296 3.474 

3 
15:00-16:00, 

01/03/1999 
0.083 0.008 0.081 1.963 3.054 

4 
15:00-16:00, 

21/06/1999 
0.086 0.008 0.085 4.576 3.483 

5 
15:00-16:00, 

24/07/1999 
0.095 0.009 0.094 5.540 4.337 

6 
15:00-16:00, 

12/08/1999 
0.089 0.009 0.091 7.291 4.618 

7 
03:00-04:00, 

07/06/1999 
0.015 0.004 0.015 16.180 8.913 

8 
02:00-03:00, 

23/08/1999 
0.019 0.003 0.019 21.560 11.315 

9 
06:00-07:00, 

16/09/1999 
0.037 0.009 0.037 32.479 14.867 

10 
15:00-16:00, 

16/09/1999 
0.017 0.008 0.017 32.190 13.492 
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Table 2 Standard deviation of acceleration of the blind data sets 

Data Set Group I (m/s2) Group II (m/s2) Group III (m/s2) 

11 0.008 0.002 0.008 

12 0.010 0.002 0.010 

13 0.027 0.007 0.028 

14 0.015 0.005 0.015 

15 0.092 0.009 0.092 

16 0.021 0.002 0.021 

 

 

3.2 Modal identification with the field measurement of Ting Kau Bridge 
 

In the following, representative results measured under different wind condition is discussed. 

Fig. 4 shows the response spectra of the 24-channel acceleration measurement of Data Set 4 (under 

calm wind condition) and Data Set 7 (under severe wind condition). The subplots on the three 

rows refer to the response spectra of Groups I, II and III, respectively. Since Data Sets 4 and 7 

were measured in the same month (i.e., June 1999), they provide a fair ground to demonstrate the 

distinction of different wind conditions. The spectra demonstrate that the energy distribution varies 

with the monitoring location and excitation condition. Similar patterns are observed in Figs. 4a and 

4e (or Figs. 4(b) and 4(f)) since the acceleration responses on the two sides of the bridge deck 

(Groups I and III) are highly symmetrical. For the spectra of Group II sensors, the magnitude is 

much lower and the energy distribution over the frequency range is substantially different from 

Groups I and III. Moreover, the maxima occur at the first mode (around 0.16 Hz) in Groups I and 

III but it occurs at the third mode (around 0.26 Hz) under the calm wind condition (Data Set 4) and 

at the second mode (around 0.23 Hz) under the severe wind condition (Data Set 7) in Group II. 

Such difference occurs because vertical accelerations were measured by Groups I and III sensors. 

As a result, the first mode is more pronounced. On the other hand, the transverse accelerations 

were measured by Group II sensors and the first mode does not have significant contribution to 

this direction. 

The Bayesian spectral density approach is applied to the measured acceleration response for 

modal identification. The modal parameters of the first ten modes are identified. Note that each 

channel of the measurements contains significant contents of some of the ten modes only. 

However, by using simultaneously all channels of measurements in each group, all the ten modes 

can be identified. First, the identified results of the modal frequencies for Data Sets 4 and 7 are 

discussed. The identified values, the standard deviations and the coefficients of variation (COVs) 

are summarized in Table 3 and these identification results are also shown in Fig. 5 for illustration 

convenience. In this figure, the error bars indicate the 68% credible intervals and these intervals 

are sufficiently small to confirm the adequacy of measurements for modal identification. In 

addition, the results presented in Ni et al. (2015) are also shown in this figure for reference. Ni et 

al. (2015) applied the stochastic subspace identification technique to the measured 24-channel 

acceleration response for the identification of the modal frequencies. It can be clearly observed 

from Fig. 5 that the identified values of the two approaches are generally in good agreement. It is 
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found that except the fourth mode, the modal frequencies of the first seven modes obtained from 

Data Set 7 are higher than those from Data Set 4. This indicates some mild nonlinearity of the 

structural response and slight degradation of the structural stiffness under the severe wind 

condition. The standard deviations provide the estimation of the posterior uncertainty of the 

identified values. They are all in an acceptable range and all the COVs are less than 0.041. On the 

other hand, Fig. 6 shows the identified damping ratios with 68% credible intervals of Data Sets 4 

and 7. Note that no published result of the damping ratios is available for comparison. By 

comparing with the modal frequencies, the variation of the damping ratios and hence the 

corresponding width of the credible intervals are much larger. This is consistent with other studies 

in the literature (Balageas et al. 2010, Brownjohn 2007, Chang et al. 2003, Doebling et al. 1996, 

Sohn 2004). The identified damping ratios vary between 0.4% and 5.8% and the standard 

deviations are in the range of 0.13% to 2.6%. 

 

 

Fig. 4 Response spectra of the acceleration measurements of Data Sets 4 and 7 
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(a) 

 
(b) 

Fig. 5 Identified modal frequencies of (a) Data Set 4 and (b) Data Set 7 

 

 
Table 3 Identification results of the modal frequencies 

Data 

Set 
Group 

Mode 

Para. 
1 2 3 4 5 6 7 8 9 10 

4 

I 

𝜔̂𝑛 (Hz) 0.1610 0.2267 0.2571 0.2940 0.3015 0.3188 0.3575 0.3734 0.3780 0.4022 

𝜎𝜔𝑛
(Hz) 0.0009 0.0078 0.0013 0.0007 0.0003 0.0005 0.0003 0.0005 0.0004 0.0031 

COV 0.0056 0.0344 0.0051 0.0024 0.0010 0.0016 0.0008 0.0013 0.0011 0.0077 

II 

𝜔̂𝑛 (Hz) 0.1650 0.2265 0.2603 0.2905 0.3011 0.3185 0.3582 0.3702 0.3845 0.3965 

𝜎𝜔𝑛
(Hz) 0.0034 0.0024 0.0008 0.0006 0.0015 0.0005 0.0011 0.0022 0.0086 0.0039 

COV 0.0206 0.0106 0.0031 0.0021 0.0050 0.0016 0.0031 0.0059 0.0224 0.0098 

III 

𝜔̂𝑛 (Hz) 0.1652 0.2275 0.2579 0.2900 0.3012 0.3130 0.3623 0.3744 0.3775 0.3997 

𝜎𝜔𝑛
(Hz) 0.0008 0.0069 0.0017 0.0005 0.0005 0.0003 0.0006 0.0003 0.0004 0.0006 

COV 0.0048 0.0303 0.0066 0.0017 0.0017 0.0010 0.0017 0.0008 0.0011 0.0015 

7 

I 

𝜔̂𝑛 (Hz) 0.1659 0.2274 0.2624 0.2902 0.3021 0.3225 0.3605 0.3730 0.3854 0.3960 

𝜎𝜔𝑛
(Hz) 0.0005 0.0004 0.0007 0.0008 0.0010 0.0004 0.0008 0.0004 0.0005 0.0004 

COV 0.0030 0.0018 0.0027 0.0028 0.0033 0.0012 0.0022 0.0011 0.0013 0.0010 

II 

𝜔̂𝑛 (Hz) 0.1667 0.2298 0.2647 0.2913 0.3044 0.3234 0.3589 0.3694 0.3785 0.3919 

𝜎𝜔𝑛
(Hz) 0.0068 0.0004 0.0004 0.0005 0.0030 0.0005 0.0009 0.0040 0.0038 0.0045 

COV 0.0408 0.0017 0.0015 0.0017 0.0099 0.0015 0.0025 0.0108 0.0100 0.0115 

III 

𝜔̂𝑛 (Hz) 0.1682 0.2295 0.2654 0.2916 0.3031 0.3246 0.3637 0.3742 0.3860 0.3946 

𝜎𝜔𝑛
(Hz) 0.0005 0.0003 0.0007 0.0006 0.0005 0.0028 0.0004 0.0004 0.0038 0.0050 

COV 0.0030 0.0013 0.0026 0.0021 0.0016 0.0086 0.0011 0.0011 0.0098 0.0127 
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(a) 

 
(b) 

Fig. 6 Identified damping ratios of (a) Data Set 4 and (b) Data Set 7 

 

 

The identified modal frequencies for all the sixteen data sets is shown in Fig. 7. The error bars 

again represent the 68% credible intervals. For all the three groups of sensors, the identified modal 

frequencies are similar. Under different monitoring conditions, the difference between the 

maximum and minimum of the modal frequencies is within 6.3%, 5.9% and 5.3% for Groups I, II 

and III, respectively. The variation trend and the estimation uncertainty of the identified modal 

frequencies obtained from Groups I and III are similar while the ones from Group II are different 

to certain extent. In Groups I and III, the identification results of the first three modes are almost 

identical. From the error bars, it is shown that the estimation uncertainty of the first, fifth, eighth, 

ninth and tenth mode in Group II is larger than that in Groups I and III. On the other hand, it is 

found that the estimation uncertainty of different modes changes substantially under different 

monitoring conditions. This is because different modes were excited under different wind 

conditions. For example, the error bars of the modal frequencies under severe wind condition 

(Data Sets 7 to 10) of the second mode are far narrower than those under calm wind condition 
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(Data Sets 1 to 6) because the second mode is not significant under calm wind condition. This 

issue will be further discussed in the next section of modal identifiability. 

Fig. 8 shows the variation of the damping ratios with the 68% credible interval for the first 

three modes. The highest damping ratios occur in the first mode using Group II sensors and they 

vary between 3.7% and 9.7%. For the rest of the results, the damping ratios are in the range of 

0.12% to 6.2%. It is found that that the fluctuation of the damping ratios and the estimation 

uncertainty are substantially larger than those of the modal frequencies. Regarding the estimation 

results, no statistically significant trend between the damping ratios and the monitoring conditions 

can be concluded. On the other hand, the large posterior uncertainty in the first mode for Data Sets 

7 to 10 and the second mode for Data Sets 1 to 6 indicates the low identifiability of these mode 

under the corresponding wind condition. This issue will be further discussed in the next section. 

 

 

 

Fig. 7 Variation of the identified modal frequencies 
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Fig. 8 Variation of the identified damping ratios 
 

 

3.3 Modal identifiability under different monitoring conditions 
 

In Section 3.2, the modal identification results were obtained by using all channels of 

measurements in each group of sensors and all the first ten modes could be identified. However, 

from the standard deviations shown in Table 3, it can be seen that the significance and 

identifiability vary considerably among these ten modes. If only an individual channel is used, 

only a few modes can be identified. In the following, Bayesian model class selection is performed 

to investigate this issue. A model class is referred to a modal model with a specified number of 

modes for identification. The modal models are evaluated using the plausibility given by Eq. (13). 

By comparing the plausibilities of different modal models, the optimal one can be selected so the 

significant modes can be determined. In this study, ten modal models, representing modal models 

with one to ten modes, are considered. Based on the results shown in Fig. 7, the spectra in the 

frequency range ,0.14, 0.41- Hz is used so that the frequency band covers all these ten modes. 
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Fig. 9 Comparison of the maximum log-likelihood, log-Ockham factor and log-evidence values for 

different model classes of Data Set 4 

 

 

First, the model selection results of Data Sets 4 and 7 are discussed. Fig. 9 shows the results of 

the maximum log-likelihood ln 𝑝(𝐷|𝜽̂, 𝐶), log-Ockham factor ln ℱ and log-evidence ln 𝑝(𝐷|𝐶) 

using measurements from Sensors 10, 11 and 12 of Data Set 4. As indicated in Fig. 1, the three 

sensors are placed near the mid-span cross section on the two sides and the central line of the 

bridge deck. In the same fashion as Fig. 9, Fig. 10 shows the corresponding results for Data Set 7 

in the same fashion. The values of the maximum likelihood and the Ockham factor interpret the 

data fitting capacity and the robustness against modeling error and measurement noise, 

respectively. The evidence is the indicator of the overall performance of these two properties. 

Regarding the results of the maximum log-likelihood, notable increases occur when the number of 

involved modes is small and the increasing rate slows down as the number of modes increases. It 

is because the data fitting capacity is considerably enhanced by adding an additional mode when 

only limited modes are involved. However, as the number of modes increases, the improvement on 
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data fitting capacity saturates. On the other hand, as a penalty for the increasing complicatedness 

of the modal models, the log-Ockham factor decreases monotonically as the number of involved 

modes increases. The log-evidence is given by the sum of the maximum log-likelihood and 

log-Ockham factor according to Eq. (15). It is found that the performance of different modal 

models varies with the monitoring conditions as well as the sensor locations. For Data Set 4 (calm 

wind condition), the optimal modal models of Sensors 10 and 12 contains only two modes but it 

contains three modes for Sensor 11. For Data Set 7 (severe wind condition), more modes are 

involved in the optimal modal models. In particular, the optimal modal model of Sensors 10, 11 

and 12 contains three, five and four modes, respectively. For both data sets, the one-mode modal 

model (the simplest one) obtains the lowest value in the log-evidence for Sensor 11, indicating that 

underfitting occurs. In contrast, the lowest value in the log-evidence for Sensors 11 and 12 refers 

to the ten-mode modal model (the most complicated one), indicating that overfitting occurs. 

The estimated modal frequencies, plausibility and ranking of Data Sets 4 and 7 are shown in 

Tables 4 and 5, respectively. The modal model with ranking 1 refers to the most plausible one and 

the corresponding results are in italic. Note that spurious modes were identified when the number 

of modes is large in a modal model. For example, regarding the results of five modes with Sensor 

10 in Data Set 4 (shown on the sixth row of Table 4), the identified modal frequencies 𝜔̂2 =
0.2083 Hz and 𝜔̂4 = 0.3847 Hz do not match the modal frequencies of the structure (shown in 

Fig. 7 or Table 3). In these tables, only those associated with a physical mode are bolded and the 

actual order of the identified mode is shown in the superscript. In all cases, the optimal modal 

model occupies at least 96.7% of the plausibility. Fig. 11 shows the spectra estimated from the 

acceleration measurements (fluctuating curves) and from the optimal modal models (smooth 

curves). This confirms that the optimal modal models provide sufficient yet simplest possible 

representation of the measured spectra. In all cases, the smooth curves match all the peaks with 

sufficient energy. 

Next, the results of the optimal modal models for all the 24 measurement channels of Data Sets 

4 and 7 are presented in Tables 6 and 7, respectively. In these tables, the belonging group of the 

sensor, the sensor location, the corresponding modes of the structure for the optimal modal model 

and the number of modes involved are listed. The corresponding modes in the optimal modal 

models are marked with asterisk „*‟. It is observed that the optimal modal models involve more 

modes under the severe wind monitoring condition. It is reasonable because more apparent peaks 

are observed in their spectra. Under calm wind condition, the optimal modal models contain 2~4 

modes. However, under severe wind condition, this number is increased to 3~6. Furthermore, in 

the same cross section, the optimal modal models of the two sides of the bridge deck (Groups I 

and III sensors) are similar but those of the central line (Group II) are different. Under calm wind 

condition, the second, ninth and tenth modes are not significant for any sensor and the fifth mode 

is significant only for Sensor 9. On the other hand, under severe wind condition, more modes were 

excited. Only the ninth mode is insignificant for all sensors. 

Finally, the optimal modal models using measurements from Sensors 10 to 12 for all the sixteen 

data sets are summarized in Table 8. The most complicated optimal modal model involves only 

five modes and the one-mode modal model underfits the data in all cases. The first and eighth 

modes are significant for Sensors 10 and 12 as these two modes appear in all the optimal modal 

models. For the third, fourth and seventh modes, although they are not included in the optimal 

modal models of Sensors 10 and 12, they are included in most of the optimal modal models of 

Sensor 11. This is not surprising because the modal response is multiplied with the mode shape 

component that is location dependent. The ninth and tenth modes do not appear in any of the 
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optimal modal models of these three sensors. Moreover, it is found that the selection of the optimal 

modal models is stable under the same wind condition. For Data Sets 1 to 6 (calm wind condition), 

the optimal modal models of Sensors 10 and 12 are identical (involving the first and eight modes) 

and the optimal modal models of Sensor 11 contain two to three modes. Although the acceleration 

amplitude of Data Set 2 was substantially lower than others under calm wind condition (as shown 

in Fig. 3), the optimal modal models of Data Set 2 follow the same pattern as other data sets of 

calm wind condition. For Data Sets 7 to 10 (severe wind condition), the optimal modal models 

contain three to four modes for Sensors 10 and 12 and contain five modes for Sensor 11. 

 

 

 

Fig. 10 Comparison of the maximum log-likelihood, log-Ockham factor and log-evidence values for 

different model classes of Data Set 7 
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Fig. 11 Spectra estimated from acceleration measurements and from optimal models of Data Sets 4 and 7 

 

Finally, the model class selection results provide a basis to determine the monitoring condition 

of the blind data sets. By comparing the results under different wind conditions, the number of 

significant modes in the optimal modal models for Data Sets 11 and 12 follow similar patterns as 

the ones under severe wind condition while the ones of Data Sets 15 and 16 are the same as those 

under calm wind condition. For Data Set 13, all the three optimal modal models involve two 

modes. For Sensors 10 and 12, the optimal modes are the same as the calm wind condition. 

However, Sensor 11 behaves differently and the optimal modal model contains the second and the 

sixth mode. According to Data Sets 1 to 10, the second mode is a common mode only under severe 

wind condition. For Data Set 14, although the involved modes belong to the significant modes 

under severe wind condition, the number of modes involved in the optimal modal models is less 

than those under severe wind condition given by Data Sets 7 to 10. Therefore, it is suspected that 

both Data Sets 13 and 14 were obtained under severe wind condition but the wind level was 

different from the ones associated with Data Sets 7 to 10. 

0.15 0.2 0.25 0.3 0.35
10

-8

10
-6

10
-4

10
-2

P
S

D
Data set 4

0.15 0.2 0.25 0.3 0.35
10

-10

10
-8

10
-6

10
-4

10
-2

Data set 7

0.15 0.2 0.25 0.3 0.35
10

-10

10
-8

10
-6

10
-4

P
S

D

0.15 0.2 0.25 0.3 0.35
10

-10

10
-8

10
-6

10
-4

0.15 0.2 0.25 0.3 0.35
10

-8

10
-6

10
-4

10
-2

P
S

D

Freq. (Hz)

0.15 0.2 0.25 0.3 0.35
10

-10

10
-8

10
-6

10
-4

10
-2

Freq. (Hz)

463



 

 

 

 

 

 

Sin-Chi Kuok and Ka-Veng Yuen 

 

Table 4 Estimated modal frequencies, plausibility and ranking for different model classes of Data Set 4 

Sensor 
No.of 

modes 
𝜔̂1 (Hz) 𝜔̂2 (Hz) 𝜔̂3 (Hz) 𝜔̂4 (Hz) 𝜔̂5 (Hz) 𝜔̂6 (Hz) 𝜔̂7 (Hz) 𝜔̂8 (Hz) 𝜔̂9 (Hz) 𝜔̂10 (Hz) Plausibility Ranking 

10 

1 0.1633
(1) 

─ ─ ─ ─ ─ ─ ─ ─ ─ 2.3410
-19

 3 

2 0.1631
(1)

 0.3726
(8)

 ─ ─ ─ ─ ─ ─ ─ ─ 1.00 1 

3 0.1631
(1)

 0.3726
(8)

 0.4088
(10)

 ─ ─ ─ ─ ─ ─ ─ 5.7910
-6

 2 

4 0.1631
(1)

 0.2194
(2)

 0.3605
(7)

 0.3727
(8)

 ─ ─ ─ ─ ─ ─ 1.1110
-28

 4 

5 0.1631
(1)

 0.2083 0.3726
(8)

 0.3847 0.3964
(10)

 ─ ─ ─ ─ ─ 1.0710
-37

 5 

6 0.1631
(1)

 0.2083 0.2194
(2)

 0.2400 0.2573
(3)

 0.3726
(8)

 ─ ─ ─ ─ 4.1210
-58

 6 

7 0.1631
(1)

 0.1995 0.1995 0.2083 0.2573
(3)

 0.3726
(8)

 0.4091
(10)

 ─ ─ ─ 2.4310
-65

 7 

8 0.1631
(1)

 0.1995 0.2017 0.2029 0.2083 0.2826
(4)

 0.3726
(8)

 0.3908 ─ ─ 6.3110
-80

 8 

9 0.1631
(1)

 0.2083 0.2194
(2)

 0.2400 0.2482 0.3605
(7)

 0.3727
(8)

 0.3866 0.4036
(10)

 ─ 7.1610
-95

 9 

10 0.1631
(1)

 0.1995 0.2083 0.2194
(2)

 0.2362 0.2400 0.2482 0.2845
(4)

 0.3724
(8)

 0.4064
(10)

 1.4810
-103

 10 

11 

 

1 0.2885
(4)

 ─ ─ ─ ─ ─ ─ ─ ─ ─ 1.1310
-62

 10 

2 0.2884
(4)

 0.3575
(7)

 ─ ─ ─ ─ ─ ─ ─ ─ 4.4510
-13

 3 

3 0.2884
(4)

 0.3575
(7)

 0.3736
(8)

 ─ ─ ─ ─ ─ ─ ─ 1.00 1 

4 0.1434 0.2581
(3)

 0.2884
(4)

 0.3575
(7)

 ─ ─ ─ ─ ─ ─ 2.1910
-6

 2 

5 0.2884
(4)

 0.3170
(6)

 0.3576
(7)

 0.3605 0.4096
(10)

 ─ ─ ─ ─ ─ 1.2110
-16

 4 

6 0.1434 0.2031 0.2865 0.2897
(4)

 0.3170
(6)

 0.3576
(7)

 ─ ─ ─ ─ 5.9310
-22

 5 

7 0.1516 0.2582
(3)

 0.2883
(4)

 0.3172
(6)

 0.3538
(7)

 0.3609 0.3735
(8)

 ─ ─ ─ 2.3410
-25

 6 

8 0.1513 0.2031 0.2087 0.2581
(3)

 0.2870 0.2898
(4)

 0.3171
(6)

 0.3580
(7)

 ─ ─ 3.1810
-32

 7 

9 0.1507 0.1992 0.2031 0.2087 0.2581
(3)

 0.2883
(4)

 0.3171
(6)

 0.3506 0.3590
(7)

 ─ 1.0210
-38

 8 

10 0.1522 0.2031 0.2087 0.2379 0.2581
(3)

 0.2731 0.2871 0.2898
(4)

 0.3171
(6)

 0.3580
(7)

 2.1110
-47

 9 

12 

1 0.1644
(1)

 ─ ─ ─ ─ ─ ─ ─ ─ ─ 3.9410
-17

 3 

2  0.1643
(1)

 0.3591
(7)

 ─ ─ ─ ─ ─ ─ ─ ─ 1.00 1 

3 0.1639
(1)

 0.2885
(4)

 0.3593
(7)

 ─ ─ ─ ─ ─ ─ ─ 6.7210
-12

 2 

4 0.1640
(1)

 0.2885
(4)

 0.3567
(7)

 0.3729
(8)

 ─ ─ ─ ─ ─ ─ 1.6210
-27

 4 

5 0.1639
(1)

 0.1977 0.2562
(3)

 0.2885
(4)

 0.3594
(7)

 ─ ─ ─ ─ ─ 9.8010
-41

 5 

6 0.1639
(1)

 0.2245
(2)

 0.2885
(4)

 0.3162
(6)

 0.3567
(7)

 0.3729
(8)

 ─ ─ ─ ─ 3.2210
-52

 6 

7 0.1639
(1)

 0.2246
(2)

 0.2885
(4)

 0.3162
(6)

 0.3567
(7)

 0.3729
(8)

 0.3965
(10)

 ─ ─ ─ 1.1710
-65

 7 

8 0.1635
(1)

 0.2099 0.2567
(3)

 0.2886
(4)

 0.3167
(6)

 0.3566
(7)

 0.3729
(8)

 0.4018
(10)

 ─ ─ 3.6410
-82

 8 

9 0.1635
(1)

 0.2101 0.2566
(3)

 0.2886
(4)

 0.3167
(6)

 0.3500 0.3577
(7)

 0.3729
(8)

 0.3965
(10)

 ─ 6.3610
-86

 9 

10 0.1636
(1)

 0.1977 0.2171 0.2566
(3)

 0.2886
(4)

 0.3167
(6)

 0.3500 0.3577
(7)

 0.3729
(8)

 0.4018
(10)

 3.3910
-92

 10 

 
Table 5 Estimated modal frequencies, plausibility and ranking for different model classes of Data Set 7 

Sensor 
No. of 

modes 
𝜔̂1 (Hz) 𝜔̂2 (Hz) 𝜔̂3 (Hz) 𝜔̂4 (Hz) 𝜔̂5 (Hz) 𝜔̂6 (Hz) 𝜔̂7 (Hz) 𝜔̂8 (Hz) 𝜔̂9 (Hz) 𝜔̂10 (Hz) Plausibility Ranking 

10 

1 0.1667
(1)

 ─ ─ ─ ─ ─ ─ ─ ─ ─ 4.7810
-47

 6 

2 0.1669
(1)

 0.3728
(8)

 ─ ─ ─ ─ ─ ─ ─ ─ 1.0310
-47

 7 

3 0.1662
(1)

 0.2272
(2)

 0.3729
(8)

 ─ ─ ─ ─ ─ ─ ─ 9.7410
-1

 1 

4 0.1662
(1)

 0.2272
(2)

 0.3013
(5)

 0.3730
(8)

 ─ ─ ─ ─ ─ ─ 2.5410
-2

 2 

5 0.1662
(1)

 0.2129 0.2235 0.2272
(2)

 0.3729
(8)

 ─ ─ ─ ─ ─ 2.5510
-22

 3 

6 0.1662
(1)

 0.2271
(2)

 0.2313 0.2373 0.3729
(8)

 0.4100 ─ ─ ─ ─ 2.5510
-35

 4 

7 0.1662
(1)

 0.2272
(2)

 0.2373 0.3011
(5)

 0.3726
(8)

 0.3900 0.3979
(10)

 ─ ─ ─ 2.1410
-41

 5 

8 0.1662
(1)

 0.2129 0.2271
(2)

 0.2313 0.2881
(4)

 0.3018
(5)

 0.3727
(8)

 0.3977
(10)

 ─ ─ 3.5210
-60

 8 

9 0.1662
(1)

 0.2271
(2)

 0.2313 0.2373 0.2880
(4)

 0.3018
(5)

 0.3727
(8)

 0.3799
(9)

 0.3977
(10)

 ─ 5.8510
-68

 9 

10 0.1662
(1)

 0.2129 0.2246 0.2272
(2)

 0.2310 0.2373 0.3012
(5)

 0.3726
(8)

 0.3809 0.3977
(10)

 1.2110
-76

 10 

11 

1 0.2656
(3)

 ─ ─ ─ ─ ─ ─ ─ ─ ─ 3.1610
-58

 10 

2 0.2271
(2)

 0.2843
(4)

 ─ ─ ─ ─ ─ ─ ─ ─ 7.2010
-20

 6 

3 0.2270
(2)

 0.2641
(3)

 0.3124
(6)

 ─ ─ ─ ─ ─ ─ ─ 7.9710
-8

 3 

4 0.2270
(2)

 0.2696
(3)

 0.3229
(6)

 0.3587
(7)

 ─ ─ ─ ─ ─ ─ 9.9910
-4

 2 

5 0.2270
(2)

 0.2642
(3)

 0.2901
(4)

 0.3228
(6)

 0.3587
(7)

 ─ ─ ─ ─ ─ 1.00 1 

6 0.2270
(2)

 0.2642
(3)

 0.2901
(4)

 0.3229
(6)

 0.3575
(7)

 0.3734
(8)

 ─ ─ ─ ─ 1.1210
-11

 4 

7 0.2270
(2)

 0.2642
(3)

 0.2901
(4)

 0.3229
(6)

 0.3575
(7)

 0.3734
(8)

 0.3919 ─ ─ ─ 1.8010
-18

 5 

8 0.2015 0.2270
(2)

 0.2642
(3)

 0.2841 0.2909
(4)

 0.3228
(6)

 0.3575
(7)

 0.3734
(8)

 ─ ─ 2.8110
-31

 7 

9 0.1624
(1)

 0.2270
(2)

 0.2642
(3)

 0.2901
(4)

 0.3226
(6)

 0.3375 0.3489 0.3590
(7)

 0.3729
(8)

 ─ 9.2110
-51

 8 

10 0.2006 0.2271
(2)

 0.2625
(3)

 0.2680 0.2898
(4)

 0.3230
(6)

 0.3489 0.3589
(7)

 0.3693 0.3736
(8)

 2.2010
-57

 9 

12 

1 0.1670
(1)

 ─ ─ ─ ─ ─ ─ ─ ─ ─ 6.2310
-43

 7 

2 0.1666
(1)

 0.2272
(2)

 ─ ─ ─ ─ ─ ─ ─ ─ 6.0610
-11

 3 

3 0.1665
(1)

 0.2272
(2)

 0.3726
(8)

 ─ ─ ─ ─ ─ ─ ─ 3.2910
-2

 2 

4 0.1665
(1)

 0.2273
(2)

 0.3019
(5)

 0.3723
(8)

 ─ ─ ─ ─ ─ ─ 9.6710
-1

 1 

5 0.1665
(1)

 0.2273
(2)

 0.3019
(5)

 0.3721
(8)

 0.3951
(10)

 ─ ─ ─ ─ ─ 3.6410
-11

 4 

6 0.1665
(1)

 0.2000 0.2271
(2)

 0.2305 0.3019
(5)

 0.3723
(8)

 ─ ─ ─ ─ 1.3310
-27

 5 

7 0.1665
(1)

 0.2000 0.2273
(2)

 0.3019
(5)

 0.3599
(6)

 0.3728
(8)

 0.3947
(10)

 ─ ─ ─ 7.7510
-35

 6 

8 0.1665
(1)

 0.2001 0.2272
(2)

 0.2333 0.2372 0.3019
(5)

 0.3722
(8)

 0.4100 ─ ─ 4.5310
-54

 8 

9 0.1665
(1)

 0.2272
(2)

 0.2333 0.2351 0.2372 0.2864 0.3021
(5)

 0.3581
(6)

 0.3726
(8)

 ─ 9.3410
-63

 9 

10 0.1665
(1)

 0.2271
(2)

 0.2305 0.2351 0.2372 0.3019
(5)

 0.3600
(6)

 0.3727
(8)

 0.3849 0.3949
(10)

 4.1710
-70

 10 
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Table 6 Optimal model classes for all measurement channels of Data Set 4 

Group Sensor 
Mode 

No. of modes 
1 2 3 4 5 6 7 8 9 10 

I 

1    *   *    2 

4 *   *   * *   4 

7 *   *   *    3 

10 *       *   2 

13 *       *   2 

16 *       *   2 

19      *  *   2 

22      *  *   2 

II 

2    *  * *    3 

5   * *   *    3 

8   * *   *    3 

11   * *   *    3 

14   * *  *     3 

17   * *  * *    4 

20   * *  * *    4 

23    *  *     2 

III 

3 *   *   *    3 

6 *      * *   3 

9 *    *  *    3 

12 *       *   2 

15 *       *   2 

18 *     *  *   3 

21 *     *  *   3 

24      *  *   2 

 

 
Table 7 Optimal model classes for all measurement channels of Data Set 7 

Group Sensor 
Mode 

No. of modes 
1 2 3 4 5 6 7 8 9 10 

I 

1 *  * *  * *   * 6 

4 *  * *  * *   * 6 

7 * *     *    3 

10 * *      *   3 

13 * *      *   3 

16 * *   * *  *   5 

19 *  * *  *  *   5 

22 *  * *  *  *   5 

II 

2    *  * *    3 

5  * * *   *    4 

8  * * *  * *    5 

11  * * *  * *    5 

14  * *   *     3 

17  * * *  *     4 

20  * * *  *     4 

23   * *  *     3 

III 

3 *  * *  * *    5 

6 *  * *  * *    5 

9 * *   *  *    4 

12 * *   *   *   4 

15 * *   *   *   4 

18 * *   * *  *   5 

21 *  * *  *  *   5 

24 *  * *  *  *   5 
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Table 8 Optimal model classes for all data sets of Sensors 10, 11 and 12 

Data 

Set 
Sensor 

Mode 
No. of modes 

1 2 3 4 5 6 7 8 9 10 

1 

10 *       *   2 

11   * *   *    3 

12 *       *   2 

2 

10 *       *   2 

11   * *   *    3 

12 *       *   2 

3 

10 *       *   2 

11   * *   *    3 

12 *       *   2 

4 

10 *       *   2 

11   * *   *    3 

12 *       *   2 

5 

10 *       *   2 

11   * *   *    3 

12 *       *   2 

6 

10 *       *   2 

11   *   *     2 

12 *       *   2 

7 

10 * *      *   3 

11  * * *  * *    5 

12 * *   *   *   4 

8 

10 * *   *   *   4 

11  * * *  *  *   5 

12 * *   *   *   4 

9 

10 * *   *   *   4 

11  * * *  * *    5 

12 * *   *   *   4 

10 

10 * *   *   *   4 

11  * * *  * *    5 

12 * *      *   3 

11 

10 * *   *   *   4 

11  * * *  * *    5 

12 * *   *   *   4 

12 

10 * *   *   *   4 

11  * * *  * *    5 

12 * *   *   *   4 

13 

10 *       *   2 

11  *    *     2 

12 *       *   2 

14 

10 * *      *   3 

11  * *   *     3 

12 * *      *   3 

15 

10 *       *   2 

11   * *   *    3 

12 *       *   2 

16 

10 *       *   2 

11   * *   *    3 

12 *       *   2 

 

 

In this section, the results of modal identification and modal identifiability of TKB obtained 

under different monitoring conditions were presented. The modal identification was conducted by 

applying the Bayesian spectral density approach, and hence the estimated modal parameters as 
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well as the associated estimation uncertainties were determined. The results demonstrated that the 

monitoring condition induces considerable effects not only on the modal parameters but also the 

modal identifiability. To further understand the modal identifiability, the Bayesian model class 

selection approach was applied to evaluate the plausibilities of different modal models. By 

comparing their plausibilities, the performance of the modal models was ranked and the optimal 

one was determined. This revealed that the credibility of the identified modes depends on the 

monitoring conditions and the optimal model modal under calm or severe wind condition was 

different. Such information provides a reference to decide the monitoring wind condition of the 

blind data sets. In contrast to deterministic approaches, Bayesian probabilistic approaches can 

provide the optimal estimation as well as quantify the associated estimation uncertainty. The 

estimated uncertainty indicates the reliability of the estimation and offers a distinct basis for 

investigating the modal identifiability in contrast to deterministic approaches. This paper showed 

that the Bayesian framework can successfully achieve the goal of the TKB benchmark study. 

 

 
4. Conclusions 

 

This paper addresses the structural health monitoring benchmark problem of the Ting Kau 

Bridge (TKB) using the Bayesian probabilistic framework. In particular, the Bayesian spectral 

density approach is used for output-only modal identification and the Bayesian model class 

selection approach is utilized to investigate the modal identifiability. Taking the advantage of 

Bayesian inference, the optimal modal parameters can be identified as well as the associated 

estimation uncertainty can be quantified. The identification results of the modal frequencies and 

damping ratios under various monitoring conditions were presented. Moreover, the effects of the 

sensor locations and the monitoring conditions on the performance of modal identification were 

discussed. The modal identifiability analysis demonstrated the importance of proper selection on 

the significant modes for identification. The results revealed that the credibility of the identified 

modes depends on the monitoring conditions. Therefore, they can be served as a basis to determine 

the monitoring condition of the blind data sets. The benchmark study on TKB provides a valuable 

platform for structural health monitoring of bridges and this study demonstrated the efficacy and 

potential of Bayesian inference on structural health monitoring. 
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