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Abstract.  The nonlocal static bending, buckling, free and forced vibrations of graphene nanosheets are 
examined based on the Kirchhoff plate theory and Taylor expansion approach. The nonlocal nanoplate 
model incorporates the length scale parameter which can capture the small scale effect. The governing 
equations are derived using Hamilton’s principle and the Navier-type solution is developed for 
simply-supported graphene nanosheets. The analytical results are proposed for deflection, natural frequency, 
amplitude of forced vibration and buckling load. Moreover, the effects of nonlocal parameter, half wave 
number and three-dimensional sizes on the static, dynamic and stability responses of the graphene 
nanosheets are discussed. Some illustrative examples are also addressed to verify the present model, 
methodology and solution. The results show that the new nanoplate model produces larger deflection, 
smaller circular frequencies, amplitude and buckling load compared with the classical model. 
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1. Introduction 
 

With the rapid development of current nano-electro-mechanical systems, the mechanical 

properties of some common nano-structures including carbon nanotube and graphene nanosheet 

are required to be well characterized to control their assemblage and optimization. When material 

scale down to nanometer level, the small scale, surface and quantum effects become significant 

which should be taken into consideration (Eberhardt and Wallmersperger 2014). The classical 

continuum mechanics theory has been proved to be not capable of describing the nano-structures 

because the classical theory lacks the length scale parameter which reveals the small scale effect. 

Atomic theory is one choice to replace classical theory to study the mechanical properties of 

nano-structures. However, some nano-systems are too large to describe via the atomic theory. For 

example, molecular dynamics and Monte Carlo simulations are currently only able to calculate the 

system containing tens of thousands of atoms. On the other hand, some new continuum theories 

considering small scale effect are developed to predict nano-structural mechanical behaviors, 

where the nonlocal theory initiated by Eringen has been widely utilized in nano-mechanics. In 

such nonlocal theory, the small-scale effect is captured by assuming the stress at a point as a 

function not only of the strain at that point but also a function of the strains at all other points in 
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the domain (Eringen and Edelen 1972, Eringen, 1983). Consequently, the nonlocal theory contains 

information about the long-range forces between atoms and the internal length scale is introduced 

into the higher-order constitutive equation. By introducing higher-order derivatives and Green’s 

function into the original integral constitutive relation, an equivalent differential constitutive 

equation was deduced by Eringen. Since then, the differential nonlocal theory has been applied in 

nano-mechanics extensively with increasing publications during past decades. 

At present, one-dimensional nanostructured materials such as carbon nanotubes and nanobeams 

have been sufficiently investigated in the promotion of nanotechnology. For example, Reddy 

(2007) used different beam theories including those of Euler-Bernoulli, Timoshenko, Levinson and 

Reddy to analyze bending, buckling and vibration of nonlocal beams. Aydogdu (2009) proposed a 

generalized nonlocal beam theory to study bending, buckling, and free vibration of nanobeams. 

Murmu and Pradhan (2009) investigated vibration response of nanocantilever considering 

nonuniformity in the cross sections based on nonlocal elasticity theory. Li et al. (2011) studied the 

transverse dynamical responses and stabilities of nanobeams subjected to a variable axial load 

based on nonlocal elasticity theory. Şimşek and Yurtcu (2013) examined static bending and 

buckling of a functionally graded nanobeam based on the nonlocal Timoshenko and Euler–

Bernoulli beam theory. The size-dependent static-buckling behaviors of functionally graded 

nanobeams were investigated by Eltaher et al. (2013) on the basis of the nonlocal continuum 

model. The vibration and stability analysis of a single-walled carbon nanotube conveying 

nanoflow embedded in biological soft tissue were performed by Hosseini et al. (2014). Yin et al. 

(2015) applied the Euler-Bernoulli beam theory, surface elastic theory, the strain equivalent 

assumption and modified couple stress theory to derive the nonlinear governing equations of the 

nano-beam. In their work (Yin et al. 2015), the Galerkin method and the harmonic balance method 

were adopted so as to give a solution to the equations.  

Due to their extraordinary mechanical, physical and chemical properties, such as low weight, 

high surface area and extremely high stiffness, two-dimensional nanostructured materials such as 

graphene nanosheets have attracted increased interest in recent years. After carbon nanotubes, it is 

expected for graphene nanosheets to trigger a revolution in the modern electronic technology field. 

Therefore, research and analyses on the mechanical properties and stabilities of graphene 

nanosheets are indispensable. Liew et al. (2006) proposed a continuum-based plate model to study 

the vibration behaviors of multi-layered graphene nanosheets which are embedded in an elastic 

matrix. The vibration of orthotropic single layered graphene nanoplates was analyzed using 

nonlocal elasticity theory and the small scale effect was discussed by Pradhan and Phadikar (2009) 

and Pradhan and Kumar (2011). The potential of single-layered graphene nanosheet as a 

nanomechanical sensor was explored by Shen et al. (2012). Dynamic pull-in instability and free 

vibration characteristics of circular higher-order shear deformable nanoplates subjected to 

hydrostatic and electrostatic forces including surface stress effect were studied by Sahmani and 

Bahrami (2015). Yan et al. (2015) applied the nonlocal continuum mechanics to derive a complete 

and asymptotic representation of the infinite higher-order governing differential equations for 

nanobeam and nanoplate models. Bedroud et al. (2015) provided the axisymmetric/asymmetric 

buckling analysis of moderately thick circular and annular functionally graded nanoplates under 

uniform compressive in-plane loads. Hosseini-Hashemi et al. (2015) presented analytical 

closed-form solutions in explicit forms to investigate small scale effects on the buckling and the 

transverse vibration behaviors of Levy-type rectangular nanoplates based on the Reddy's nonlocal 

third-order shear deformation plate theory. Based on an element-free kp-Ritz method, Zhang et al. 

(2015) developed a nonlocal continuum model for vibration of single-layered graphene nanosheets. 
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Further, Zhang et al. (2015) performed the transient analyses of single-layered graphene nanosheet 

using the element-free kp-Ritz method and nonlocal elasticity theory.  

In the present study, nonlocal Kirchhoff nanoplate model is employed to analyze bending, 

buckling and vibration of graphene nanosheets using of Taylor expansion approach. In particular, 

the forced vibration of graphene nanosheets is investigated in detail. Governing equations are 

derived based on the Hamilton’s principle. Numerical results for simply supported graphene 

nanosheets are presented to examine the validity and accuracy of the method suggested in this 

paper. Further more, the effects of nonlocal parameter, half wave number and three-dimensional 

sizes on different responses of graphene nanosheets are demonstrated. 

 

 

2. Nonlocal nanoplate model for graphene nanosheets 
 

According to the nonlocal elasticity theory, the stress components at a position x depend not 

only on the strain components at the same position x but also on all other points of the body. Hence, 

the basic constitutive equations for an isotropic, homogeneous linear nonlocal elastic solid without 

body force are given by Eringen (1983) 

, 0ij j              (1a) 

      ij ijkl kl
x x x C x dV x x         ( ) | | , ,    (1b) 

 
, ,

1
( )

2
ij i j j iu u                              (1c) 

where 
ij  and 

ij
 are nonlocal stress and strain tensors respectively, 

ijkl
C  is the fourth-order 

elasticity tensor, iu  is the displacement vector,  x x | | ,  is the nonlocal modulus or 

attenuation function incorporating into constitutive equations the nonlocal effects at the reference 

point x produced by local strain at the source x′; |x′−x| represents the distance in Euclidean form 

and   is a material constant that depends on internal (e.g., lattice parameter, granular size, 

distance between C–C bonds) and external characteristics lengths (e.g., crack length, wave length). 

Since the integral constitutive Eq. (1b) is difficult to solve, a simplified equation in differential 

form was proposed as a basis of all nonlocal constitutive formulation (Eringen 1983) 

  
2 2

0
1

ij ij
e a      

  
                        (2) 

where
2

2

2

2
2

yx 







  is Laplacian operator and 

ij
   denotes the local or classical stress, e0 is a 

constant for adjusting the model in matching some reliable results by experiments or other models, 

a is the internal length scale. 

Using Taylor expansion, Eq. (2) can be rewritten as 

259



 

 

 

 

 

 

Jinjian Liu, Ling Chen, Feng Xie, Xueliang Fan and Cheng Li 

 

 

 
     

2 4 22 4 2
0 0 0

2 2 0
0

1

1
1

k k
ij ij ij ij ij

k

ij

e a e a e a

e a
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Force and moment resultants of nonlocal elasticity can be defined as 

    2

2

h

hxx xy yy xx xy yy
N N N dz  


 , , , ,                   (4) 

    2

2

h

hxx xy yy xx xy yy
M M M zdz  


 , , , ,                 (5) 

Upon denoting displacement components
1u , 

2u  and 
3u along the x, y and z directions, 

respectively, the displacement field is derived according to the classical Kirchhoff plate theory as 

  1

w
u x, y, z, t u x y t z

x


 


( , ; )  (6a) 

    2

w
u x y z t v x y t z

y


 


, , , , ;  (6b) 

    3
u x y z t w x y t, , , , ;  (6c) 

where u, v and w are the displacement functions of the middle surface of the nanoplate, and t 

denotes time.  

The stain filed can be expressed as 

 
2

2
=

xx

u w
z

x x


 


 
                             (7a) 

 

2

2
=

yy

v w
z

y y


 


 
                             (7b) 

 

2

= 2
xy

u v w
z

y x x y


  
 

   
                        (7c) 

Using Eq. (3), the stress constitutive relation of graphene nanoplate model can be written as  
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0
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where E, G and   denote elastic modulus, shear modulus and Poisson’s ration, respectively. 

Consider a rectangular nanoplate with the length a, width b and thickness h. The Cartesian 

coordinate system (x,y,z) is constructed to derive mathematical formulations while x and y 

coordinates are located in the bottom plane of plate. The governing equations of the graphene 

nanosheets are extracted based on Hamilton’s principle, given as  

  
0

0
T

K U W dt     ( )                       (9) 

in which K , U  and W  are the virtual kinematic, strain energies and virtual work done by 

the external forces applied on the plate. The variation of strain energy of the nanoplate can be 

stated as 

 2

2

=
h

h xx xx yy yy xy xyA
U dzdA      



                       (10) 

The variation of virtual work done by the external forces 

 
A

2
Tx Ty Txy x y

u w w v w w w w
W F F F q w f u f vdA

x x x y y y x y

   
    

        
        

        
 ( ) ( )  (11) 

where  TxF represents axial compressive force about x-axis, and 
TyF  represents axial 

compressive force about y-axis,  TxyF  is the external shear force, q is the transverse distributed 

load, 
xf , 

yf  are the distributed axial load along the x and y, respectively. 

The variation of kinetic energy is obtained as  

 2 2 2 2u w u w v w v w w w
K z z z z dV

t x t t x t t y t t y t t t

    
 



                  
                                       


 (12) 

where   is mass density. 

By substituting Eqs. (10)-(12) into Eq. (9), then integrating by parts and setting the coefficient 

u , v , w  to zero lead to the following governing equations 

 
2

2

yy xy

x

N N v
h f

y x t


  
  

  
                     (13) 
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2

xyxx

y

NN u
h f

x y t


 
  

  
                     (14) 

 

2 22 2 2 2

2 2 2 2

2 3 4 4

2 2 2 2 2

2 2

12

xy yyxx

Tx Txy Ty

M MM w w w
F F F

x y x yx y x y

w h w w
h

t x t y t




    
    

      

   
   

     

          (15) 

Substituting Eqs. (7) and (8) into Eq. (5), the correlations between the moment of nonlocal 
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elasticity and displacement can be expressed by 

  
2 2

2 2

0 2 2
0

k k

xx
k

w w
M D e a

x y






  
    

  
               (16a) 

  
2 2

2 2

0 2 2
0

k k
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w w
M D e a

y x






  
    

  
              (16b) 

    
2

2 2

0
0

1
k k

xy
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w
M D e a

x y






 
     

  
               (16c) 

where 

 

3

212 1

Eh
D





 is the bending stiffness of the nanoplate. 

Substituting Eq. (16) into Eq. (15), one yields the governing equation of the graphene nanoplate 

model as 

 

 
4 4 4 2 2 2

2 2

0 4 2 2 4 2 2
0

4 4 2
3
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1
                                                            

12

k k
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w w w w w w
D e a F F F

x x y y x x y y

w w w
q h h

x t y t t
 





       
       

         

   
     

      


 (17) 

 

 

3. Bending, buckling and vibration analyses 
 

In this section, the isotropic graphene nanosheets with simply supported constraints are taken as 

examples, the analytical solutions of bending, buckling, free and forced vibrations are determined 

using nonlocal nanoplate model. 

Firstly, the boundary conditions of simply supported plates are given by 

  
2

20

0

0 0
x a

x a

w
w

x



 
  

 
,

,

,                    (18a) 

  
2

20

0

0 0
y b

y b

w
w

x



 
  

 
,

,

,                   (18b) 

3.1 bending 
 

For the static bending problem, TxF , 
TyF  

TxyF  xf   yf  and all time derivatives are set to 

zero. Also, the applied transverse load q is expanded in Fourier series as 
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 ,

1 1

sin sinmnx y
m n

m x n y
q Q

a b

  

 

                     (19) 

 
( , )

0 0

4
sin sin

a b

mn x y

m x n y
Q q dxdy

ab a b

 
                    (20) 

where 
mnQ  are the Fourier coefficients, given as follows 

0
( , ) 0 2

16
   x y mn

q
q q Q

mn
 ： (m,n=1,3,5...)                   (21) 

for uniform load, and 

0
( , ) 0

4
( )( )  sin sin   x y p p mn

p m x n y
q p x x y y Q

mn a b

 
   ： (m,n=1,2,3...) (22) 

for point load, where 
0q is the intensity of the uniformly distributed load, ( )   is the Dirac delta 

function, 
0p  is the magnitude of the point load, 

px , 
py  are the application position of the 

point load. When the point load is acted on the midspan of the plate, namely, 

( , ) 0 ( )( )
2 2

x y

a b
q p x y   , the Fourier coefficients have the following form 

 04
sin sin   

2 2
mn

p m n
Q

ab

 
 (m, n=1,2,3...)                 (23) 

Based on Navier solution procedure, Fourier series function for deflection w  is assumed as 

1 1
mn

m n

m n
w C x y

a b

  

 

   
    

   
 si n si n    (m, n=1,2,3,4……)           (24) 

where 
mn

C  is the Fourier coefficients. 

Substituting Eqs. (19)-(21) and (24) into Eq. (17), one obtains 

 0

2 2
2 2 2 6 2

0 2 2
0

16
 

( 1) ( ) ( ) ( ) ( )

mn k

k k

k

q
C

m n m n
e a Dmn

a b a b

 







 

   
 



(m, n=1,3,5...) (25) 

Substituting Eq. (25) into Eq. (24), the bending deflection can be rewritten as 

 
0

26 2 2
1,3,5.. 1,3,5.. 0 2 2 2

0 2 2

16 1
sin sin

( 1) ( ) ( ) ( )

k
m n k k k

q m n
w x y

D a bm n m n
e a mn

a b a b

 

  

  

  

   
    

     
    

   

  
 (26) 

The maximal transverse deflection occurs at 
2 2

a b
x y ， , and by setting 

0 =0e a , the 

classical deflection solution can be recovered as 
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 0
max 2 26

21,3,5.. 1,3,5..

2 2

16 1

( )

L

m n

q
w

m nD
mn

a b



 

 





                      (27) 

The ratio of the nonlocal deflection to classical one is  

 

2 2
1,3,5.. 1,3,5.. 0 2 2 2 2

0 2 2
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2 2

21,3,5.. 1,3,5..

2 2

1
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1
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m n k k k

L

m n

m n m n
e a mn

w a b a b
m n

w

m n
mn

a b

 

  

  

 

 

 
   

  



  

 
   (28)

 

 

3.2 Free and forced vibrations 
 

For free vibration we set     Tx Ty Txy x yF F F f f q， ， ， ，，  to zero, but the bending deflection is the 

function of time. The deflection for free vibration of nanoplate can be written as 

    0

1 1

,mn mn

m n

w T t W x y
 

 

                         (29) 

Substituting Eq. (29) into Eq. (17) and using the conditions of free vibration of nanoplate yields 

 

 

4

2 2

0 2 2 2 2 23
0

2 2 2 2 2

1

1

( )
12

mn mn
k k
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DT W

e a
W T W T Th

h W
x t y t t








 


     

  
     



 (30)
 

For simply supported nanoplate 
mnT  can be expressed as 

 sin cosmn mn mn mn mnT A t B t                       (31) 

here mn  is the circular frequency of free vibration of graphene nanosheets. 

Substituting Eq. (31) into Eq. (30) leads to the following equation 

 

 

4

2 2

0 2 23
0 2

2 2

1

1

( )
12

mn
k k

k mn mn
mn mn

D W

e a
W Wh

hW
x y


 





 


  

  
  


 (32) 

Shape function of free vibration can be written as 

 =sin sinmn

m x n y
W

a b

 
                       (33) 
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By substituting Eq. (33) into Eq. (32) and considering a non-trivial solution of the system, the 

circular frequencies of the graphene nanosheet can be expressed as 

 

2

2 2 2 2 2

0
02

3
2 2

1

12

k

k k

k

mn

m n m n
e a D

a b a b

h m n
h

a b

   


  







   
     

   
  

   
  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

 (34) 

When the nonlocal parameter 
0

e a  vanishes, Eq. (34) reduces to the classical results  
2

L

mn
  

Considering the graphene nanosheets subjected to dynamic loads, namely the forced vibration, 

the differential equations of motion are similar to the free vibration, but q is not equal to zero, and 

it can be assumed as 

 = ( , ) costq q x y t                           (35) 

Using Eqs. (19)-(21), ( , )tq x y  can be expanded in Fourier series as 

 0

2
1,3,5, 1,3,5,

16
( , ) sin sint

m n

q m x n x
q x y

mn a b

 



 

 

  
… …

 (36) 

The transverse deflection is assumed as  

 
   1 1

1 1

,mn mn

m n

w T t W x y
 

 

                        
(37) 

Substituting Eq. (37) into Eq. (17) with the conditions of forced vibration yields 

 
4

1
2 2

0 2 2 2 2 23
0 1 1 1

2 2 2 2 2

1
( )

1
( )

( )
12

mn mn
k k

k mn mn mn mn mn
mn

T D W q

e a
W T W T Th

h W
x t y t t








  


     

  
     


 

(38) 

The dynamic load can be expanded in the series form with respect to the shape function as 

 
1 1

( , , ) ( ) ( , )mn mn

m n

q x y t F t W x y
 

 

                      (39) 

From the Eqs. (36) and (39), we can obtain 

 0

2

16
cosmn

q
F t

mn



   (m,n=1,3,5…)                  (40) 

On the other hand, 
1mnT  can be assumed as   

 
 1 sin cosmn mn mn mn mn mnT A t B t                     (41) 
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Substituting Eqs. (32), (33), (39), (40) and (41) into Eq. (38) we can obtain one particular 

solution for 
mn  is  

 

 

2 2 2 0
0 2

0

3
2 2 2 2

16
( 1) ( ) ( ) ( ) cos

[( ) ( ) ]
12

k

k k

k
mn

mn

qm n
e a t

a b mn

h m n
h
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              (42) 

Substituting Eqs. (33), (41), and (42) into Eq. (37) yields 

 



 

1

1,3,5 1,3,5

2 2 2 0
0 2

0

3
2 2 2 2

sin cos

16
( 1) ( ) ( ) ( ) cos

]sin sin

[( ) ( ) ]
12
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k
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a bh m n
h
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… …

 (43) 

The initial conditions can be expressed as 

   1
1 0

0

0, 0
t

t

w
w

t


 
  

 
                        (44) 

where the graphene nanosheets are initially in equilibrium position. Substituting Eq. (44) into (43) 

yields 
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1 3
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… …

 (45) 

 
3.3 Buckling 
 

For the buckling analyses, the initial force can be expressed as follows 

 
2

2
0 0 0 0 0 0Tx x Ty Txy x y

w
F F F F f f q
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， ， ， ， ， ，          (46) 

Using Eqs.(17), (24) and (46), one can arrive at 
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 (47) 

The solution of Eq. (47) can be determined as 
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0
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( 1) ( ) ( ) ( )
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k

x

m n m n
D e a

a b a b
F

m
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 (48) 

It is noticed that Eq. (48) reduces to the corresponding classical results without the nonlocal 

parameter 
0

e a . 

In order to reveal the effects of nonlocal parameter, half wave number and three-dimensional 

sizes on the static and dynamic responses of the graphene nanosheets in detail, the parameters 

including Yong’s modulus E=1.06TPa, Poisson’s ratio =0 25 .  and mass density =2250

kg/m3 are adopted. Meanwhile, the natural frequencies can be directly obtained from Eq. (49) as 

 
2

mn

mn
f




 =

1

2

mn

mn

K

M
                          (49) 

In which
mn

K , 
mn

M  are equivalent rigidity and mass respectively, as 

2

2 2 2 2 2

0
0

1

k

k k

mn
k

m n m n
K D e a D

a b a b

   



   
      

   
( ) ( ) ( ) ( ) ( ) ( )  

3
2 2

12
mn

h m n
M h

a b

  


  
    

  
( ) ( )  

Firstly, to demonstrate the efficiency and accuracy of the present analytical solutions, some 

illustrative examples are solved and compared using the data available in literatures. For this 

purpose, frequency ratio fL/f is defined as the ratio of the fundamental frequency of the classical 

plate to that of the nonlocal plate. Table 1 shows the calculations of frequency ratio, where the 

properties of the graphene nanosheets are the same as those in Refs (Reddy 2007, Eltaher et al. 

2013). It is clear from Table 1 that the present results are in good agreement with the literatures 

(Reddy 2007, Eltaher et al. 2013). 

 

 
Table 1 Comparison of the ratio of the classical fundamental frequency to nonlocal counterpart between the 

present work and Refs (Reddy 2007, Eltaher et al. 2013) (h=0.34 nm, a=b=10 nm) 

   
2 2

0
nme a  /Lf f (present) /Lf f (Reddy 2007) /Lf f (Eltaher et al. 2013) 

0 1 1 1 

1 1.0942 1.0924 1.0942 

2 1.1811 1.1811 1.1809 

3 1.2618 1.2618 1.2617 
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Fig. 1 The ratio of nonlocal to classical maximum deflections versus nonlocal parameter and half wave 

number (a=b=10 nm) 

 

 

Fig. 1 shows the ratio of maximum deflection versus m and n on the effect of nonlocal 

parameter. It is seen m and n have the site symmetry from Eq. (28). So m=1, n=3 are the same as 

n=1, m=3. It is observed that increasing m or n causes max max

Lw w  to increase, this is because 

maxw  increase faster than max

Lw  with the increase of half wave number.  

Fig. 2 shows the ratio of maximum deflection versus a and b on the effect of nonlocal 

parameter. It is seen that a and b also have site symmetry from Fig. 2, and a=10 nm, b=20 nm are 

the same as a=20 nm, b=10 nm. It is different from Fig. 1 that max max

Lw w  decreases with the 

increase of a and b. In addition h has no effect on max max

Lw w . Both of Figs. 1 and 2 prove that 

max max

Lw w  increases with increasing 0e a . 

 

 

Fig. 2 The ratio of nonlocal to classical maximum deflections versus length, width and nonlocal parameter 

(m=n=1) 
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Fig. 3 Change of ratio of the nonlocal to classical circular frequencies with half wave number for different 

nonlocal parameters (a=b=10 nm) 

 
 
As a significant result, Figs. 3 and 4 show that the change of ratio of the circular frequencies of 

the nonlocal nanosheets to those of classical plates. It is observed that 
L

mnmn   decreases with 

the increase of half wave number m and n, but it increases with the increase of length and width a 

and b. From Figs. 3 and 4, it is concluded that the 
L

mnmn   decreases by increasing the 0e a . In 

addition, it is seen that 
L

mnmn   drops rapidly when 0e a  is very small. 

 

 

 

Fig. 4 Change of ratio of the nonlocal to classical circular frequencies with length and width for different 

nonlocal parameters (m=n=1) 
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Fig. 5 The variation of relative amplitude against the nonlocal parameter with different circular 

frequencies ratios (a=b=10nm, h=0.34nm, m=n=1) 

 

 

In order to present numerical result in a comparable form, the following relative amplitude is 

defined as 
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Figs. 5-8 highlight the effects of main parameters including nonlocal parameters, half wave 

number, three-dimensional sizes on relative amplitude. It can be seen from Figs. 6 and 8 that as the 

m, n, a, b increase, the relative amplitude A increases. It is observed from Figs. 5 and 7 that 

relative amplitude A decreases with the increase of 0e a  and h. From all of these figures we can 

also find that no matter what 0e a , m, n, a, b values, when / mn   tends to 1, A tends to infinity 

that is well-know resonance phenomenon. On the other hand, when / mn   tends to infinity, 

relative amplitude converges to zero. 

From Eq. (48) we find that m, n and a, b donot have site symmetry in the expression of xF . 

The transverse load with half wave number for different nonlocal parameters is depicted in Fig. 9, 

where the minimum transverse load is obtained when the values of m and n are equal to one. That 

is, setting all the half wave number to one the critical buckling load xcrF  can be obtained. Figs. 

10 and 11 show the variation of critical bucking load with three-dimensional sizes for different 

nonlocal parameters. It is concluded xcrF  increases with the increase of h from Fig. 10, that is 

mainly attributed to increasing h causes the bending stiffness to increase. It is clear that from Fig. 

11 xcrF  increases with the increase of b, but decreases with the increase of a. From Figs. 10 and 

11 it is indicated that xcrF  drops rapidly with the increase of 0e a . 
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Fig. 6 The variation of relative amplitude against the half wave number with different circular frequencies 

ratios (a=b=10 nm,h=0.34 nm, e0a=1 nm) 

 

 

Fig. 7 The variation of relative amplitude against the thickness with different circular frequencies ratios 

(a=b=10nm, m=n=1, e0a=1 nm) 
 

 

Fig. 8 The variation of relative amplitude against the length and width with different circular frequencies 

ratios (h=0.34nm, m=n=1, e0a=1 nm) 
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Fig. 9 Variation transverse load with half wave number for different nonlocal parameters (h=0.34 nm, 

a=b=10 nm) 

 

 

Fig. 10 Variation of critical bucking load with thickness for different nonlocal parameters (m=n=1, 

a=b=10 nm) 
 

 

Fig. 11 Variation of critical bucking load with length and width for different nonlocal parameters (h=0.34 

nm, m=n=1) 
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4. Conclusions 
 

Governing equations of bending, buckling, free and forced vibrations of graphene nanosheets 

are derived based nonlocal elastic plate constitutive. The numerical results for simply supported 

nanoplate model are addressed in detail. It is shown that the deflection increases, but the natural 

frequency, amplitude of forced vibration and the critical bucking load decrease with an increase in 

nonlocal parameter. Increasing the half wave number causes the deflection and amplitude to 

increase. The thickness of the nanoplate has no effect on deflection while the amplitude of forced 

vibration and critical bucking load decrease with the increase of thickness. The deflection 

decreases but the amplitude increases with the increase of length and width. For the critical 

bucking load, it is found to increase with the increase of length, but decrease with the increase of 

width. The present results are expected to be useful for understanding the static and dynamic 

behaviors accounting for nonlocal small scale effect of two-dimensional nanostructures. 
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