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Abstract.  This study concerns the derivation of optimum tuning formulas for a passive Tuned Mass 
Damper (TMD) device, for the case of benchmark ideal excitations acting on a single-degree-of-freedom 
(SDOF) damped primary structure. The free TMD parameters are tuned first through a non-linear 
gradient-based optimisation algorithm, for the case of harmonic or white noise excitations, acting either as 
force on the SDOF primary structure or as base acceleration. The achieved optimum TMD parameters are 
successively interpolated according to appropriate analytical fitting proposals, by non-linear least squares, in 
order to produce simple and effective TMD tuning formulas. In particular, two fitting models are presented. 
The main proposal is composed of a simple polynomial relationship, refined within the fitting process, and 
constitutes the optimum choice. A second model refers to proper modifications of literature formulas for the 
case of an undamped primary structure. The results in terms of final (interpolated) optimum TMD 
parameters and of device effectiveness in reducing the structural dynamic response are finally displayed and 
discussed in detail, showing the wide and ready-to-use validity of the proposed optimisation procedure and 
achieved tuning formulas. Several post-tuning trials have been carried out as well on SDOF and MDOF 
shear-type frame buildings, by confirming the effective benefit provided by the proposed optimum TMD. 
 

Keywords:  Tuned Mass Damper (TMD); harmonic excitation; white noise excitation; tuning formulas; 

optimisation; nonlinear least squares; fitting models 

 
 
1. Introduction 
 

This work deals with the optimum tuning of the free parameters of a passive Tuned Mass 

Damper (Rizzi et al. 2009, Salvi and Rizzi 2011, Salvi and Rizzi 2012, Salvi et al. 2013, Salvi and 

Rizzi 2014, Salvi et al. 2014a, b, c) for benchmark ideal excitations. 

Since their original introduction, likely represented by the patent of Frahm (1911), TMDs have 

constituted one of the most studied vibration control devices, applied to either mechanical or 

structural systems. Ormondroyd and Den Hartog (1928), Hahnkamm (1933), Brock (1946) and 

Den Hartog (1956) established firm theoretical bases for the best selection of the tuning 

parameters (specifically frequency ratio f and TMD damping ratio ζT, as defined below), for a 

damped TMD (ζT ≠ 0) added to an undamped (ζS = 0) SDOF primary structure subjected to 

harmonic force. In these studies, both TMD parameters have been determined analytically, but 
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while the obtained frequency ratio f
 opt

 represents a true optimum value, the TMD damping ratio 

ζT
opt

 is slightly approximated and actually taken as a mean value (Brock 1946, Den Hartog 1956). 

Afterwards, many contributions have considered the optimum tuning for damped main 

structures (ζS ≠ 0), despite higher difficulties in treating the governing dynamical equations (Asami 

et al. 2002, Bakre and Jangid 2007). For this reason, in a large number of works, the adoption of 

numerical optimisation approaches has been proposed as a suitable way to achieve optimum TMD 

tuning. Among those, one of the first examples is probably represented by that of Ioi and 

Ikeda (1978), where optimum TMD tuning formulas have been pointed out, as a result of an 

optimisation process developed through a Newton's method. Within subsequent studies which 

shared a similar modus operandi, of great interest appear those of Randall et al. (1981), which 

obtained the optimum TMD parameters in the form of graphical representations. 

Additionally, Thompson (1981) achieved the optimum TMD parameters via an analytical and 

graphical way, i.e., by means of the root locus method, in the frequency domain. Tsai and 

Lin (1993, 1994) provided design formulas for the loading cases of harmonic force and base 

acceleration. Fujino and Abé (1994) obtained tuning formulas for different loading conditions 

through a perturbation method. Pennestrì (1998) further investigated the Minimax optimisation 

method for the case of harmonic force on a damped primary structure. A similar work was 

proposed by Rana and Soong (1998), again based on a Minimax algorithm, where the resulting 

optimum TMD parameters have been condensed in design abaci. Furthermore, Asami et al. (2002) 

provided tuning formulas for several loading cases, by analytical approaches. 

Moreover, the tuning concept proposed by Den Hartog, has been revisited in different works 

(Krenk 2005, Liu and Liu 2005) especially with the consideration of the TMD damping ratio. 

Ghosh and Basu (2007) considered the fixed-point theory of Den Hartog (1956) also for the case 

of lightly damped structures, and proposed a closed-form formula for the optimum frequency ratio 

in case of harmonic force. Bakre and Jangid (2007) developed polynomial tuning formulas for the 

case of white noise loading, acting as either force on the primary structure or as base acceleration, 

with the consideration of different response indexes as objective function, such as displacement or 

velocity of the primary structure. Wong and Cheung (2008) investigated the TMD tuning in a 

different configuration, i.e. with the TMD damper linked to the ground, in order to minimise the 

effect of a possible ground motion. Brown and Singh (2011) assumed the Minimax method in 

order to assess the TMD tuning in case of uncertainties in the excitation frequency, related to 

harmonic loading. Bisegna and Caruso (2012) provided an optimum TMD conceived through the 

root locus method, so that to maximise the exponential decay of the transient response, for an 

undamped primary structure. Tigli (2012) further explored the TMD optimisation in case of 

random (white noise) loading, providing compact closed-form formulas, and pointed out that a 

better overall TMD performance for the considered cases should be obtained when the velocity 

response is minimised. The work of Zilletti et al. (2012) addressed the TMD tuning problem with a 

different task, which consisted in the minimisation of the kinetic energy of the host structure and 

the maximisation of the TMD power dissipation. 

Finally, recent studies proposed new algorithms as better means for the solution of the tuning 

problem with respect to classical numerical methods. In this sense, relevant works appear those of 

Leung and Zhang (2009), which presented a numerical tuning procedure based on a Particle 

Swarm Optimisation method, and of Bekdaş and Nigdeli (2011), where a Harmony Search 

algorithm was tested in case of harmonic loading on a multi-degree-of-freedom (MDOF) primary 

structure. 
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From a general point of view, from all these studies it appears that the tuning parameters may 

change according to the applied dynamic loading (Bandivadekar and Jangid 2013, Marano and 

Greco 2011, Setareh 2001, Sun et al. 2014, Warnitchai and Hoang 2006). This issue is also 

ascertained in different works where wind (Aly 2014, Morga and Marano 2014) or earthquake 

(Adam and Fürtmuller 2010, Desu et al. 2007, Matta 2011) excitations have been considered. 

Moreover, in the presence of structural damping (ζS ≠ 0), tuning formulas and relevant 

estimates may take quite elaborate forms (see e.g., Asami et al. 2002, Bakre and Jangid 2007). 

The present investigation has been developed in two main phases, and represents a 

comprehensive extension of a previous preliminary study (Salvi and Rizzi 2012), with presentation 

of further and final analyses and results, including detailed investigations on the different relevant 

features involved within the optimisation process and on several post-tuning trials on reliable 

structural systems, for the final assessment of the effectiveness of the proposed tuning method and 

formulas. First, a wide-range numerical tuning based on an original non-linear gradient-based 

optimisation algorithm has been pursued. Particularly, the tuning has been developed for a TMD 

added on a SDOF primary structure, subjected to Harmonic or White Noise loading, applied as 

both input Force or base Acceleration on the primary structure, for a total of four considered 

loading cases (HF, HA, WNF, WNA). In the present tuning approach, the optimisation variables 

are taken as the frequency ratio f and the TMD damping ratio ζT, as a function of two free given 

parameters, i.e., mass ratio µ  and damping ratio of the primary structure ζS, both fixed a priori 

within a wide range of values, including those suitable for engineering applications. Second, a 

subsequent interpolation process was carried out for all the four cases, where the optimum TMD 

parameters have been fitted with proper unifying analytical models, calibrated through non-linear 

least squares, in order to obtain final compact closed-form TMD tuning formulas, in view of 

effective and practical use. Such final output has been compared to that from the relevant literature, 

in terms of both optimum TMD parameters and achieved dynamic response reduction of the 

primary structure. 

The present paper is structured as follows. The context represented by the structural system, the 

dynamic excitations and the related response indexes is firstly presented (Section 2). The tuning 

process, preceded by a preliminary investigation on the well-posedness of the optimisation 

problem (Section 3), is then stated in detail in all its features, including for the optimisation 

algorithm and the optimisation parameters and variables. The tuning results, i.e., the optimum 

TMD parameters are displayed with 3D comprehensive plots. Afterwards, in Section 4 two fitting 

models are presented and analysed in detail. The first Proposed Model (PM) represents the main 

proposal of this work, based on polynomial expressions, while the second one, a Literature-based 

Model (LM), acts as a sort of sparring partner model based on literature formulas for the case of an 

undamped main structure. Finally, the validity of PM is tested within different stages. First, an 

investigation in terms of both values of the optimum TMD parameters and efficiency of the related 

tuned TMD in reducing the dynamic response is proposed, also with comparison to well-known 

literature tuning formulas (Section 5). Second, post-tuning trials developed on benchmark SDOF 

and MDOF frame structures taken from the literature (Leung et al. 2008, Villaverde and 

Koyama 1993) are reported, including outcomes in the form of time history plots and tables, with 

further discussion on the level of benefit achieved by the proposed optimum TMD (Section 6). 

Finally, closing considerations are outlined in Section 7. 
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2. Structural and dynamic context 

 

The structural system assumed as a benchmark in this study is composed of a SDOF primary 

structure and a TMD added on it (Fig. 1), subjected to either point force on the primary structure 

F(t) or base acceleration ẍg(t). The primary structure is characterised by a mass mS, a constant 

linear elastic stiffness kS and a linear viscous damping coefficient cS. The natural frequency ωS and 

damping ratio ζS of the primary structure are defined as usual, i.e., respectively 
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Likewise, the parameters of the TMD device are an added secondary mass mT, a constant 

stiffness kT of an added elastic spring and a damping TMD coefficient cT of an added viscous 

damper. As above, the TMD natural frequency ωT and damping ratio ζT are respectively 
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The free TMD parameters, which play the role of tuning variables, are defined in terms of mass 

ratio µ , tuning frequency ratio f and TMD damping ratio ζT itself, as 
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The tuning concept is based on the minimisation of a given dynamic response index, which 

basically depends on both the structural system and the applied dynamic loading. In this sense, 

four dynamic loading cases have been considered (Fig. 1), namely Harmonic Force on the primary 

structure (HF), Harmonic base Acceleration (HA), White Noise Force on the primary structure 

(WNF), White Noise base Acceleration (WNA). 

 

 

Fig. 1 Structural parameters and absolute (relative to the ground) dynamic degrees of freedom of a 2DOF 

mechanical system composed of a SDOF primary structure (S) equipped with an added TMD (T), 

subjected to: (a) point force F(t), (b) base acceleration ẍg(t) 
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The corresponding response indexes, in terms of displacement of the main structure xS, which is 

taken as objective function in the optimisation process, are reported in Tables 1 and 2 below 

(Crandall and Mark 1963, Den Hartog 1956, Warburton 1982). Such dimensionless frequency 

response functions are in the form of dynamic amplification factors R for the case of harmonic 

loading (with excitation frequency ω, frequency ratio g = ω/ωS (in the present study, 

g = [0:0.0005:2], in MATLAB vector notation), force amplitude F̅ or acceleration magnitude X̅g 

(Warburton 1982) and in the form of mean square response indices N for the case of stationary 

Gaussian white noise loading (with constant power spectral density of the loading S0 and variance 

of the displacement structural response σxs) (Warburton 1982). 

 

 

 
Table 1 Objective functions for Harmonic loading in terms of displacement of the primary structure 

(Warburton 1982) 
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Table 2 Objective functions for White Noise loading in terms of displacement of the primary structure 

(Warburton 1982) 
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3. Tuning process 
 

3.1 Preliminary analysis on the objective functions 
 
A preliminary investigation on the characteristics of the selected objective functions, for the 

different loading cases, has been developed. The response index assumed as objective function has 

been evaluated nearby the expected optimum region, i.e., where it is expected to take the smallest 

values. An extract of the outcomes of this study is reported in Fig. 2, where the response indexes 

reported in Tables 1 and 2 have been evaluated for the case of µ  = 0.02, ζS = 0.05, leading to the 

following considerations, which however would hold as well for generic values of the structural 

parameters. 

The main feature, quite positive in view of TMD tuning, is the presence of a clear region with a 

global minimum of the considered function, that allows, in principle, for a robust optimisation 

process. Indeed, these regions of minimum denote a quite convex shape of the objective function, 

and therefore it is expected that the optimisation algorithm could easily get to the optimum values 

of the TMD parameters, corresponding to the smallest amplitude of the response index. 

 

 

  
(a) Harmonic Force (HF) (b) Harmonic Acceleration (HA) 

  
(c) White Noise Force (WNF) (d) White Noise Acceleration (WNA) 

Fig. 2 Optimum region of the objective function for the considered four loading cases, for μ = 0.02, 

ζS = 0.05 
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In general, as expected the location of the global minimum is close to coordinate f = 1, i.e., to 

the resonance conditions, and with a TMD damping ratio of about ζT = 0.05, but with some 

differences between the loading cases. In this sense, the objective function related to Harmonic 

excitations (HF, HA) exhibits a quite narrow shape as a function of f and lengthened along ζT, 

which gives more relevance to the precision of the detection of the optimum value of the 

frequency ratio. On the other hand, the region of minimum of the response indexes for the White 

Noise loading cases (WNF, WNA) display an almost equal width in all directions, i.e. it looks 

quite convex with respect to both TMD parameters. 

Besides these specific considerations, from this investigation one could point out that the tuning 

process for the considered loading cases turns out to be well posed, and therefore it should be 

possible to provide suitable optimum TMD parameters. 

 

3.2 Main features of the optimisation methodology 
 

The optimisation process has been carried out for each dynamic loading case, through a 

dedicated non-linear gradient-based algorithm (Salvi and Rizzi 2011, 2012, Salvi et al. 2013, Salvi 

and Rizzi 2014, Salvi et al. 2014a, b, c), developed within a MATLAB environment (The 

Mathworks Inc. 2011) by the creation of ad-hoc numerical codes. 

In this sense, different non-linear numerical methods have been preliminary tested, so that to 

assess their ability in finding the global minimum of the objective function and therefore to 

assume the most suitable algorithm for the tuning purposes. In particular, Interior Point, Trust 

Region and Sequential Quadratic Programming methods have been analysed in their performance, 

finding that all of them could easily detect the optimum region, for all the considered objective 

functions, proving once again the well-posedness of the present tuning problem. The final choice 

of a Sequential Quadratic Programming (SQP) optimisation method is mainly due to its wide and 

successful use in the TMD tuning literature (Bandivadekar and Jangid 2013, Randall et al. 1981, 

Rana and Soong 1998, Tsai and Lin 1993, 1994) and to its proven effectiveness in the present 

previous experiences (Rizzi et al. 2009, Salvi and Rizzi 2011). 

The TMD tuning, stated as optimisation problem, can be written as follows 

,,)(min bb uplpJ
p

                           (4) 

where p is the vector of the tuning variables, J(p) is the objective function, lb and ub are the lower 

and upper bound vectors of the tuning variables. The optimisation context explained below 

ensured a suitable trade-off between convergence and accuracy. Also, from the numerical tests it 

has been noticed that the optimisation process converges promptly and smoothly. 

The task of the numerical algorithm consists in the minimisation of the maximum value of the 

previously reported response functions (Tables 1 and 2), which obviously depend, given the fixed 

primary structure parameters, on the free TMD parameters. It is worth noting that the optimisation 

problem related to the minimisation of the frequency peak response for the cases of harmonic 

loading (HF and HA), as displayed e.g. in Figs. 3 and 4 for HF, can be easily reinterpreted as a 

Minimax principle, often presented in the literature (Brown and Singh 2011, Ioi and Ikeda 1978, 

Pennestrì 1998). 
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Fig. 3 Frequency response of the primary structure as a function of excitation frequency ratio g and of  

mass ratio μ (reported here for the HF case) 
 

 

 

Fig. 4 Frequency response of the primary structure as a function of the excitation frequency ratio g and of 

primary structure damping ratio ζS (reported here for the HF case) 

 

 

Although in principle the method would allow for the optimisation of all three TMD parameters 

µ , f, ζT, the following typical modus operandi has been adopted, i.e., for a given fixed mass ratio µ 

and a primary structure damping ratio ζS, whose values have been assumed within the following 

range (in MATLAB vector notation) 

    ,1.0:005.0:055.0,05.0:0025.0:0,1.0:0025.0:0025.0  Sζμ           (5) 

the SQP algorithm seeks the optimum frequency ratio f
 opt

 and TMD damping ratio ζT
opt

, leading to 

best tuning, subjected to the assumed bounds reported here 

    ,3.0;05.1,10;85.0 3  
bb ul                         (6) 
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Thus, f and ζT are here the two assumed free variables of the optimisation process, listed in 

(2 × 1) vector p. The optimisation process begins with initial values of the two variable parameters 

f and ζT, provided here through literature tuning formulas (Den Hartog 1956, Warburton 1982), 

referring to the case of undamped primary structures (ζS = 0), gathered in Table 3 below. 

 

 
Table 3 Optimum tuning formulas from the literature for undamped primary structures (ζS = 0) 

Loading Author (ref.) f
opt

 ζT
opt

 

Harmonic Force Den Hartog (1956) 
1

1
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Harmonic Acceleration Warburton (1982) 
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Fig. 5 Optimum frequency ratio f
 opt

 from the numerical optimisation process for the four considered 

excitations 
 

 

3.3 Tuning results and relevant considerations 
 

The tuning results obtained from the numerical optimisation process for the four considered 

loading cases (HF, HA, WNF, WNA) are displayed by surface (3D) plots in Figs. 5 and 6 and by 

line section (2D) plots in Figs. 7 and 8, respectively in terms of optimum frequency ratio f
 opt

 and 

TMD damping ratio ζT
opt

. Also, further line section plots drawn out from the surface maps in 

Figs. 5 and 6 will be presented later for further quantitative analysis (Section 5). 
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Fig. 6 Optimum TMD damping ratio ζT
opt

 from the numerical optimisation process for the four considered 

excitations 
 

 

From the obtained tuning plots in Figs. 5 and 6, the following basic considerations arise (to be 

noted for the subsequent interpolation process). First, from Fig. 5 on f
 opt

, three main trends of f
 opt

 

may be mainly observed, out of the four loading cases. The higher values of f
 opt

 belong to the 

WNF case, while lower values of f
 opt

 are recovered in the HF case and lowest tight values are 

obtained for HA and WNA, which display an almost similar trend along both µ  and ζS directions. 

At the same time, from WNF to WNA cases, it appears that f
 opt

 becomes more variable with 

respect to structural damping ratio ζS. Particularly, for the WNF case, the variability on ζS appears 

almost negligible; for the HF case just a bit more visible and almost bilinear; for HA and WNA 

cases more apparent and with increasing non-linearity. Also, the outcomes for HF (reference case 

in Den Hartog's analysis (Den Hartog 1956) of undamped structures, ζS = 0) are almost halfway to 

those from WNF and HA/WNA. 

The context represented by the optimum TMD damping ratio ζT
opt

 in Fig. 6 is quite different, as 

clearly pointed out by the surface plot. Two main trends are actually displayed, which separate the 

cases of Harmonic and White Noise loadings (both for point Force and base Acceleration). The 

common and important feature of these two trends is the quite negligible variation of ζT
opt

 as a 

function of structural damping ratio ζS. This holds true especially for White Noise loading. 

In short, from a visual comparison between the two series of plots in Figs. 5 and 6, it should be 

said that trends sort out as follows: 

 by point of load application (Force vs. Acceleration) for f
 opt

; 

 by type of loading (Harmonic vs. White Noise) for ζT
opt

. 

Results on both f
 opt

 and ζT
opt

 recall those obtainable for the case of undamped primary 

structures (ζS = 0), as reported by the tuning formulas listed in Table 3. 

The considerations outlined above get clearer if observed in Figs. 7 and 8, which refer to the 

optimum frequency ratio and TMD damping ratio, respectively, with line sections extracted from 

Figs. 5 and 6, for particular values of the structural damping ratio, namely ζS = [0, 0.03, 0.05, 0.1]. 

The optimum frequency ratio f
 opt

 (Fig. 7) looks quite insensitive to variations of inherent damping 

for small values of this parameter, while more spread trends are recovered for ζS > 0.05, for all the 

considered excitation cases. These remarks can be extended to the optimum TMD damping 

ratio ζT
opt

 (Fig. 8), with slight differences. Indeed, if for ζS = [0, 0.03] the plots display almost the 

same trends, few differences arise for a higher structural damping, but related only to harmonic 
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excitations, since for white noise loading results appear very similar for both cases of point of 

application. 

 

  
(a) ζS = 0 (b) ζS = 0.03 

  
(c) ζS = 0.05 (d) ζS = 0.10 

Fig. 7 Optimum frequency ratio f
 opt

 from the numerical optimisation process, for different values of 

primary structure damping ratio ζS 

 

  
(a) ζS = 0 (b) ζS = 0.03 

  
(c) ζS = 0.05 (d) ζS = 0.10 

Fig. 8 Optimum TMD damping ratio ζT
opt

 from the numerical optimisation process, for different values of 

primary structure damping ratio ζS 
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4. Tuning formulas 
 
4.1 Fitting process 
 

The numerically-obtained optimum TMD parameters f
 opt

, ζT
 opt

 have been post-processed 

through a proper interpolation method, seeking the best match of the achieved results to possible 

unifying analytical fitting proposals that may be elaborated as described in the following. Direct 

2D surface fittings on both variables µ  and ζS have been attempted. The numerical interpolation 

method relies on non-linear least squares estimates based on the minimisation of the sum of the 

residuals between optimum and fitting values (The Mathworks Inc. 2011). The fitting model 

coefficients have been evaluated iteratively. 

First, a starting estimate of the model coefficients is attempted. The so-obtained fitting is 

assessed, and its Jacobian evaluated. Then, the model coefficients are adjusted by an optimisation 

algorithm based on a Trust Region method (The Mathworks Inc. 2011), by improving the achieved 

interpolation until appropriate convergence criteria are met. 

Once a best fitting is obtained with a proposed model, its reliability may be assessed by various 

error indices, such as the Summed Square of Error (SSE) or the Root Mean Square of 

Error (RMSE), and accuracy indices, such as the R-square correlation between optimum and 

fitting values (The Mathworks Inc. 2011). This last index has been reported in the results that 

follow. In general, the closer the R-square index to 1, the smaller and nearer to zero the error 

indices, and the better the fitting estimate. 

 

4.2 Fitting models 
 

The following contents stand as selected outcomes of a wider study, where different analytical 

fitting models have been considered and assessed, within the task of seeking a model apt to match 

the best compromise among appropriate representation of optimum results and simpleness of the 

tuning formulas. Specifically, two fitting models are presented here, for each optimised TMD 

parameter f
 opt

 and ζT
opt

. 

The first model, which outlines the present main proposal (validated also in following Section 5, 

will be denoted as Proposed Model (PM). This model does not explicitly refer to the literature 

tuning formulas for the case of undamped primary structures (Table 3). Instead, it represents an 

original contribution and just refers to polynomial expressions in the variables µ , ζS. Conversely, 

the second model, denoted as Literature-based Model (LM), follows a similar approach but 

basically relies on the tuning formulas in Table 3, which may be recovered exactly as particular 

cases for ζS = 0. 

 

4.3 Frequency ratio 

 

The fitting model for frequency ratio f ̃ opt
 and related tuning formulas are introduced and 

discussed in detail in this section. Based on the direct inspection of the surface plots in Fig. 5, it 

considers first a fitting model expressed by a polynomial expansion in the variables µ , ζS, 

generalising a bilinear dependency, endowed with proper exponents e, f, g, h accounting for 

possible non-linearity and with additional coefficients a, b, c, d ruling the importance of each term 
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.
~ h

S
g
S

feopt dcbaf                            (7) 

The signs appearing in Eq. (7) have been assigned by taking into account results obtained from 

the tuning procedure itself. Indeed, it may be noticed from Fig. 5 that the values assumed by f
 opt

 

are largest for small values of mass ratio µ , and decrease at increasing values of both free 

variables µ , ζS. 

A first estimate of the model coefficients, for the four different loading cases (HF, HA, WNF, 

WNA), has been reported in Table 4, whose results lead to the following considerations. For all the 

loading cases, parameter a takes, as expected, values near 1 (meaning that a Tuned Mass Damper 

characterised by a small mass and attached to a lightly-damped main structure should be resonant 

with the structure itself). Coefficients e and g are also near 1, while coefficient f approaches 1/2. 

The remaining coefficients are quite different for each loading case but, as a general observation, it 

may be pointed out that very similar values have been obtained for the cases of Harmonic 

Acceleration and White Noise Acceleration, while Harmonic Force and White Noise Force cases 

follow different trends. 

These outcomes lead, after further refinements, to the final tuning formulas for f
 opt

 of the 

Proposed Model reported in Table 5, based on square-root dependencies, which display an 

important feature: with quite a simple model and slight changes of the coefficients among the 

different loading cases, it is possible to achieve a good general fitting in terms of f
 opt

. Also, the 

fittings for the two acceleration loading cases are unified and actually set the same. 

 

 
Table 4 Optimum coefficients for the fitting model of frequency ratio f

 opt
 in Eq. (7) 

Loading a b c d e f g h R-square 

HF 1.003 0.7365 0.9475 0.8791 0.8959 0.4214 0.9794 1.936 1.0000 

HA 1.003 0.9272 1.696 1.229 0.8977 0.4223 1.004 2.014 1.0000 

WNF 1.002 0.5610 0.3969 0.01145 0.9018 0.5057 1.033 0.7986 1.0000 

WNA 1.004 0.9219 1.787 1.659 0.8948 0.4307 0.9872 1.926 1.0000 

 

Table 5 Final tuning formulas for the Proposed Model of frequency ratio 
optf

~
 

Loading f ̃opt R-square 

Harmonic Force 
1

1 3
2

S  
 

  
   

0.9916 

Harmonic Acceleration 
2 3

1 3
3 2

S  
 

  
   

0.9947 

White Noise Force 
2 1

1 3
5 4

S  
 

  
   

0.9974 

White Noise Acceleration 
2 3

1 3
3 2

S  
 

  
   

0.9924 
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Table 6 Optimum coefficients for the fitting model of frequency ratio f

opt
 in Eq. (8) 

Loading a b c d e f g h R-square 

HF 1.0000 0.003704 1.229 1.181 9.662 0.4632 0.9916 2.106 1.0000 

HA 1.0000 0.2065 2.262 1.260 3.516 0.4989 1.003 1.987 1.0000 

WNF 1.0000 0.006310 0.3795 0.1529 9.208 0.4439 0.9875 4.370 1.0000 

WNA 1.0000 10.0000 2.456 1.780 5.687 0.5041 0.9943 1.947 1.0000 

 

Table 7 Final tuning formulas for the Literature-based Model of frequency ratio 
optf

~
 

Loading f ̃
opt

 R-square 

Harmonic Force  S


31
1

1



 0.9969 

Harmonic Acceleration 












S




3

2

3
1

2

2

1

1
 0.9988 

White Noise Force 












S




3

4

1
1

2

2

1

1
 0.9998 

White Noise Acceleration 












S




3

2

3
1

2

2

1

1
 0.9943 

 
 
Based on such an experience, fitting formulas may be further refined by taking into account, as 

basis, the tuning formulas for undamped structures (ζS = 0) listed in Table 3. This allows to recover 

them exactly, when structural damping ratio ζS is set to zero. Namely, by combining formulas in 

Table 3 and fittings originated from the analytical model in Eq. (7), one may re-state the fitting as 

 .~
)0(

h
S

g
S

feopt
ref

opt dcbaff
S







                    (8) 

Best fitting on this further interpolation model leads then to results presented in Tables 6 and 7, 

which are homologous to those derived earlier (Tables 4 and 5). The final Literature-based Model 

tuning proposal in Table 7 unifies again cases HA and WNA. 

 
 
4.4 TMD damping ratio 
 

Easier interpretation is achieved for possible analytical fittings ζ̃T
 opt

 of the optimum TMD 

damping ratio ζT
 opt

, which are approached again in two ways. Following what stated above for f ̃ opt
 

in Eq. (7), a similar fitting model is attempted 

,
~ h

S
g
S

feopt
T dcba                           (9) 
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where the signs take into account the trends in Fig. 6. Table 8 reports the results of a first estimate 

of the model coefficients, which leads to the following observations. First, for all the loading cases, 

parameter a takes values near 0 (meaning that an optimum TMD should be lightly damped for 

small µ , ζS), while coefficient e approaches 1/2; parameter b results slightly lower than 3/5 and 1/2, 

respectively for Harmonic and White Noise loadings; the values assumed by coefficients c, d, f, g, 

h seem to point out that the contribution of ζS may be negligible overall. 

Table 9 reports the final obtained Proposed Model tuning formulas for TMD damping ratio ζT
 opt

, 

based on square-root dependencies on µ  similar to those for f ̃ opt
, according to the following 

considerations. First, ζT
 opt

 is weakly influenced by structural damping ratio ζS, basically just by 

mass ratio µ , especially for the case of White Noise loading. Instead, a slight dependence on ζS is 

displayed in the case of Harmonic loading. 

Second, the reported tuning formulas are quite simple and display at the same time high 

accuracy in the considered ranges. Third, the four loading cases are unified by two common 

formulas, differing just by a single coefficient (besides for an additional term related to ζS) and 

coupled in two by the type of acting loading (Harmonic vs. White Noise). 

Also for TMD damping ratio ζT
opt

, a Literature-based Model may be further provided, as 

reported in Eq. (10) below, whose optimum coefficients and final obtained tuning formulas are 

respectively gathered in Tables 10-11, respectively 

 .~
)0(,

h
S

g
S

feopt

refT

opt
T dcba

S






                  (10) 

 
Table 8 Optimum coefficients for the fitting model of TMD damping ratio ζT

opt
 in Eq. (9) 

Loading a b c d e f g h R-square 

HF -0.01166 0.539 0.01705 0.1024 0.4371 0.202 1.045 0.9029 1.0000 

HA -0.001 0.5734 0.2994 0.001005 0.4795 0.1832 0.9973 10 1.0000 

WNF -0.005521 0.4534 0.03684 0.08062 0.4572 4.999 5.818 8.749 1.0000 

WNA -0.005614 0.4548 0.1584 0.001293 0.4579 1.245 1.485 9.587 1.0000 

 
Table 9 Final tuning formulas for the Proposed Model of TMD damping ratio   T

opt
 

Loading ζ̃T
opt

 R-square 

Harmonic Force S
6

1

5

3
  0.9947 

Harmonic Acceleration S
6

1

5

3
  0.9987 

White Noise Force 
2

1
 0.9920 

White Noise Acceleration 
2

1
 0.9928 
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Table 10 Optimum coefficients for the fitting model of TMD damping ratio ζT
opt

 in Eq. (10) 

Loading a b c d e f g h R-square 

HF 1.002  0.2549   0.1614  0.6359 10    8.196 8.12  0.8518 0.9988 

HA 0.9972 0.2419   0.3477  1.079  9.344 5.298 7.73  0.9602 0.9987 

WNF 1.000  0.006248 0.02605 0.1006 1.808 7.893 7.901 8.833  1.0000 

WNA 1.000  0.001    1.140   1.339  1.757 1.457 1.238 4.560  1.0000 

 
 
Table 11 Final tuning formulas for the Literature-based Model of TMD damping ratio   T

opt 

Loading ζ̃T
opt

 R-square 

Harmonic Force  S






1

18

3
 0.9985 

Harmonic Acceleration 
   

 S






1

214

3
 0.9981 

White Noise Force 
 

   







218

34
 1.0000 

White Noise Acceleration 
 

   







218

4
 1.0000 

 

 

Such Literature-based Model tuning formulas in Table 11 confirm the quite independence of 

ζT
 opt

 on ζS (in fact, just a slight contribution occurs in the case of Harmonic loading). Therefore, 

the formulas valid for the undamped case have proved to provide good predictions also for the 

case of damped primary structures. 

 

4.5 Considerations on the fitting results 
 

Globally, for both PM and LM fitting models the tuning proposals are characterised by a good 

matching of the results from the numerical optimisation, together with quite a low level of 

complexity.  

Also, a unified way of tuning is foreseen, by switching from the various loading cases through 

changes of few coefficients. Main results are condensed in Tables 5 (f ̃ opt
) and 9 (ζ̃T

opt
) for the PM 

proposal and in Tables 7 (f ̃ opt
) and 11 (ζ̃T

opt
) for the LM proposal. 

Particularly, the PM proposal clearly shows that the optimum TMD parameters are matched by 

quite simple relations. On the other hand, the LM proposal allows to match, with a simple 

additional term, the optimum results with good accuracy, referring also to the case of damped 

primary structures. The remarks pointed out above are valid specifically for TMD damping 

ratio ζT
opt

, with optimum values that can be obtained by very simple formulas. Moreover, an 

interesting consideration arises for ζ̃T
opt

 from the PM tuning formulas for the cases of White Noise 
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loadings (Table 9), since they confirm those obtained, with a different approach, by Krenk and 

Høgsberg (2008). 

Specifically, identical fittings are proposed, in couples, for f ̃ opt
 in HA and WNA cases, and for 

ζT
opt

 in HF and HA cases and in WNF and WNA cases. Thus, while for f ̃ opt
, formulas rather group 

for the point of application of the loading action (Force vs. Acceleration), for ζT
opt

 they rather 

group for the type of loading (Harmonic vs. White Noise), see trends in Figs. 5 and 6. 

Obviously, validity and accuracy of the various tunings are attached to the assumed range of 

free variables (0 < µ ≤ 0.1, 0 ≤ ζS≤ 0.1). However, for different ranges of µ  and ζS, it would be 

possible to adjust the calibration coefficients, within the same proposed fitting models, by keeping 

reasonable levels of accuracy in the achieved predictions. 

 
 

5. Comparisons to the tuning literature 
 

In this section, the PM fitting assumption (Table 5 for f ̃ opt
, Table 9 for ζ̃T

opt
), has been inspected 

and validated through a series of line plots, reported in the following. They concern both the 

optimum TMD parameters f
 opt

, ζT
opt

 and the optimised response functions of the primary structure 

(Tables 1 and 2), as a function of mass ratio µ . Two cases have been reported here, i.e. those of 

undamped (ζS = 0) and damped (ζS = 0.05) primary structures. The literature formulas adopted for 

comparison purposes are those in Table 3, for the case of undamped primary structures, or come 

from additional literature works (Asami et al. 2002, Bakre and Jangid 2007, Ioi and Ikeda 1978, 

Krenk and Høgsberg 2008, Leung and Zhang 2009, Sadek et al. 1997, Tsai and Lin 1993, 1994), 

for the case of damped main structures. Results are reported in following Figs. 9-14. 

First, the case of undamped primary structures (ζS = 0) is considered and represented in 

Figs. 9, 10 and 13, respectively for optimum frequency ratio f
 opt

, TMD damping ratio ζT
opt

 and 

corresponding structural response indices R, N (Tables 1 and 2). 

Despite that the tuning formulas from the literature display clear non-linear trends on f
 opt

, Fig. 9 

shows that the trends of frequency ratio f
 opt

 may be considered almost linear, at least in the 

considered range of µ . This remark supports the validity of the proposed fitting formulas (Table 5), 

which reduce to linear functions in the case of undamped main structures. Except for the fitting 

case of HF loading, which shows little discrepancy with respect to classical Den Hartog's formula 

f
 opt

 = 1/(1+µ), all the other fitting cases point out a good agreement between the proposed and the 

corresponding literature formulas (Fig. 9). For TMD damping ratio ζT
opt

 (Fig. 10), a similar 

situation may be noticed. A general correspondence with output from literature formulas is 

achieved, particularly for the case of HA, where an accurate matching is recovered. Also, Fig. 13 

shows a very good agreement among all represented trends and supports a high effectiveness of 

the proposed TMD in reducing the primary structure response. 

From Figs. 11, 12 and 14, representative of the case of a damped primary structure (ζS = 0.05), 

further important considerations may be noted. First, a higher spread of the various trends is 

generally obtained, with respect to those of the undamped case, most of all for frequency ratio f
 opt

. 

In this sense, the proposed tuning seems to imply lower trends, except for the WNF case. On the 

other hand, the proposed TMD damping ratio ζT
opt

 appears to take almost the same values as those 

from most literature formulas, except for the case of Sadek et al. (1997) formula, which leads 

(intentionally) to quite higher values of ζT
opt

. 
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(a) Harmonic Force (b) Harmonic Acceleration 

  
(c) White Noise Force (d) White Noise Acceleration 

Fig. 9 Optimum frequency ratio f
 opt

 in the case of undamped primary structure (ζS = 0) for the considered 

four loading cases, compared to results from PM formulas (Table 5) and from tuning formulas in 

the literature 

 

  
(a) Harmonic Force (b) Harmonic Acceleration 

  
(c) White Noise Force (d) White Noise Acceleration 

Fig. 10 Optimum TMD damping ratio ζT
opt 

in the case of undamped primary structure (ζS = 0) for the 

considered four loading cases, compared to results from PM formulas (Table 9) and from tuning 

formulas in the literature 
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(a) Harmonic Force (b) Harmonic Acceleration 

  
(c) White Noise Force (d) White Noise Acceleration 

Fig. 11 Optimum frequency ratio f
 opt

 in the case of damped primary structure (ζS = 0.05) for the 

considered four loading cases, compared to results from PM formulas (Table 5) and from tuning 

formulas in the literature 

 
 

  
(a) Harmonic Force (b) Harmonic Acceleration 

  
(c) White Noise Force (d) White Noise Acceleration 

Fig. 12 Optimum TMD damping ratio ζT
opt

 in the case of damped primary structure (ζS = 0.05) for the 

considered four loading cases, compared to results from PM formulas (Table 9) and from tuning 

formulas in the literature 
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(a) Harmonic Force (b) Harmonic Acceleration 

  
(c) White Noise Force (d) White Noise Acceleration 

Fig. 13 Maximum response displacement of the primary structure in the case of undamped primary 

structure (ζS = 0) for the considered four loading cases, compared to results from PM formulas 

(Tables 5 and 9) and from tuning formulas in the literature 

 

  
(a) Harmonic Force (b) Harmonic Acceleration 

  
(c) White Noise Force (d) White Noise Acceleration 

Fig. 14 Maximum response displacement of the primary structure in the case of damped primary structure 

(ζS = 0.05) for the considered four loading cases, compared to results from PM formulas (Tables 5 

and 9) and from tuning formulas in the literature 
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Finally, important observations arise from frequency response functions R, N in Fig. 14, 

depicting the achieved optimum response of the damped structure. Indeed, it may be noted that the 

proposed tuning formulas enable to achieve the most effective Tuned Mass Damper, for all the 

four considered loading cases. 

 
 
6. Optimum TMD performance for SDOF and MDOF structures 
 

In this section, the performance of the optimum TMD, tuned following the PM approach (see 

Tables 5 and 9) for all the considered excitations, is further assessed with post-tuning numerical 

trials developed on different shear-type frames, by measuring the amount of achieved response 

reduction. Specifically, the considered structures are the following: 

 The SDOF structure stated in Leung et al. (2008), with structural damping ratio ζS,I = 0.05; 

 The 10-storey shear-type frame proposed by Villaverde and Koyama (1993), with a 

dominant first bending mode and modal damping ζS,I = 0.02. 

A given value of the mass ratio µ  = 0.02 has been assumed within the tests, which is compatible 

with possible practical engineering applications. The results in terms of response reduction have 

been gathered in Table 12 and in Figs. 15 and 16, based inter alia on given values of loading 

magnitude for all the four cases (HF, HA WNF, WNA), so that to obtain a reliable structural 

response amplitude. Relevant considerations on these tests have been outlined in the following. 

In Table 12, the percentage reduction of the primary structure top storey displacement is listed 

for the considered cases, evaluated in terms of both H∞ and H2 norms. In general, a higher TMD 

performance is obtained for the 10-storey building, likely due to its lower modal damping ratio 

ζS,I = 0.02 with respect to that of the SDOF frame (ζS,I = 0.05). Indeed, about one half of response 

reduction is achieved for the 10-storey structure in case of white noise loading, while even a larger 

abatement, namely three quarters of the total displacement, occurs in case of harmonic loading. On 

the other hand, smaller but again remarkable response decrease is recovered for the SDOF 

structure, i.e., about 45% for harmonic loading and from 40% to 20% for white noise excitation. 

Hence, the TMD turns out more effective in case of harmonic loading; however, being the results 

concerning the white noise excitation a sample, quite variable outcomes would be obtained in case 

of different trials, since it is a random vibration loading. 

Figs. 15 and 16 further confirm these remarks. In general, the effect of the control device 

becomes noticeable corresponding to the beginning of the steady-state response, independently on 

the structure and on its damping. This fact is likely due to the pure inertial nature of the passive 

TMD, and perhaps could be improved only with the further addition of an active controller (Salvi 

et al. 2015a). An outstanding TMD benefit is recovered for the case of harmonic excitation, 

especially for the 10-storey building, whose low inherent damping emphasises the benefit of the 

control device. On the other hand, the plots related to the white noise loading show a few intervals 

where the response is clearly decreased, in particular when a large oscillation amplitude occurs, 

especially after a considerable excitation time; again, this fact is more observable for the 10-storey 

building. Hence, from these tests one may outline a substantial effectiveness of the TMD tuned 

with the proposed model, which could further take advantage from favourable circumstances (in 

the sense of the control device), such as from low structural damping, where the presence of the 

control device is more effective. 
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(a) Harmonic Force (b) Harmonic Acceleration 

  
(c) White Noise Force (d) White Noise Acceleration 

Fig. 15 Time response in terms of displacement of the SDOF primary structure (Leung et al. 2008), for the 

considered four loading cases, without and with the TMD optimised with PM formulas (Tables 5 

and 9), with μ = 0.02 

 
 

  
(a) Harmonic Force (b) Harmonic Acceleration 

  
(c) White Noise Force (d) White Noise Acceleration 

Fig. 16 Time response in terms of top-storey displacement of the 10-storey primary structure (Villaverde 

and Koyama 1993), for the considered four loading cases, without and with the TMD optimised 

with PM formulas (Tables 5 and 9), with μ = 0.02 
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Table 12 Percentage response reduction for the considered primary structures and excitations, with TMD 

optimum coefficients for the fitting model of TMD damping ratio ζT
opt

 in Eq. (10) 

Primary structure (ref.) 
 %, 

 nSx   %
2,nSx  

HF HA WNF WNA HF HA WNF WNA 

1-storey (Leung et al. 2008) 46.36 45.96 40.50 29.03 46.77 45.23 31.20 20.01 

10-storey (Villaverde and Koyama 1993) 76.46 76.39 47.24 50.88 75.23 74.62 44.58 46.16 

 
 
7. Conclusions 
 

This work dealt with the attempt of unification of different tuning formulas, with relevant 

consideration of the structural damping, based on a common polynomial model, towards obtaining 

the best TMD parameters, in the framework of four typical ideal loading cases (Harmonic or White 

Noise, applied as point Force or base Acceleration). 

Optimum TMD parameters f
 opt

 and ζT
opt

 are derived first, through a numerical SQP 

optimisation approach, based on the direct minimisation of the associated displacement response 

functions. The results of the numerical optimisation process displayed three main trends for 

frequency ratio f
 opt

 and two main trends for TMD damping ratio ζT
opt

. From a general point of view, 

it appears that the trends of the optimum frequency ratio gather by point of application of the 

dynamic loading, i.e., point force vs. base acceleration (particularly, quite similar results have been 

obtained for the two cases of base acceleration). This should highlight the main effect of TMD 

insertion. Conversely, the trends of the optimum TMD damping ratio appear to gather according to 

the type of loading, i.e., harmonic vs. white noise loading. A further difference between the two 

optimum TMD parameters regards the variability of the tuning results on the primary structure 

damping ratio ζS, which appears to be higher for f
 opt

 and lower, and almost negligible, for ζT
opt

. 

The so-obtained results have been then interpolated by various analytical fitting models and 

reference ones are obtained, in view of deriving simple tuning formulas that would resemble the 

optimum numerical tuning results. In particular, the main proposal of this study consisted in a 

Proposed Model (PM) based on a pure polynomial fitting model, whose coefficients are refined 

and shaped to meet almost exactly the trends outlined by the numerical optimisation process. 

Indeed, the analysis carried out proved that the deviation of the fitted curves with respect to the 

numerical results is quite negligible. The result of this process is a series of tuning formulas, 

specific for each considered loading, that exhibit a similar and very simple form, which in 

principle should favour their assumption for a general TMD tuning. A complementary 

Literature-based Model (LM) is also presented, based on the refinement and the extension of 

literature formulas for the case of undamped primary structure, which could represent a sort of 

alternative solution for an efficient TMD optimisation. 

The outcomes obtained with PM have been then compared to those from typical tuning 

formulas in the literature, in terms of both optimum TMD parameters and reduction of the 

assigned response index, for each loading case, in both cases of undamped and damped main 

structures. Such comparisons have led to the following considerations. First, for all the considered 

loading cases, both optimum TMD parameters obtained with PM were found to be in line with 
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main trends outlined by much involved literature tunings. Furthermore, it may be noted that the 

proposed tuning leads to the design of the most effective Tuned Mass Damper, since the trends of 

structural response are always the lowest, for all the loading cases. 

Finally, several post-tuning trials have been developed on SDOF and MDOF shear-type frame 

buildings taken from the literature, so that to measure the benefit achieved with the proposed 

optimum TMD, specifically in terms of displacement response reduction in time. The outcomes of 

this investigation provided convincing indications, represented by a significant abatement of 

dynamic response, even in case of quite high structural damping. This latter parameter has been 

shown to influence the TMD performance. The achieved benefit from the control device is 

however positive, and even outstanding, for lower levels of inherent damping. These results, in 

principle, promote both the assumption of adopting the TMD as a vibration control device and its 

tuning with the proposed formulas (PM) put forward in the present paper. 

As a conclusion, a study on a comprehensive tuning of Tuned Mass Damper has been 

attempted. Four characteristic dynamic loadings have been considered. Simple TMD tuning 

formulas have been derived and calibrated, which result highly predictive of the true numerical 

optimum results and gather all loading cases through a common model. Such formulas have 

proved to allow for the tuning of a best effective TMD, as assessed by comparisons to various 

literature proposals and by relevant post-tuning trials on various frame structures. 

These outcomes should support the proposed tuning as an easy reference for a wide and general 

design of Tuned Mass Damper devices. Further investigations would be scheduled to enquire the 

validity of the present tuning proposals in the context of different real loading scenarios, as 

e.g., those of wind force and earthquake excitation. 
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