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Abstract.    Seismic isolation systems are essentially designed to preserve structural safety, prevent 
occupants injury and properties damage. An active saturated LMI-based control design is proposed to 
attenuate seismic disturbances in base-isolated structures under saturation actuators. Using a mathematical 
model of an eight-storied building structure, an active control algorithm is designed. Performance evaluation 
of the controller is carried out in a simplified model version of a benchmark building system, which is 
recognized as a state-of-the-art model for numerical experiments of structures under seismic perturbations. 
Experimental results show that the proposed algorithm is robust with respect to model and seismic 
perturbations. Finally, the performance indices show that the proposed controller behaves satisfactorily and 
with a reasonable control effort. 
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1. Introduction 
 

The combination of passive base isolators and feedback controllers (applying forces to the base) 
has been proposed in recent years with the objective of maintaining the seismic response of 
structures within safety, service and comfort limits. Some groups have proposed active feedback 
systems, for instance Barbat et al. (2010), Pozo et al. (2009) and Pozo et al. (2006). More recently, 
semiactive controllers have been proposed in the same setting with the hope of gaining advantage 
from their implementation using, for instance, magnetorheological (MR) dampers (Bahar et al. 
2010, Chang et al. 2013, Ghaffarzadeh 2013, Luo et al. 2001, Ramallo et al. 2002, Rodríguez et al. 
2012, Yang and Agrawal 2002). 

The basic idea of base isolation is to make the structure behave like a rigid body through a 
certain degree of decoupling from the ground motion. In this way it is possible to absorb part of 
the energy induced by the earthquake and to diminish the fundamental frequency of structural 
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vibration to a value lower than the dominant energy frequencies of earthquake ground options. As 
a consequence, both the relative displacements of the structure with respect to the base (damage 
source) and the absolute accelerations it undergoes (which endanger human comfort and the safety 
of installations) can be simultaneously reduced. The idea of adding a feedback control is based on 
the premise that a control action is to be applied at the base with force magnitudes that are not 
excessive due to the high flexibility of the isolators. The main benefit of the inclusion of the 
control is that the assistance of such a force can help prevent large displacements of the base 
isolator, which could endanger the integrity of the scheme, but it may also introduce an additional 
effect reducing the interstory drifts, which are already small due to the effect of the isolator. This 
may be useful, particularly for structures containing sensitive equipment or important resources, 
such as hospitals, public services, computer facilities, etc. 

In this paper, an active saturated Linear Matrix Inequality (LMI)-based controller for seismic 
attenuation is developed and applied to a hysteretic base-isolated eight-storied building, similar to 
existing building in Los Angeles (California). In recent years, LMI techniques have become quite 
popular in control design (Pujol and Acho 2010, Tang and Yu 2011). The main reason for this 
popularity has been the discovery of interior point methods for convex programming that allows 
the numerical solution of LMIs in polynomial time. It has been acknowledged that many control 
problems can be formulated in terms of LMIs (Apkarian et al. 2001, Boyd et al. 1994, Ji et al. 
2009, Oliveria and Peres 2006). Moreover, saturation can produce limit cycles even in linear stable 
systems (Vincent and Grantham 1997). These limit cycles can induce internal perturbation that can 
raise instability in structural control systems under seismic perturbation. Because seismic 
perturbations are unknown, but bounded, there always exists the risk that the actuators reach their 
maximal available force producing saturation (Pnevmatikos and Gantes 2011). So, the controller 
has to be well designed to display good performance under seismic perturbation and under 
saturation effect. Control of systems with saturation actuators have been extensively studied (Hu 
and Lin 2001, Lan and Wang 2010) and all of this knowledge can also be applied to the field of 
structural control. Furthermore, the maximal available energy of the actuators can be a priori used 
for control design, which is intuitively correct in civil engineering. The LMI controller design 
proposed in this work is based on the results obtained in Nguyen and Jabbari (1999), giving an 
innovative control algorithm for seismic disturbance attenuation in structures employing saturating 
actuators. The design is based on a simplified model version of the benchmark building system 
(Narasimhan et al. 2006), which is recognized as a state-of-the-art model for numerical 
experiments of structures under seismic perturbations. Besides, our controller is robust against 
model and saturation effect, as can be appreciated in the numerical experiments. Performance of 
the proposed controller, for seismic attenuation, are evaluated by numerical simulations using 
seven different earthquakes and eight evaluation criteria, such as the peak base shear, the peak base 
displacement or the peak absolute floor acceleration. 

This paper is structured as follows. The hysteretic base-isolated structure to be controlled is 
described in Section 2. The saturated LMI-based controller is developed in Section 3. Numerical 
simulations to analyze the performance of the proposed controller are presented in Section 4. Final 
comments are given in Section 5. 

 
 

2. System description 
 
Consider a nonlinear base-isolated building structure as shown in Fig. 1. For control design, a 
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dynamic model composed of two coupled subsystems, namely, the main structure or superstructure 
( S

r
) and the base isolation ( S

c
) is employed 

                                           (1) 

                                 (2) 

where   is the absolute ground acceleration,   represents the horizontal 

displacements of each floor with respect to the ground. The mass, damping and stiffness of the i

‐th storey are denoted by mi
, ci

 and ki
,  respectively,   and 

, represents the horizontal displacements of the i ‐th floor relative to the  
(i-1)–th storey. The base isolation is described as a single degree of freedom with horizontal 
displacement x0

. It is assumed to exhibit a linear behavior characterized by mass, damping and 

stiffness m0
, c0

 and k0
, respectively, plus a nonlinear behavior represented by a hysteretic 

restoring force ),( 0 tx . The matrices M , C , K , J , C  and K  of the structure have the 

following form 
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                                         (2) 

The restoring force    can be represented by the Bouc-Wen model (Ikhouane et al. 2005, 
Ikhouane and Rodellar 2007) in the following form 

(x
0
,t)  Kx

0
(t) (1 )DKz(t)                                          (3) 

                                       (4) 

where (x0 ,t)   can be considered as the superposition of an elastic component Kx0  and a 
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Finally, u  is the control force supplied by an appropriate actuator. 
It is well accepted that the movement of the superstructure Sr  is very close to the one of a 

rigid body due to the base isolation (Skinner et al. 1992). Then it is reasonable to assume that the 
interstory motion of the building will be much smaller than the relative motion of the base (Luo et 
al. 2001). Table 1 presents the model coefficients of the base-isolated structure. Consequently, the 
following simplified equation of motion of the base can be used in the subsequent controller 
design 

                                   (5) 

The feasibility of this simplification is justified in a more detailed way in Luo et al. (2001) and 
Pozo et al. (2008). 

Eq. (5) together with (3) can be expressed in matrix form as 

                               (6) 

where   is the position and velocity ground displacement. The hysteretic 

component z  and the absolute acceleration  are the components of the vector w . The 

dynamic of the hysteretic variable z(t), defined in Eq. (4), is not considered in Eq. (6). The 

hysteretic component z(t) is included in the perturbation vector w , and then a linear expression 
of the structural system is obtained and used to prove stability (Sadek et al. 2003). Therefore, the 
nonlinear model (2)-(4) is considered for simulations. 

 
 

3. Control design 
 
3.1 Controller synthesis 
 
The key of this Section is to obtain a controller through the solution of a linear matrix 

inequality (LMI) optimization problem. 
To design a controller to achieve an optimal performance objective and to guarantee the inputs 

to remain less than or equal to the saturation limits, we recover the matrix expression of the Eq. of 
motion (5) in Eq. (6) and we define our control objective 
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                                                   (7) 

where  is the state space vector, composed by the base displacement and 

velocity;  is the disturbance input; Ru  is the control input; and Rz  is the output 

to be controlled. , and , are constant matrices as defined in Eq. (6). 

The control objective is to find a state feedback saturated controller that guarantees the  gain 

of    from w  to z . Since , the control objective is equivalent to the seismic 

attenuation ( ) and the force mitigation of the nonlinear term of the base isolation restoring force 

(which depends on z(t) ). In this paper, the H -performance controlled output Rz  is 

defined by the weighted matrix C  0.0001 1



 . This value of C  is used to give more 

emphasis to the base velocity rather than to base displacement, because we remark that the internal 
variable z(t), in Eq. (4), is a function of the velocity. 

The control synthesis is based on the results presented by Nguyen and Jabbari (1999), where 
the level of performance    is given. In this reference, a high-gain controller design to improve 
disturbance attenuation for systems with input saturation is presented. It shows that if some set of 
LMI's are feasible, then there exists a saturate state feedback controller that guarantees the  
gain of fixed    from w  to z . In the present paper, a modification of this result is considered: 
the level performance    is taken as a variable, solving an optimization problem over    and 
obtaining a result less conservative. This is the main difference with the work by Nguyen and 
Jabbari (1999), where    is fixed. Consider as a design parameters   0  and  and 
define the gain , where ulim  is the maximum value of the saturated control, 

 is the maximum magnitude of the perturbation and . 
 
 
 

Table 2 Parameters and control law 

control parameters ulim  10m0    5 106 
wmax  22  (8.58m0 )2

control law  

performance level    15.8676 

 
 
 

Table 3 Parameters of the hysteresis model in Eqs. (3) and (4) 

  0.5  A  1 K  61224.49  (N/m)   0.5  

D  0.0245  (m)   0.5  n  2  
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Proposition 1. Consider the system in Eq. (7). Given , if there exists a positive 

definite constant matrix Q  0 , scalars    0 and   0, for some given   0  such that the 
following LMI's are feasible 

AQ QAT  B2B2
T B1 QC

T

B1
T   0
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                                                 (10) 

Then, the high-gain nonlinear state feedback controller 

u  sat

2

B2
TQ1x





,                                              (11) 

where 

sat x  
ulim , x  ulim

x, x  ulim
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



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,                                            (12) 

guarantees quadratic stability with -gain level of   . The term   in Eq. (11) is any 

constant larger than one and ulim  is the desired saturation limit.  
Proof. The proof is based on results over LMI theory presented by Boyd et al. (1994), where it 

is shown that Eqs. (8) and (9) is a necessary and sufficient condition for the existence of 

sub-optimal H  state feedback controller, defined here by the specific structure u  

2

B2
TQ1x  

ensuring internal stability. Inequality (10) is a necessary and sufficient condition for . 
Then, by Nguyen and Jabbari (1999), Eq. (11) defines a high-gain nonlinear state feedback 
controller, and the proposition is proved.  

Proposition 1 shows that if there exists a constant matrix Q  0  and a nonnegative scalar 

  0, it is possible to optimize the -gain    solving a set of LMI's. This is the main 

difference with Nguyen and Jabbari (1999), where the gain level    is given. 
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3.2 LMI-based control algorithm 
 
In this section, the steps to solve the disturbance attenuation control problem are discussed. The 

final goal is to find a feasible solution for the gain matrices and to get a bound for the performance 
criterion. 

 Step 1. Verify that (A, B2 )  is controllable. 

 Step 2. Define the saturation limit ulim  and the largest disturbance amplitude wmax. Then, 

define . Define matrix C , that is, which state variable has to be controlled. 

 Step 3. Fix   0 . The choice of this value depends on each problem. We have considered 
  0.01. Then, for this value: 
 Step 4. Solve the LMI system in Eqs. (8)-(10) via LMI optimization on   , with LMI 

variables Q  0 ,   0   and    0. 

 Step 5. Is this LMI feasible? 
 Step 5.1. No? Then go to Step 3 and change the value of  . By Step 1 the problem is 
feasible, but the choice of    is crucial. 
 Step 5.1. Yes? Then check if the performance level  0   can be improved and go to Step 3 

and increase  . If the new  new  is worse, keep    0 . Otherwise,     new . 

 Step 6. With    fixed, using Proposition 1, the high-gain nonlinear state feedback 
controller is defined in Eq. (11). 
 Step 7. A simulation is made sweeping through  1. 

In Step 5.2,  0  represents the  level used to observe the disturbance attenuation 
performance in the interactive algorithm process. Because in Proposition 1,   can be any 
constant greater than one, Step 7 is incorporated to look for, by numerical simulations, a 
sub-optimal value of  . 

 
 

4. Numerical results 
 

The model in Eqs. (1) and (2) is used to design an appropriate control law. The applicability 
and efficiency of the proposed controller is then shown using a more realistic and complex model 
through the benchmark building presented by Narasimhan et al. (2006). In fact, the design is based 
on a simplified model version of the benchmark building system (Narasimhan et al. 2006), which 
is recognized as a state-of-the-art model for numerical experiments of structures under seismic 
perturbations. Table 2 presents the design parameters used to obtain the control law u(t)  in (11). 

The value ulim  is determined based on the specifications of the structure under study. Parameter 

 1 has to be greater enough to compensate the value B2
TQ1 in Eq. (11). The maximum 

values zmax  and wmax are defined from the benchmark detailed description. From the procedure 

in Section 3.2, we derive the robust control u(t)  in Eq. (11) and the optimal performance level 

  , both defined in Table 2. 
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Fig. 2 Time-history response of the isolated building under Newhall excitation (FP- y , FN- x ). 

Displacement of the base, for both the uncontrolled (red) and the controlled (black) situations (up)
and its corresponding power spectral density (uncontrolled in the middle and controlled down) 

 
 
The results of the saturated LMI controller in Table 2 –based on Eq. (1) – are summarized in 

Table 4, for the fault normal (FN) component and the fault parallel (FP) components. The 
evaluation is reported in terms of the performance indices described by Narasimhan et al. (2006). 
The controlled structure –whose parameters are described in Tables 1-3– is simulated for seven 
earthquake ground accelerations as defined by Narasimhan et al. (2006) (Newhall, Sylmar, El 
Centro, Rinaldi, Kobe, Ji-Ji and Erzinkan). All the excitations are used at the full intensity for the 
evaluation of the performance indices. The performance indices larger than 1 indicate that the 
response of the controlled structure is bigger than that of the uncontrolled structure. These 
quantities are highlighted in bold. 

In this paper, the controllers are assumed to be fully active. These actuators are used to apply 
the active control forces to the base of the structure. In this control strategy most of the response 
quantities are reduced substantially from the uncontrolled cases. The nonlinear model of the main 
structure (2)-(4) is used to run out the simulation. The Bouc-Wen model (3)-(4) is considered and 
the parameters of the hysteresis model are defined in Table 3. 
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4.1 Performance indices 
 
The base and structural shears are reduced between 8 and 55% in a majority of earthquakes 

(except El Centro and Sylmar). The reduction in base displacement is between 17 and 69% in all 
cases. Reductions in the inter-storey drifts between 4 and 40% are achieved when compared to the 
uncontrolled case. The floor accelerations are also reduced by 4-44% in a majority of earthquakes 
(except Newhall (FP- y), Sylmar (FP- y), El Centro and Ji-ji (FP- x )). 

The benefit of the active control strategy is the reduction of base displacements ( J3 ) and shears 

( J1, J2 ) of up to 69% without increase in drift ( J4 ) or accelerations ( J5 ). The reduction of the 

peak base displacement J3  of the base-isolated building is one of the most important criteria 

during strong earthquakes. Moreover, the index J6  in the proposed scheme reach to small values, 
which means that the force generated by all control devices with respect to the base shear of the 
structure is acceptable. 

For the base-isolated buildings, superstructure drifts are reduced significantly compared to the 
corresponding fixed-buildings because of the isolation from the ground motion. Hence, a 
controller that reduces or does not increase the peak superstructure drift ( J4 ), while reducing the 

base displacement significantly ( J3 ), is desirable for practical applications (Xu et al. 2006). In this 
respect, the proposed active controller performs well. 

 
4.2 Time-history plots 
 
Figs. 2-4 show the time-history plots of various response quantities for the uncontrolled 

building, and the building with active controllers using some of the seven earthquakes.  
 
 

Table 4 Numerical results for the proposed saturated LMI controller. Case A refers to (FP- x , FN- y ) and B 

refers to (FP- y , FN- x ) 

Earthq. Case J1 J2 J3 J4  J5 J6  J7 J8 

Newhall 
A 0.700 ,668 0.697 0.791 0.751 0.174 0.533 0.708 
B 0.689 0.717 0.401 0.658 1.155 0.499 0.282 0.814 

Sylmar 
A 0.765 0.751 0.637 0.801 0.797 0.288 0.598 0.816 
B 0.956 1.013 0.702 0.892 1.067 0.358 0.497 0.906 

El 
Centro 

A 0.881 1.032 0.307 0.601 1.362 0.606 0.230 1.219 
B 0.878 0.933 0.349 0.818 1.279 0.859 0.274 1.052 

Rinaldi 
A 0.913 0.917 0.833 0.891 0.852 0.157 0.599 0.827 
B 0.714 0.656 0.570 0.744 0.828 0.354 0.413 0.763 

Kobe 
A 0.493 0.454 0.493 0.718 0.559 0.206 0.458 0.506 
B 0.705 0.664 0.664 0.716 0.726 0.195 0.407 0.529 

Ji-Ji 
A 1.003 0.972 0.776 0.815 1.231 0.284 0.534 0.742 
B 0.678 0.667 0.564 0.961 0.958 0.467 0.535 0.815 

Erzin. 
A 0.827 0.806 0.636 0.883 0.824 0.373 0.559 0.877 
B 0.520 0.485 0.408 0.767 0.749 0.428 0.311 0.493 
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Fig. 3 Time-history response of the isolated building under Erzinkan excitation (FP- y , FN- x ). Absolute 

acceleration of the base, for both the uncontrolled (red) and the controlled (black) situations (up) and
its corresponding power spectral density (down) 

 
 

More precisely, Figs. 2 present the plots for the base displacement under Newhall (FP- y , FN-
x ) for both the uncontrolled and the controlled situations. The plotted quantities in Fig. 3 are the 
absolute acceleration of the base, also for both the uncontrolled and the controlled situations. The 
resulting saturated control force under Newhall is depicted in Fig. 4. 

Looking at Fig. 2, it can be seen that the controlled relative displacement of the base is 
significantly reduced compared to the uncontrolled case. Fig. 3 shows that the reduction in the 
absolute base acceleration is not as drastic, but it is still significant. 

 
4.3 Power spectral density plots 
 
Fig. 2 also shows the power spectral density (PED) plot of various response quantities for the 

uncontrolled building, and the building with active controllers using some of the seven 
earthquakes. The idea of the PED, as a metric, is that if the area under the curve in the controlled 
case is smaller than the area under the curve in the uncontrolled case, the vibrations are then 
reduced. We can clearly observe this behaviour in this figure. In Fig. 3 the same kind of power 
spectral plots can be found but with respect to the base acceleration. In this case, the controlled 
curves are not placed below the uncontrolled ones, but the closed-loop peaks are significantly 
reduced, an important issue on structural effort reduction. 
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Fig. 4 Saturated LMI-based control force under Newhall excitation (FP- x , FN- y ) 

 

 

Fig. 5 Comparison of performance indices for various ground motions (Newhall, Sylmar, El Centro, Rinaldi,
Kobe, Ji-Ji and Erzinkan) (FP- x , FN- y ) 

 
 

4.4 Comparison 
 
Fig. 5 shows that, as compared to the uncontrolled system –and for the seven ground motions–, 

the proposed active control provides significant performance improvement in terms of reducing 
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both peak and normed responses. Only in three cases (Newhall, Sylmar and El Centro) there is 
performance degradation with respect to the peak absolute floor acceleration J5 ). Nevertheless, in 
these three cases, the peak base displacement is reduced substantially. The results of the 
performance index J5  can then be improved by tuning the parameters ulim  and   and 

obtaining a less drastic reduction for the index J3 . 
 

Remark 1. In the results presented in this Section, we have considered the same expression for 
the control law, no matter what earthquake we are considering for simulation. This results can be 
improved if the parameters ulim  and   in Table 2 are chosen for each earthquake in an 
independent way, according to the characteristics of the different seismic zones. 

 
 

5. Conclusions 
 
From a structural point of view, the objective of an active control component, as part of a 

hybrid seismic control system for buildings (and other structures), is to keep the base displacement 
relative to the ground, the interstory drift and the absolute base acceleration within a reasonable 
range (which can be affected by the design of the base isolator). In this work, we have proposed 
and applied a saturated LMI-based controller for seismic attenuation of base-isolated structures. 
The simulation results illustrate that the base and structural shears, the base displacement, the 
interstory displacements and the floor accelerations have been significantly reduced by using the 
proposed saturated controllers as compared with the purely passive isolation scheme. One of the 
key points of the proposed control scheme is the simplicity of the control law. 
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