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Abstract.  Numerical analysis of large amplitude free vibration behaviour of laminated composite spherical 
shell panel embedded with the piezoelectric layer is presented in this article. For the investigation purpose, a 
general nonlinear mathematical model has been developed using higher order shear deformation mid-plane 
kinematics and Green-Lagrange nonlinearity. In addition, all the nonlinear higher order terms are included in 
the present mathematical model to achieve any general case. The nonlinear governing equation of freely 
vibrated shell panel is obtained using Hamilton‘s principle and discretised using isoparametric finite element 
steps. The desired nonlinear solutions are computed numerically through a direct iterative method. The 
validity of present nonlinear model has been checked by comparing the responses to those available 
published literature. In order to examine the efficacy and applicability of the present developed model, few 
numerical examples are solved for different geometrical parameters (fibre orientation, thickness ratio, aspect 
ratio, curvature ratio, support conditions and amplitude ratio) with and/or without piezo embedded layers 
and discussed in details. 
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1. Introduction 
 

Smart structures have got huge attention over the last two decades due to their coupling 

between electric, magnetic, thermal and/or mechanical effects for achieving the desired 

performance in modern structural systems. This lead to wide area of applications in structural 

health monitoring, vibration isolation and/or control, shape control, medical applications, damage 

detection and noise attenuation. Smart materials are also well known for their physical coupling 

effect which make them useful as sensors and/or actuators in different high-performance 

engineering structures. Out of all the available smart materials, piezoelectric materials remain the 

most widely used due to their advantages like higher structural stiffness/strength and voltage 

dependent actuation. Moreover, these materials are less expensive, light in weight, commercially 

available in different shapes and can be bonded easily to any other surfaces of material using 

commonly available adhesives. It is well known that the coupling of mechanical and electrical 
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properties are governed by converse and direct piezoelectric effect which in turn make them well 

suited for sensors and/or actuators. The piezoelectric materials are used in the form of 

layers/patches embedded and/or surface bonded to the parent structure/structural components. 

Based on the advantages, piezoelectric ceramic materials (lead zirconate titanate, PZT) have been 

chosen as the smart material for this present investigation. 

Many researches have already been completed on the modelling of laminated composite 

plate/shell structures embedded and/or surface bonded piezoelectric layers using analytical and 

numerical methods. Arefi and Khoshgoftar (2014) developed coupled piezo-thermo-elastic 

generalized model of thick functionally graded hollow spherical shell panel embedded with 

piezoelectric material under electro-thermo-mechanical loads to improve the relation between 

mechanical and electrical load. Arefi and Rahimi (2011) investigated nonlinear responses of 

functionally graded (FG) square plate bonded with two smart layers acting as sensor and actuator 

under uniform pressure by considering the nonlinearity in von-Karman sense. Benjeddou (2000) 

presented exhaustive review on advances and trends in finite element method for the analysis of 

adaptive structures. Balamurugan and Narayanan (2001, 2009) investigated active vibration 

control performance of piezo bonded laminated flat and shell structures by taking the coupled 

(mechanical and electrical) load effect and solved using finite element method (FEM). They have 

modelled the electric potential through a higher order approximation.  Benjeddou et al. (2002) 

reported exact two-dimensional analytical solutions for free vibration behaviour of piezoelectric 

bonded adaptive plate using layerwise first order shear deformation theory (FSDT) and quadratic 

non-uniform electric potential. Chakravorty et al. (1996) investigated linear free vibration 

behaviour of thin shallow doubly curved shell panel by taking the effect of various geometrical 

and/or material properties using FSDT mid-plane kinematics. Das and Singh (2009) investigated 

nonlinear free vibration behaviour of laminated composite plate embedded with piezoelectric 

layers based on higher-order shear deformation theory (HSDT) and Green-Lagrange nonlinearity. 

Heyliger and Brooks (1995) reported free vibration responses of piezoelectric laminated plates 

with cylindrical bending and also computed the natural frequencies through thickness modal 

distributions of elastic and electric field variables. Huang and Shen (2005) presented nonlinear free 

vibration and dynamic behaviour of laminated plates embedded with piezoelectric actuators under 

the action of mechanical, electrical and thermal loads. Huang and Sun (2001) investigated dynamic 

responses of the composite beam bonded with piezoelectric sensors and actuators. Kattimani and 

Ray (2014) examined large amplitude vibration suppression of doubly curved shell panel using 

active constrained layer damping (ACLD) effect under magneto-electro-elastic (MEE) load. Lee 

and Reddy (2004) reported analytical solutions of vibration suppression of laminated composite 

shells with smart material layers using von-Karman nonlinearity in the framework of Donnell and 

Sanders shell kinematic. Lee et al. (2006) investigated the degree of deflection suppression of 

laminated composite shells bonded with smart layer through nonlinear finite element (FE) steps. 

The model has been developed using Sanders nonlinear shell kinematics in the framework of 

HSDT. Nanda (2010) investigated the effects of voltage and different geometrical parameters on 

the nonlinear free vibration and transient responses of composite shell panels bonded with 

piezoelectric layers under uniform thermal environment. Kerur and Ghosh (2011) reported the 

active control of nonlinear transient responses of laminated composite plate using the FSDT 

kinematics and von-Karman nonlinearity under coupled electromechanical loading. Rafiee et al. 

(2013) studied nonlinear free vibration and dynamic behaviour of piezoelectric bonded FG shells 

under combined electrical, thermal, mechanical and aerodynamic loading. Ramirez et al. (2006) 

presented free vibration responses of two-dimensional MEE laminates using discrete layer 
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approach through Ritz method. Reddy (1999) reported Navier‘s solutions of smart laminated 

composite plate under mechanical and electrical loading. The plate model has been developed 

using classical and shear deformation theories and discretised using FE steps. Saravanos et al. 

(1997) presented dynamics behaviour composite plate embedded with piezoelectric actuators and 

sensors using layerwise theory. Geometrical nonlinear transient response of doubly curved shell 

panel and laminated composite beam embedded in 1-3 piezoelectric composite material are 

computed using FSDT kinematics and von-Karman nonlinearity by Sarangi and Ray (2010, 2011).  

Singh and Panda (2014) developed a geometrical nonlinear mathematical model to analyse large 

amplitude free vibration behaviour of doubly curved composite shell panel using HSDT 

kinematics and Green Lagrange type nonlinearity. Xu et al. (1997) presented analytical 3D 

solution of free vibration responses of cross-ply hybrid composite plates by considering the effect 

of piezo-thermo-elastic layers. Kulkarni and Bajoria (2007) investigated geometrically nonlinear 

behaviour of piezo laminated smart composite plates and shells by taking von-Karman 

nonlinearity in the framework of HSDT and FSDT mid-plane kinematics. 

It is clear from the above review that no study has been reported yet in open literature on the 

nonlinear free vibration behaviour of laminated composite spherical shell panel bonded with 

piezoelectric layers based on the HSDT mid-plane kinematics and Green-Lagrange nonlinearity. 

Hence the present study aims to develop a nonlinear mathematical model of laminated composite 

spherical shell panel embedded with PZT layer for the closed-circuit configuration (external 

surfaces are grounded i.e., electric potential ‗ϕ‘ zero at the top and bottom surfaces) to analyse the 

large amplitude free vibration responses. The model has been developed based on the HSDT 

kinematics and Green-Lagrange nonlinearity by including all the nonlinear higher order terms to 

achieve the generality. The nonlinear governing equation is obtained using Hamilton‘s principle 

and discretised through isoparametric finite element steps. The desired nonlinear responses are 

computed by solving the governing equations numerically through a direct iterative method. The 

validity and competency of the developed model have been established by comparing the 

responses to those available published literature. The applicability of the proposed model has been 

shown by solving wide variety of examples for different parameters such as stacking sequences, 

thickness ratios, amplitude ratios, curvature ratios, support conditions, symmetric and 

unsymmetrical laminations and aspect ratios and discussed in details. 

 

 

2. Mathematical formulations 
 

In this analysis, a doubly curved laminated composite shallow shell of uniform thickness ‗h‘ is 

considered (Fig. 1). For the present study, it is assumed that the piezoelectric actuators are bonded 

to the outermost surfaces of the laminated shell panel and are poled in the thickness direction. The 

principal radii of curvatures of shallow shell panel are, Rx and Ry (twist radius of curvature Rxy = ∞) 

along x and y directions, respectively. The projection of shell on the xy-plane is a rectangle of 

dimensions ‗a‘ and ‗b‘ (Fig. 1). 

 

2.1 Element geometry and displacement field 
 

The displacement field within the laminate is assumed to be based on the HSDT (Reddy 2004) 

kinematics. This field represents that, the in-plane displacements are expanded as cubic functions 

of thickness coordinate while the transverse displacement varies linearly through the laminate 
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thickness 
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where, u
(k)

, v
(k)

 and w
(k)

 denote the displacements of a point along the (x, y, and z) coordinates in 

the k
th
 layer in function of corresponding mid-plane displacements u0, v0 and w0 at time t. 

x and 

y  are the rotations of normal to the mid-surface i.e., z=0 about the y and x-axes, respectively. 

The functions , , ,x y x y    and 
z  are   the higher order terms in the Taylor series expansion. 

 
2.2 Strain displacement relations 
 

The nonlinear Green–Lagrange strain–displacement relation for the laminated doubly curved shell  

panel can be expressed as in Singh and Panda (2014). 
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The total strain vector    is the summation of the linear  L and nonlinear  NL  strain 

vector as follows   
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                   (2b) 

Now, substituting Eq. (1) in Eq. (2(a)) the total strain can be expressed in terms of displacement 

and conceded as 
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Now the above strain–displacement relation can be rearranged in matrix form as follows 
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Fig. 1 Closed-circuit configuration of spherical laminated composite shell panel bonded with PZT layers 

857



 

 

 

 

 

 

Vijay K. Singh and Subrata K. Panda 
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are the mid-plane linear and nonlinear strain terms. Similarly, LT  
 and NLT  

 are the 

function of thickness coordinate matrices for linear and nonlinear cases, respectively. The terms 

containing superscripts ‗l0‘, ‗l1‘, ‗l2-l3‘in  L  and ‗nl0‘, ‗nl1‘, ‗nl2—6‘in  NL are the membrane, 

curvature and higher order strain terms, respectively. 

The vectors L  and  N L  can further be expressed as 

   
    L LB d 

                    (4b) 

    1
2N L NLB d 

                     (4c) 

where,  LB and  NLB are linear and nonlinear operator matrices and  d is the displacement 

field vector and the individual terms can be seen in Singh and Panda (2014). 

 
2.3 Piezoelectric constitutive relations 
 

The transformed stress–strain relations for any general k
th
 orthotropic composite lamina 

embedded with the piezoelectric layer is conceded as follows 
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 
  

           (5c) 

where,
 

k


  
, 

k
 ,  

k
Q , e  ,  and  E are stress tensor, strain tensor, transformed reduced 
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elastic constant matrix, piezoelectric constant matrix, dielectric constant matrix and electric field 

vectors, respectively for any orthotropic k
th
 layer. 

 
T

T
E

x x x

     
    

   
               (6)   

Electric potential    can be expressed as 

             0 1 22, , , , ,x y z x y z x y z x y     
          (7) 

The electric field vector {E} can be expressed as 

   0E T E
                      (8) 

where,                     0 0 1 1 2 2 1 20
TT

x y x y x yE B E E E E E E X X    
and B

  

and T    are the differential operator and thickness coordinate matrices correspond to potential 

field   , respectively. The details of the matrices are presented in Appendix A.
  

 
2.4 Total potential energy (U) 
 

The total potential energy of PZT bonded laminated composite panel is obtained using the 

following steps 

       1
2

T T

V V

U dV E D dV 
 

  
 
                    (9a)
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         

         

              
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   

   
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 
 
 
  

  
  
 
    
 



         
(9b) 

where, [D1], [D2], [D3], [D4], [D5], [D6][D7]and [D8] are the stiffnesses of the laminate with 

piezoelectric layers. 

 

2.5 Kinetic energy (T) 
 

The kinetic energy of the laminates is given by 

  
1

1

1

2

k

k

h TN

k k k k k k k

k h

T u v w u v w dz dxdy
      



 
  

  
        

(10) 
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where, ρk is the mass density, hk and hk+1  are the z coordinates of laminates corresponding to the top 

and bottom surface of the k
th
  layer and N is the number of laminae. 

 
 

3. Finite element model 
  
The developed nonlinear HSDT model is discretized using displacement finite element 

formulation steps. For the discretization purpose a nine-nodded isoparametric element with 10 

degrees of freedom per node is used, namely u0, v0, w0, θx,  θy,  θz, ϕx, ϕy, λx , λx. The displacement 

vector {de}, the electric potential vector {ϕ} and the element geometries are represented in the 

following form using FEM steps.  

    
1

NN

e i i
i

d N d



 , 

   
1

NN

i i
i

N 


   
 ,  

 
1

NN

i i

i

x N x



,  

 
1

NN

i i

i

y N y


     (11) 

where, [Ni]and[Nϕi] are the interpolation (shape function) functions for the i
th
 node, {di is the vector 

of unknown displacements for the i
th
 node and NN is the number of nodes per element. The details of 

the shape functions can be seen in Cook et al. (2009). 

 
3.1 Governing equation 
 

The governing equation of the nonlinear free vibration is derived using Hamilton's principle and 

expressed as 

 
2

1

0

t

t

T U                         (12)
 

Substituting Eqs. (9b) and (10) in Eq. (12) we get electromechanically coupled form of equation 

and can be written as 

       0q qM d K d K                         (13) 

    0
T

qK d K                      (14) 

Now, eliminating φ from the above-mentioned equations and the modified form can be presented 

as 

     0M d K d   
                (15) 

where,  

1 T

q q qK K K K K  


                   

Assuming the system vibrating in principal mode with the natural frequency (ω), Eq. (15) is 

reduced to nonlinear generalized eigenvalue problem and the final form of the nonlinear governing 

equation of the laminated curved composite panel embedded with PZT can be presented as 
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   2 0K M                     (16)  

where, ω  is the natural frequency and   corresponding eigenvector, respectively, for any 

generalized eigenvalue problem and solved using direct iterative method. The detailed steps of the 

solution procedure are given in a flowchart form in Fig. 2. 

 
 

4. Results and discussions 
 

In order to obtain the desired responses, a general nonlinear FE computer code has been 

developed in MATLAB environment using the present mathematical model considering the 

quadratic variation of electric potential through the thickness of laminated panel. The elastic and 

electrical properties of graphite/epoxy composites and PZT-5A materials are presented in Table1.  

 
Table 1 Material properties of  graphite/epoxy and PZT-5A 

 
 

Table 2 Support conditions 

 

Elastic properties of graphite/epoxy: 

E11=181.0GPa; E22=E33=10.3GPa; G12=G13=7.17GPa; G23=0.28GPa; ν12=ν13=0.28; ν23=0.33;  

ρ=1580 kg/m3,   

Elastic properties of PZT: 

E11=E22=61.0GPa;  E33=53.2GPa; G12=22.6GPa; G13=G23=21.1GPa;  ν12=0.35; ν13=ν23=0.38; 

 ρ=7750 kg/m3,   

Piezoelectric stress coefficient of PZT(C/m
2
) 

e31=e32=7.209 C/m
2
; e33=15.118 C/m

2
;  e24=e15=12.322 C/m

2
 

Dielectric constant (F/m): 

k11=k22=1.53 x 10
-8

;  k33=1.53 x 10
-8

 

CCCC 0 0 0  x y z x y x yu v w                 at x = 0, a and y = 0, b 

SSSS 
0 0 ? z yyv w        at x = 0, a ; 0 0 ? z x xu w       at y = 0, b

 
 

SCSC 
0 0 ? z y yv w        at x = 0 , a; 

0 0 0   0x y z x y x yu v w               at y = 0, b 

HHHH 0 0 0
0z y yu v w       

 
at x = 0, a;  0 0 0

0z x xu v w         at y = 0,b 
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Table 2 presents the type of support conditions employed in the present computation to avoid 

rigid body motion as well as reduce the number of unknowns. The simply supported boundary has 

been used throughout the analysis unless specified otherwise. The nondimensional form of the 

fundamental frequencies is obtained using the following formulae for throughout the analysis.  

    
1

22 2

22/b E h                     (17) 

 

4.1 Convergence and comparison study 
 

As a very first step, the convergence behaviour of the developed FE model has been checked 

for curved panel embedded with PZT actuators and the non-dimensional fundamental frequencies 

are plotted in Fig.3. The fundamental natural frequencies of cross-ply and angle-ply laminations 

[p/ (90
0
/0

0
)2/p, p/ (45

0
/-45

0
)2/p, p/ (30

0
/-30

0
)2/p] for different support conditions with mesh 

refinement are plotted in the figure. Based on the convergence it is understood that, a (6×6) mesh 

is sufficient to compute the responses further.  

 

 

Fig. 2 Steps of solution method 

862



 

 

 

 

 

 

Large amplitude free vibration analysis of laminated composite spherical shells… 

 

 

Fig. 3 Convergence behaviour of fundamental frequencies (ϖL) of square laminated composite spherical 

shell panel embedded with PZT layers for R/b=10 and b/h=20 
 

 

Table 3 Comparison study of nonlinear frequency (ϖNL) of simply supported square cross-ply laminated 

composite shell panel embedded with PZT layers [P/(0
0
/90

0
)2n /P] 

 
 

 

Wmax/h           n 1 2 3 4 

Linear (ϖL)  Nanda (2010) 11.6758 11.9947 12.0409 12.0564 

 

Present 12.0667 11.499 11.994 12.0155 

0.2 

  

Nanda (2010) 12.4803 12.8392 12.9018 12.9269 

Present 12.3448 12.0883 12.4991 12.6229 

0.4 

  

Nanda (2010) 13.4167 13.8431 13.9337 13.9734 

Present 12.9441 12.988 12.999 13.0799 

0.6 

  

Nanda (2010) 14.4313 14.961 15.0933 15.1549 

Present 13.3441 13.6991 13.7999 13.9115 

0.8 

  

Nanda (2010) 15.4856 16.1437 16.3178 16.4184 

Present 14.6879 14.8114 14.8331 15.8441 

1 

  

Nanda (2010) 16.5657 17.3744 17.6291 17.7567 

Present 15.1277 15.7334 16.2669 16.775 
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Table 4 Comparison study of nonlinear frequency parameter (ϖNL) of simply supported square cross-ply 

laminated composite spherical shell panel embedded with PZT layers [P/(0
0
/90

0
)2n /P] 

 
 
4.2 Parametric study 

 

Now, in this section few more examples of spherical shell panel embedded with/without PZT 

layers are computed for different curvature ratios (R/b), aspect ratios (a/b), thickness ratios (b/h), 

support conditions and lamination schemes. The effect of different parameters on the nonlinear 

frequency of smart shell panel are discussed in details in the following section. 

 
 
4.2.1 Effect of curvature ratio on the frequency ratio 
The shell geometries and their types are defined based on the curvature ratio (R/b) i.e., deep to 

shallow. The shell structures are well known for their higher stretching energy as compared to 

bending energy as the shell becomes deep which affect the frequency responses greatly. In order to 

examine the effect of curvature ratio on the nonlinear vibration behaviour of laminated composite 

spherical shell panel embedded with/without PZT layers the present example is solved for four 

curvature ratios (R/b = 10, 20, 50 and 100) and plotted in Fig.4. It is observed that there is not any 

appreciable change in responses after R/b=50. It is also observed that the frequency responses are 

suppressed due to the embedding of PZT layer at top and bottom surfaces of the parent composite 

shell. Moreover, spherical shell panel [P/(0
0
/90

0
)2n/P] is showing hardening type of behaviour as 

the amplitude ratio increases.  

 
4.2.2 Effect of aspect ratio on the frequency ratio 
The aspect ratio (a/b) is one of the most important design factor for stable configuration and 

Wmax/h            R/b 10 20 50 100 

Linear (ϖL)  Nanda(2010) 11.759 10.849 10.594 10.557 

  

10.967 10.657 10.568 10.556 

0.2 

  

Nanda(2010) 12.839 11.292 10.678 10.539 

 

11.216 10.774 10.589 10.493 

0.4 

  

Nanda(2010) 13.843 12.089 11.295 11.088 

 

11.601 11.048 10.786 10.710 

0.6 

  

Nanda(2010) 14.961 13.047 12.125 11.864 

 

12.051 11.3791 11.0456 10.771 

0.8 

  

Nanda(2010) 16.144 14.123 13.104 12.802 

 

12.536 11.787 11.390 11.279 

1 

  

Nanda(2010) 17.326 15.199 14.188 13.858 

 

13.083 12.285 11.418 11.651 
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geometrical stiffness of the plate/shell structures. Hence, it is necessary to understand the effect of 

aspect ratio on the frequency behaviour of any structural components. The nonlinear frequency 

parameter of thin (b/h = 100) cross-ply spherical shallow shell panel [P/ (0
0
/90

0
)2n/P] embedded 

with/without PZT layers for three different aspect ratios (a/b=0.5, 1.0 and 1.5) are examined and 

presented in Table 5. It is clear from the table that, the frequency parameters are increasing as the 

aspect ratio and the amplitude ratio increases.  
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Fig. 4 Nonlinear frequency (ϖNL) of cross-ply laminated composite shell panels embedded with PZT 

layers [P/(0
0
/90

0
)2n/P] for different curvature ratio (R/a) at b/h=20 and a/b=1 

 
 
 
Table 5 Effect of aspect ratio (a/b) on cross-ply laminated thin composite shallow shell panel embedded with 

PZT layer [P/(0
0
/90

0
)2n /P] (b/h = 100, R/a = 50) 

a/b 

Linear frequency (ϖL) 0.2 0.4 0.8 1.0 

(0/90)2 P(0/90)2P (0/90)2 P(0/90)2P (0/90)2 P(0/90)2P (0/90)2 P(0/90)2P (0/90)2 P(0/90)2P 

0.5 19.788 13.316 18.097 13.221 18.151 13.251 18.170 13.325 18.309 13.357 

1.0 47.966 36.673 45.426 36.519 45.475 36.523 45.547 36.790 45.789 36.834 

1.5 89.104 65.641 86.470 65.595 86.554 65.582 86.586 65.661 89.076 65.877 
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4.2.3 Effect of thickness ratio on the frequency ratio 
Thickness ratio (b/h) plays a major role in determining the flexural behaviour of any structural 

component and it is more critical for laminated structures. The effect of thickness ratio on 

nonlinear frequency parameter of spherical shell panel bonded with/without PZT layers is 

computed and plotted in Fig.5. For the present case, the responses are computed for four thickness 

ratios (b/h = 10, 20, 50 and 100) and four amplitude ratios (Wmax/h = 0.2, 0.4, 0.8 and 1.0). It is 

observed that the non-dimensional linear and nonlinear frequency parameters are increasing as the 

thickness ratio increases and the frequency parameters are suppressed considerably due to the 

embedding of the PZT layers.  

 
4.2.4 Influence of stacking sequence and PZT layers on nonlinear frequency 
In this example, the effect of stacking sequence (symmetric and anti-symmetric), number of 

PZT layer and PZT layer position on the nonlinear vibration behaviour of cross-ply and angle-ply 

laminated composite spherical shell panel is analysed and presented in Fig. 6. It can easily be 

observed that the PZT layers suppress the vibration frequencies substantially for both the cross-ply 

and angle-ply laminations. The effect of PZT layers are noticeable for cross-ply lamination as 

compared to the angle-ply laminations.   

 

4.2.5 Effect of constraint condition on nonlinear vibration behaviour 
Nonlinear frequency variation of square cross-ply laminated composite spherical shell panel 

with/without PZT layer for four different constraint conditions (CCCC, SSSS, SCSC and HHHH) 

are analysed in this example and shown in Table 6. It is well known that, the structural stiffness 

increases as the number of constraint increases and ultimately it increases the frequency parameter. 

The present linear frequency parameters follow the same trend i.e., highest fundamental frequency 

values for clamped support in comparison to all the other three cases (SSSS, SCSC and HHHH). It 

is also observed that the frequency responses of spherical panel are suppressed considerably due to 

the top and bottom PZT layer.   
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Fig. 5 Effect of thickness ratio (b/h) on frequency ratio (ϖNL/ϖL) of crossply laminated thin composite 

shallow shell panel embedded with PZT layers (R/b=10, a/b=1) 
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5. Conclusions 
  

In this present article, the large amplitude free vibration behaviour of laminated composite 

spherical shell panels embedded with the piezoelectric layer is investigated based on the first time 

developed nonlinear mathematical model using the HSDT kinematics and Green-Lagrange 

nonlinearity. The present model also includes all the nonlinear higher order terms to count the 

exact flexure of the laminated composite shell panel with greater accuracy whereas the quadratic 

variation of electric potential across the transverse direction is considered. The governing 

differential equation is obtained using Hamilton‘s principle and discretised using nonlinear FEM 

steps. The desired responses are computed using direct iterative method through a homemade 

computer code developed in MATLAB environment. The efficacy and robustness of the present 

developed mathematical model have been shown by comparing the responses to that available 

literature. Finally, variety of numerical examples are solved for PZT embedded laminated spherical 

panel and the effect of different parameters on frequency parameters are discussed in detail. It is 

observed that the panels are showing hard spring type behaviour as the amplitude of vibration 

increases. It is also concluded that the curvature ratio, the thickness ratio, the aspect ratios, the 

support conditions and the fibre orientation have a significant effect on the nonlinear free vibration 

responses of laminated composite panels embedded with piezoelectric layers. 
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Fig. 6 Effect stacking sequence and number of PZT layers on nonlinear frequency parameter (ϖNL) of 

laminated composite spherical shell panels (b/h=20, a/b=1) 
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Table 6 Effect of support condition on nonlinear frequency parameter of spherical shell panels with/without 

PZT layers  with  b/h=30 and R/a=10 

Support 

Conditions 

Linear frequency (ϖL) 0.20 0.40 0.80 

(0/90)2 P(0/90)2P (0/90)2 P(0/90)2P (0/90)2 P(0/90)2P (0/90)2 P(0/90)2P 

SSSS 33.333 22.405 32.259 22.958 31.610 23.565 31.610 24.971 

CCCC 41.514 29.594 46.345 33.883 40.641 38.551 40.641 36.126 

SCSC 39.866 28.743 39.616 31.660 43.107 34.518 43.107 34.234 

HHHH 38.626 27.880 42.319 31.995 48.335 36.196 48.335 36.367 
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Appendix A 

 
The individual terms of operator and thickness coordinate matrices: 
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Nomenclature 
 

(X,Y,Z) Cartesian coordinate axes 

(u,v,w) Displacements along X,Y and Z directions 

(u0,v0,w0) 
The displacements of a point on the mid-plane of the panel along X,Y and Z 

direction 

Rx, Ry Principal radii of curvature of shell panel along the corresponding material line 

a, b, h Length , breadth and thickness of panel  

θx , θy Rotations along y and x direction respectively 

θz , ϕx, ϕy , λx , λy Higher order terms of Taylor series expansion 

L , NL  
Linear and nonlinear strain vector 

{d} Global displacement vector 

E Electric field intensity 

G Shear modulus 

ν Poisson‘s ratio 

[K] ,[KN1],[KN2] Linear and nonlinear stiffness matrices 

[Kq], [Kqϕ], [K ϕϕ] 
echanical, coupled electro-mechanical and electrical stiffness matrices 

respectively 

[T] ,  [ f ] Function of thickness coordinate 

U Total strain energy 

V Total kinetic energy 

Wmax Maximum central deflection of the shell panel 

Wmax/h Amplitude ratio 

L and NL  
Non-dimensional linear and nonlinear frequencies 

NL L   
Frequency ratio, nonlinear frequency to linear frequency 

  Electric potential 

B
      

Electric Differential operator matrix 
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T    
Electric thickness coordinate matrix 
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