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Abstract.  Wireless sensor technology has been opened up numerous opportunities to advanced health and 
maintenance monitoring of civil infrastructure. Compare to the traditional tactics, it offers a better way of 
providing relevant information regarding the condition of building structure health at a lower price. 
Numerous domestic buildings, especially longer-span buildings have a low frequency response and 
challenging to measure using deployed numbers of sensors. The way the sensor nodes are connected plays 
an important role in providing the signals with required strengths. Out of many topologies, the dense and 
sparse topologies wireless sensor network were extensively used in sensor network applications for 
collecting health information. However, it is still unclear which topology is better for obtaining health 
information in terms of greatest components, node’s size and degree. Theoretical and computational issues 
arising in the selection of the optimum topology sensor network for estimating coverage area with sensor 
placement in building structural monitoring are addressed. This work is an attempt to fill this gap in high-rise 
building structural health monitoring application. The result shows that, the sparse topology sensor network 
provides better performance compared with the dense topology network and would be a good choice for 
monitoring high-rise building structural health damage. 
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1. Introduction 
 

For more than a decade, wireless sensor systems have been growing in popularity in the 

research field. In recent years, structural health monitoring system (SHM) is an important area of 

the monitoring application that has received increasing research interest (Nikola et al. 2014). The 

field of wireless sensor networks (WSN) is an emerging area of research that is still under 

investigation. However, the problem of this emerging technology is the coverage area, or sensing 
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area in structural health monitoring application (Kim et al. 2013, Casciati et al. 2011). Many 

studies of bridge structural health have been shown that the feasibility is the most important  

criteria in target applications. To measure the structural health response, usually three types of 

systems has been used: the sensor section, the communication section and the computing or 

analyzing section. In wireless communication data systems, the whole system should be designed 

and analyzed in properly; otherwise, the attenuation of the RF signal becomes worse. LOS 

(line-of-sight) is the another vital factor of the communication system that affects the performance 

of WSN (Kumar et al. 2011). When the structural dimensions become bigger, a huge amount of 

field information has been produced by the whole monitoring system. At that time, the whole 

monitoring system became difficult to maintain and control.  

With the need to monitor the building structural health, WSNs become more popular in these 

application areas. The health of the building structure needs to be continuously monitored using 

sensor place at various locations on the structure (Casciati et al. 2014). Due to technology 

advancement, various kinds of sensing devices have already been developed to measure the 

structural health, such as ZigBee, Ultra Wideband (UWB), Global Positioning Systems (GPS) and 

so on (Almulla et al. 2013). Chang and Hung determined that, the 77.3 

% of Taiwanese building structures are made of reinforced concrete (RC), and the majority of 

these should be supervised after a certain period of time. To determine the structural deterioration, 

temperature and humidity are the two key factors. Precipitation or the water content in the concrete 

structure defines how much the corrosion occurs and how its activity changes. Real-time and 

continuous monitoring of building structural health is still challenging, when they attempt to 

compute the exact damage and make administrative decisions (Chang et al. 2013). Among 

different kinds of wireless sensing devices, ZigBee provides the lowest power profile and most 

cost-effective system for various types of health monitoring applications in construction (Zhang et 

al. 2012). The lifetime of WSN network is gradually decreasing due to drawbacks such  as  

strong earthquakes, corrosion, heavy traffic, etc. Interest in WSN has been growing due to their 

low power and low cost profile. In damage detection mechanisms, there is no need to deploy the 

fixed wire connections in monitoring network (Guo et al. 2014, Hackmann et al. 2014)). For 

monitoring structural health, the monitoring network should be efficient means transmission of 

data should be lossless and network should be scalable to cover the large monitoring area of 

interest of the structure (Yildirim et al. 2014). The problems of the SHM system do not completely 

satisfy by the existing WSN network. To address those issues, Wireless Intelligent Sensor and 

Actuator Network (WISAN) have been proposed as an alternative (Rohan et al. 2014). The goal of 

this work is to design and development of large area sparse and dense topology WSN using the 

Theory of Geometric Random Graph approach (TGRG). The performance related parameters of 

the dense and sparse topology sensor network monitoring system have studied to extend the 

monitoring system coverage area in building structural health. Three types of performance metrics 

are considered to measure the performance of the dense and sparse topology monitoring network 

and those performance metrics are: Maximum component (MC), connected topology (CT), 

average node degree (AND). The organization of the paper is as follows. The next Section 

describes research background. Section 3 contains the dense topology sensor network and its test 

result. Section 4 describes the principles of sparse topology sensor network and its analysis result. 

Section 5 provides a summary and conclusion of the simulation results for the proposed model. 
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2. Research background 
 

The use of sensing technology is steadily increasing in buildings structural health monitoring. 

Usually, nodes with sensors has been used to collect the sensor data. Sensor nodes transmit their 

own sensed signal to the respective base station. Traditionally, the data collection system that 

connects the sensor nodes to the base station is a wired system. Wire-based data collection systems 

have the greatest monitoring system longevity. However, the wire-based data collection system has 

been lost popularity due to the several reasons such as a higher installation cost for a small period 

of usage. Noticeably, the wireless sensor systems for collecting sensor data still better performance 

compared with wired systems (Zhang et al. 2012). Hazard taxation has been designed to determine 

the structural risk due to the natural phenomena such as seismic activity, mudslides, etc. In the case 

of SHM systems, many sensors have been placed on the grave location in the service region. The 

most common technique has been used to fix the dynamic factors is the way to count the 

earthquakes inside buildings under constant surveillance, but such systems are expensive. Recently, 

the electromagnetic field (EMF) based sensing mechanisms become another kind of technique for 

monitoring structural health. The major benefit of the EMF method its high precision compared 

with the typical accelerometers method. This measurement technique based on microwave radar 

and can be applied in all weather conditions, and has been established as a dominant system to 

measure the different kinds of structural acceleration (Stabile et al. 2012). Durable SHM systems 

have been demonstrated in different countries, but the real-time measurement still facing many 

challenges shown by the author (Ko et al. 2005). The lifetime of a SHM system is gradually 

decreases due to its several drawbacks such as strong earthquakes, corrosion, heavy traffic, etc. 

According to the American Society of Civil Engineering, more than 26% of bridges experience a 

drop in efficiency over time. However, the wire-based sensor systems is more expensive and 

cannot be effectively used to monitor the large structures. WSNs allow a dense network to pinpoint 

the structural health problem based on fault tolerance.  

Many researchers have been shown that various issues arise with WSNs among those 

interference and noise becoming a vital concern for sensor network communication systems 

(Boers et al. 2012). Setting up a health monitoring system for large-scale building structures, 

which require a large number of sensor nodes. The placement of these sensors is great significance 

for such distributed application of sensor node in the SHM system (Rao et al. 2007). To cover the 

large geographical civil infrastructure, scalability of the WSN is the most important issue. Sensor 

coverage area defines the complexity of the scalability to cover the whole service area. Scalability 

of the WSN provides the adjustment flexibility with infrastructure for monitoring structural health 

by adding a new sensor node in the network and also defines the higher precision of damage 

detection (Papadimitriou et al. 2004). A recent number of papers indicate that the artificial neural 

network has been considered for monitoring and detection of structural damage. The fault 

detection system consists of vector of the system as input and desired the fault classification as 

output. To bring the desired output, the internal structure of the neural network has been modified 

at presentation of the data level. When the neural network outputs have required properties over 

the whole training set, this iterative method has removed (Worden and Burrows et al. 2001). The  

authors believe that, to address the coverage area related problem, the application of the dense and 

sparse topology sensor network in high-rise building SHM overcomes the monitoring system 

coverage area related problem.  
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3. Dense topology sensor network 
 

In a dense topology sensor network, the maximum number of sensor node to all other sensor 

nodes is near the total number of nodes used by the network. When each sensor node directly 

connected to all other nodes, the network is called a fully connected network. Fig. 1 shows the 

example of dense topology sensor network for N=9 number of sensor nodes. 

TGRG approach (Nath et al. 2012) is used to provide an analytical solution to the 

communication range problem with high probability (w.h.p.) and produces a connected topology 

under some consideration. Consider, n is the number of sensor nodes are uniformly distributed in a 

square area L. The nodes organization is uniformly distributed means all the sensor nodes are 

equal distance in the monitoring area. The Penrose formula is used to determine the critical 

transmission range (CTR) value for the dense topology sensor network. Penrose formula is defined 

as follows 





n

f(n) Lim

nπ

f(n)+nln 
=CTRdense

                         (1) 

Where n is the total number of nodes and f (n) is the function of n. By increasing the value of n 

which lead the increasing value of the function f (n). The Penrose formula only applies to the 

dense topology sensor network. The accuracy of the Penrose formula is determined by the Giant 

Component (GC) test (Bollobás and Riordan et al. 2012). Table 1 shows the simulation setup for 

dense topology sensor network. The whole simulation result is obtained using update version of 

Atarraya simulator (Wightman and Labrador 2009). The number of nodes defines the density of 

the monitoring network. Initial CTR defines the initial value of the monitoring network. The CTR 

step defines the increasing value from the initial CTR. The number of topologies of monitoring 

network is predefined using topology parameter.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Dense topology sensor network 
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Table 1 Simulation setup for dense network 

Topology Dense topology sensor network 

Number of Nodes 10, 100, 200, 400 

Initial CTR 0.01 

CTR step 0.02 

Number of topologies 100, 1000 

Area 500 m x 500 m 

Performance metrics 
Maximum component, connected topology, 

average node degree 

 

The area side of the monitoring network defines the deployment area of the dense network. The 

giant component is a very well known effect to compute the connectivity of the monitoring 

network. The maximum component, connected topology, average node degree is considered as a 

giant component of the SHM network. These performance metrics are calculated using a CTR 

function of the SHM network. 

 

3.1 Dense topology test results 
 

Fig. 2 shows the simulation results of dense topology sensor network maximum component 

curve, connected topology curve and average node degree using Eq. (1). The graph shows the 

result of dense topology sensor network where 200 nodes are uniformly distributed in the area of 

500 m x 500 m and f(n)=log log (n) with 100 numbers of topologies. 

The result shows that, the percentage value of the maximum component size increases with 

increasing values of communication radius. To have 100% maximum component size, a 

communication radius of 50-70 m is needed. When increase the value of communication radius, 

the maximum component value also increases. After 50 m communication radius, the network 

achieves the greatest component size and maximum at 145 m radius. In case of connected topology, 

the larger value of communication radius is required compared to the greatest component value. 

Before 75 m communication radius, there is no topology to connect the network. The topology 

connected is started from 75 m radius and the maximum connected value is obtained at 145 m 

radius. The average node degree of a network increases with increasing value of the 

communication radius and maximum value is obtained 40.83 degrees at 145 m radius. Table 2 

shows the dense topology sensor network test result. 

Fig. 3 shows the value of the greatest component size increases with the communication radius 

regardless of the network density for 10, 100, 200, 400 numbers sensor nodes. The density of the 

network nodes is uniformly distributed in the area of 500 m x 500 m with 1000 topology. Fig. 3 

says that with increasing value of communication radius, the greater size component of dense 

network is increased. For larger number of dense topology network nodes, small radius of the 

network is required compared to a smaller number of sensor nodes. Therefore, for large sensor 

dense network, smaller amount of communication radius is required to achieve the largest 

connected set. Table 3 shows the computational result of the greatest component size for 10, 100, 

200, 400 sensor node. 
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Fig. 2 Dense topology sensor network 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3 Greatest component size 

 

 

Fig. 4 shows the result of connected topology test result for the dense topology sensor network. 

The best result is obtained in a higher number of dense topology network compare to lower. 

Another way, it can be explained that the smaller communication radius is required with higher 

number of dense topology network nodes compared with lower number of dense topology network 

to achieve the same value of the connected network. Therefore, in case of 10 numbers of dense 

sensor nodes, the connected topology is zero. Because, at the given communication radius, the 

network is unable to connect the communication topology. The network can be connected the 

topology may be in larger communication radius. Table 4 report the ratio of connected topology 

test result. 
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Table 3 Greatest component size test result 

Communication 

Radius (m) 

Number of Nodes 

10 100 200 400 

5 12.33636364 1.866336634 1.139303483 0.779800499 

15 24.18181818 3.161386139 2.610447761 2.623441397 

25 42.44545455 5.518811881 6.528358209 18.040399 

35 66.43636364 10.00891089 23.90547264 95.2159601 

45 84.04545455 20.54554455 79.55970149 99.79625935 

55 89.59090909 45.2039604 98.25373134 99.97805486 

65 90.79090909 77.98910891 99.79402985 99.99800499 

75 90.90909091 94.54653465 99.97512438 99.99950125 

85 90.90909091 98.1019802 99.98955224 100 

 

 
Table 4 Ratio of connected topology test result 

 

 
Fig. 5 shows the average node degree of the dense topology sensor network. The result shows 

that the higher value of the communication radius provides the highest value of the average node 

degree. With increasing value of the network density lead the average node degree test result. 

However, some special result is found in the case of 10 numbers network node. Table 5 contains 

the average node degree computational result. 

 

Communication 

Radius (m) 

Number of Nodes 

10 100 200 400 

5 0 0 0 0 

15 0 0 0 0 

25 0 0 0 0 

35 0 0 0 1.9 

45 0 0 0.1 69.8 

55 0 0 35.9 95.4 

65 0 0 81.5 99.6 

75 0 0.1 96.5 99.9 

85 0 5.4 98.7 100 
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Fig. 4 Ratio of connected topology 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5 Average node degree 

 

The above result presented for 2-dimensional dense networks using a uniform distribution law.  

 

 

4. Sparse topology sensor network 
 

In a sparse topology sensor network, the minimum number of links is connected to form the 

topology of the monitoring network compared with the dense topology sensor network. This type 

of sensor network topology can be found in more difficult places to create the network links 

between nodes. For example, below Fig. 6 shows the sparse topology sensor network for N=9 

number of sensor nodes. 
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Table 5 Average node degree test result  

Communication 

Radius (m) 

Number of Nodes 

10 100 200 400 

5 0.082030859 0.037530215 0.077717733 0.154577596 

15 0.583860139 0.288156516 0.582874819 1.16969229 

25 1.446843248 0.779963756 1.571877921 3.150499729 

35 2.544316636 1.48229395 3.003053784 5.990973175 

45 3.777099272 2.385613888 4.839994058 9.660872171 

55 5.014347895 3.483309695 7.087267602 14.11879522 

65 6.21891895 4.752152092 9.686523224 19.30628089 

75 7.25664611 6.202177166 12.63150108 25.1675071 

85 8.108962221 7.813264789 15.91689514 31.72295131 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Fig. 6 Sparse topology sensor network 

 
 

Using theorem from (Santi 2005), the CTR can be calculated for one dimensional sparse 

topology sensor network as follows 

l

llogl
kCTR                   (2) 

Where the value of k is constant with l≤ k ≤ 2 and l is the length of the uniformly distributed 

deployment area. The communication radius of the sparse topology sensor network is calculated 

using CTR formula.  

Santi (Santi 2005) proposed a partial solution to find the CTR connectivity for d-dimensional 
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sensor network as 

n

llogl
kCTR

d

                      (3) 
 

Where, d= 2,3,…………….  and l

d

d dk  220 .  

The Eq. (3) is used for testing the greatest component (Labrador and Pedro 2009) in the sparse 

topology sensor network (Penrose 1999); 

3/4
com 2r =k.l . log l with l=n ,  0.5 k l  and 

il 22 , where  4 i 10    

Table 6 shows the definition of the simulation parameter for sparse topology sensor network. The 

K-factor define the connectivity of the monitoring network. The higher value of K defines the 

more connectivity than lower ones. The higher value indicates better performance of the 

monitoring network than lower. The area of the monitoring network is predefined by the area 

parameter. 

Fig. 7 shows the greatest size component of the sparse topology sensor network with 0.5 k 1. 
It can be seen that with increasing value of k, the greatest size component of the sparse topology 

sensor network is also increasing and maximum value obtained at k=1. The greatest component 

size test result provides the percentage of the total number of nodes that are contained in the 

largest connected set in the sparse topology sensor network. 
Table 7 shows the computational test result of greatest component size for the sparse topology 

sensor network.  

The results in Fig. 8 show how equation 5 produces a giant component with 0.5 k 1  . When 

the value of area side L=256, there is no topology connected. After that100% of the topologies 

connected is obtained at k=0.8 and L=1024. For k=0.8, 0.9 and 1, 100% topology connected is 

obtained for area side between L=1024 to L=1048576. In Fig. 8, while a value of k is equal to 0.5, 

than the greatest component (GC) produces maximum 95% and minimum 68% connectivity 

without considering L=256 area level. For k=0.6, 100% connectivity is obtained for L=65536. The 

slightly better result is found for k=0.7 compare to k=0.5, 0.6. However, for values of k=0.8, 0.9 

and 1, the figures show that the CTR is given by equation 5 and produce an accurate result. 

 
Table 6 Simulation setup for sparse network 

Topology  Sparse topology sensor network 

Number of Nodes 100 

Initial K 0.5 

Final K 1 

Number of topologies  100 

Area 500 m x 500 m 

Parameters Maximum component size, connected topology, 

average node degree  

616



 

 

 

 

 

 

Building structural health monitoring using dense… 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Greatest component size 

 
Table 7 Greatest component size test result 

Area side  GC K=0.5 GC K=0.6 GC  K=0.7 GC K=0.8 GC K=0.9 GC K=1 

256 100.3125 97.5 99.1875 99.9375 100 99.9375 

1024 100.09375 102 103.0625 103.125 103.125 103.125 

4096 100.640625 101.4688 101.5156 101.5625 101.5625 101.5625 

16384 100.1875 100.7422 100.7422 100.78125 100.78125 100.7813 

65536 100.28125 100.3906 100.3906 100.390625 100.390625 100.3906 

262144 100.1816406 100.1953 100.1953 100.1953125 100.1953125 100.1953 

1048576 100.0917969 100.0977 100.0977 100.0976563 100.0976563 100.0977 

 
 
Table 8 Ratio of connected topology test result 

Area side CT K=0.5 CT  K=0.6 CT K=0.7 CT K=0.8 CT K=0.9 CT K=1 

256 0 0 0 0 0 0 

1024 68 93 99 100 100 100 

4096 74 96 98 100 100 100 

16384 77 96 98 100 100 100 

65536 89 100 100 100 100 100 

262144 96 100 100 100 100 100 

1048576 95 100 100 100 100 100 
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Fig. 8 Ratio of connected topology   

 
 

Fig. 9 shows the results of the sparse topology sensor network average node degree. The figure 

shows also an increasing trend of average node degree with increasing value of network area side. 

Table 9 provides the computational result of the average node degree. It can be seen from Table 9 

that in the case of l = 256 and n = 16, the average node degree goes from 4.357495743 for k = 0 .5 

to11.30979 for k = 1. For the value of K=1 and L=1048576, the average node degree is 55.65%. 

However, with K=1, the average node degree is fairly high, but not equal to 100% that it setbacks 

the several goals of topology control mechanism. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9 Average node degree  
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Table 9 Average node degree test result 

Area 

side 

n K=0.5 K=0.6 K=0.7 K=0.8 K=0.9 K=1 

256 16 4.357495743 5.66009752 7.119964 8.738148 10.44959 11.30979 

1024 32 6.397442066 8.387251456 10.99673 13.20993 16.09499 18.40403 

4096 64 7.856924708 10.9474107 14.33147 18.18711 21.74619 25.82613 

16384 128 9.678568029 13.40624257 17.71854 22.44261 27.43979 32.77554 

65536 256 11.34351155 15.90505761 21.17893 27.12518 33.51502 40.1785 

262144 512 13.07087837 18.49218076 24.79395 31.8139 39.57678 48.09278 

1048576 1024 14.80764278 21.06518625 28.34052 36.472 45.71099 55.65807 

 
 
 

5. Conclusions 

 
In this study, Theory of Geometric Random Graphs approach has been proposed for monitoring 

building structural health. In this article, the critical transmitting range of connectivity has been 

investigated in dense and sparse topology sensor network for monitoring high-rise building 

structural health. From the dense topology sensor network, the greatest component size and 

connected topology has obtained 100% at 140 m communication radius with 40.83 degree average 

node degree. A dense comparison show that with 400 number of density nodes and 85 m 

communication radius fulfil the greatest component size and connected topology requirement. The 

average node degree in case of 400 number of nodes provides the larger value compared with 10, 

100 and 200 number of nodes. In sparse topology sensor network, the better greatest size 

component is seen for k=0.5 and k=0.9. The highest connectivity value is obtained for k=0.8, 0.9 

and 1. The average network node degree of the monitoring network indicates highly connected 

network, which optimize the network graph using maximum power graph theory. The average 

node degree is greater in sparse topology compared with the dense topology network. Although, 

the dense network sensor network is desirable in order to guarantee the redundancy of the 

measurements. But, the sparse network proved itself more redundant compared with dense 

network. Finally, it is seen that the sparse topology sensor network is selected as an optimum 

sensor topology for monitoring building structural health compared with the dense topology sensor 

network. The author believes that the results presented in this article provide a better 

understanding of performance comparison between dense and sparse topology sensor network in 

building structural health monitoring application. 
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