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Abstract.  The design of a passive control solution based on tuned mass dampers (TMD’s) requires the estimation 
of the actual masses involved in the undesired vibration. This task may result not so straightforward as expected 
when the vibration resides in subsets of different structural components. This occurs, for instance, when the goal is to 
damp out vibrations on stays. The theoretical aspects are first discussed and a design process is formulated. For sake 
of exemplification, a multiple TMD’s configurations is eventually conceived for an existing timber footbridge  
located in the municipality of Trasaghis (North-Eastern Italy). The bridge span is 83 m and the deck width is 3.82  
m. 
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1. Introduction 
 

The coupled use of timber (Giordano et al. 2009, Thelandersson and Larsen 2003 and Casciati 

and Domaneschi 2007) and steel structural elements is becoming common in Europe, especially 

when landscape architecture is concerned, as in the neighborhood of mountain villages. 

Footbridges represent a class of structural systems where such a materials coupling can be 

conveniently applied.  

As well documented in the technical literature (see Sétra 2006 and Reynders et al. 2010, among 

others), the design of footbridges requires to pay special attention to the vibration aspects, which 

could easily produce discomfort to the users. Several passive and semi-active/active solutions were 

proposed in order to control such vibrations (the reader is referred to Casado et al. 2013 Moutinho 

et al. 2011, Diaz et al. 2012, Occhiuzzi et al. 2008, among others).  

Cables are often met in the structural skeleton either for cable-stayed or for suspension 

architecture. If the purpose is to control cable vibrations alone, then it is known that viscous 

dampers provide a very efficient solution for these members. However, when the cables are 

replaced by tubular elements, their modest vibration amplitude makes these dampers ineffective. 
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The passive control alternative is the adoption of tuned mass dampers (TMD) designed to contrast 

the local vibrations interesting a limited subset of masses. 

This is the case approached in the present study, which is focused on the design of a suitable 

tuned mass damper system targeted to mitigate local, rather than global, oscillations induced by 

the wind action. Despite their localized nature, these oscillations can cause discomfort to the users, 

i.e., the crossing pedestrians. After a discussion of the problem in general terms, the reasoning is 

exemplified by considering a 83 m-span existing timber footbridge (Bortoluzzi et al. 2013a and 

Bortoluzzi et al. 2013b), for which the modelling is carried out based on the results of a series of 

in situ experimental campaigns. The footbridge with a simple static scheme was designed 

according to the national structural code. However, being the bridge located in a quite windy 

canyon , its low structural damping does not prevent the users from feeling the vibrations. 

 

 

2. Problem formulation 
 

The wind action is regarded as the excitation whose induced vibration must be mitigated. It is 

worth noting that, for footbridges, the so called “human induced vibrations” caused by the 

pedestrian crossing may also be significant, but this aspect is the object of further studies, which 

are still in progress for the considered footbridge. 

The Finite Element Model (FEM) of the structural system is developed within the Mentat-Marc 

(www.mscsoftware.com) software environment by paying careful attention to all the details 

reported in the technical design documents. In particular, those associated with the selected 

materials are crucial in representing the correct footbridge dynamics, especially when the 

mechanical behavior of the wood material is modelled (Casciati and Domaneschi 2007). 

By the FEM discretization, the original system of partial differential equations in space and 

time coordinates is managed to become a system of ordinary differential equations in the time 

variable. The discretization yields to write the equations governing the system dynamics in a 

standard matrix form 

        '' '  Mx Cx K x ft t t t                        (1) 

where M, C and K are the mass, damping, and stiffness matrices, respectively; x is the vector of 

the node generalized displacements, f the vector of nodal forces; t denotes the time, and a “prime” 

the time derivative. 

 
2.1 Tuned mass dampers 
 

A common solution in order to mitigate the vibrations consists of introducing a tuned mass 

damper (TMD) system, composed by one or more devices, each of them hung in a suitable 

position. The design of a TMD is a well-established topic for a single degree of freedom (SDOF) 

primary system, while for a multi degrees of freedom (MDOF’s) system the driving concept can 

be found in Rana and Soong (1998). The reader is also referred to Soong and Dargush (2007), Abe 

and Fujino (1994), Abe and Igusa (1995), Bandivadekar and Jangid (2012) and Casciati and 

Giuliano (2009). 

The installation of the tuned mass dampers result in additional forces at the given locations 

(Soong and Dargush 2007) which modify the equations of motion as follows 
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            '' '     
Mx Cx Kx f T cz' +kzt t t t t t ,                 (2) 

where T is a topological matrix, while the matrices c and k contain, for each equally designed 

TMD, the damping coefficient c and the stiffness k. The variable z is the relative displacement of 

the added mass of a single TMD at its anchorage point, and is governed by the following 

relationship: 

       '' ' ''  mz t cz t Kz t mx t ,                        (3) 

where m is the added mass, and x is the displacement of the hanging point in the direction of the 

TMD degree of freedom z.  

 

2.2 The standard design of a single TMD device 
 

The single tuned mass device is defined by the tuning frequency and the added mass, or better 

the ratio between this secondary mass and the primary one, for a SDOF primary system. The two 

parameters c and k in Eq. (3) depend on through relations obtained by some optimization 

criteria (Soong and Dargush, 2007, Abe and Fujino 1994, Abe and Igusa 1995, Bandivadekar and 

Jangid 2012 and Casciati and Giuliano 2009).  

A first extension to MDOF’s primary systems was developed for the design of TMD devices in 

frames with lumped masses at the stories (Soong and Dargush 2007). Let N be the number of 

degrees-of-freedom of a damped structure. If a single TMD is installed in correspondence to the 

j-th DOF, the equations of motion can be written as 

            '' ' ' ?      +  
j j j

Mx t Cx t Kx t f t c z t k z t                 (4) 

where jis a diagonal matrix of Kronecker indexes. These equations have to be coupled with Eq. 

(3) where all the coefficients come with the index j. Furthermore, if the TMD is to be designed for 

the i-th structural mode with modal properties Mi, Ki and Ci, the design problem is essentially 

similar to that of designing a TMD for a SDOF structure, since it can be formulated by expressing 

the displacements in terms of the modal coordinate y(t). The resulting modal equation is 

              '' ' ' ?        + 
T

i i i i j j j
M y t C y t K x t f t c z t k z t ,              (5) 

being i the eigenvector associated to the i-th mode. Note that z is a relative displacement, i.e., it 

is computed as the difference between the displacement of the added mass DOF and the 

displacement of the anchorage DOF. However, if the structure's i-th mode shape vector is 

normalized with respect to its j-th element, which corresponds to the TMD location, ij becomes 

unity and the reference DOF displacement, which appears in z, coincides with y(t). Thus, under 

this normalization condition, the design of a MDOF’s structure-TMD system will be exactly the 

same as for the main mass and damper responses, respectively, in a SDOF structure-TMD system. 

In other words, the driving concept of the TMD design can be summarized as follows. The 

device is tuned on a single frequency and anchored to a single node so that the modal expression 

of Eq. (1) defines the scalar dynamic equation associated to the selected frequency and is 

461



 

 

 

 

 

 

Daniele Bortoluzzi, Sara Casciati, Lorenzo Elia and Lucia Faravelli 

 

characterized by a modal mass. In such an expression, the hanging node motion appears as the 

associated eigenvector component multiplied by the generalized displacement of the selected node. 

Since the modal mass results from a normalization such that the involved eigenvector component 

is just one, the SDOF equation is found once again, with the only difference that the primary mass 

is replaced by the modal mass adequately normalized. 

 

2.3 The standard design of a single TMD device 
 

In this study, two critical issues, which are not consistent with the outlined standard design 

procedure, are addressed: 

1) when using a commercial software for the finite element analyses (FEA), the modal mass 

normalization is pursued toward obtaining an identity matrix; 

2) when the primary system is a bridge, there are longitudinal and transversal symmetries 

which suggest to hang several identical devices at different points; this is especially true when the 

vibration to be mitigated originates locally, instead than from a global oscillation of the whole 

structural system. 

The first aspect requires (in the absence of specific options in the FEA software) to obtain from 

the numerical model the mass, damping and stiffness matrices, and to work directly on them (for 

instance, in the Matlab environment, www.mathworks.com) to perform a suitable normalization 

procedure. 

Due to the presence of elements of the same geometry, their vibration occurs in phase or in 

opposition of phase, as well as in combined modes. The TMD system becomes a multiple tuned 

mass damper, with devices hung in several companion points. Two situations are typically 

identified: 

A) among the modes of interest, there is one of them which sees the mass normalization 

associated with a selected hanging point to produce unit entries in all the companion points; 

B) among the modes of interest, there are two modes at the same frequency or at 

frequencies close to each other which see unit entries of the first eigenvector in one half of the 

companion points, while the remaining points see the unit entries in the second eigenvector. 

It is worth being reminded, here, that to have an eigenvector unit entry at the TMD position is 

the condition to deal the problem as a SDOF. For both these cases, the normalized modal mass is 

easily computed starting from the model matrices within a suitable software environment, for 

instance Matlab. A suitable per cent of it is then distributed across all the companion positions, and 

the TMD parameters (which are assumed to be all identical in the different locations) are 

accordingly computed. 

However, commercial FEA codes implement a specific normalization procedure of the modal 

masses which is such that their resulting values have no scientific meaning. Thus, the TMD 

designer does not find in the FEA results the required quantities, which can only be obtained 

starting from the basic structural matrices (mass, stiffness and damping). This suggested the 

authors to conceive and implement the following alternative procedure, which by contrast, finds 

all the required information in the FEA results, without an explicit writing of the model matrices 

and the consequent Matlab calculations. 

After selecting the mode and the companion TMD hanging position, a cluster of nodes whose 

masses could influence the single hanging point is identified and isolated. For instance, let the 

vibrating structural component be a beam within two nodes where other elements concur. The 

middle point is likely selected as hanging point for the TMD. The problem is to estimate the 

462



 

 

 

 

 

 

Design of a TMD solution to mitigate wind-induced local vibrations… 

 

portion of global mass involved. For a discretization in several elements, several nodes will be 

introduced and their masses are likely to contribute.   

In each TMD location, one accounts for the modal masses of any single cluster. The analysis is 

then repeated with a rigid link connecting the hanging node to an additional node where the given 

added mass of the TMD device is assigned. This produces a further modal mass, whose ratio to the 

sum of the cluster modal masses is computed. This is once again the starting point toward the 

standard TMD design.  

In other words, instead of computing the modal mass at the hanging node and introducing the 

mass damper as  times the modal mass, the ratio between the nodal masses as normalized by 

the FEA software is considered. It is important to underline that, when this procedure is adopted, 

the influence of the mesh discretization on the result needs to be checked by, for example, 

comparing them with the ones obtained from a coarser mesh. It is also worth noting that the double 

modal analysis is necessary because moving to a space of transformed masses, while only the ratio 

between added mass and participating masses is of interest. 

 

 

3. A real-case exemplification  
 

The authors had the opportunity to install sensor devices during replicated “in situ” 

experimental campaigns on a timber pedestrian bridge which is located in the municipality of 

Trasaghis, in the province of Udine, in North-Eastern Italy. A photograph of the bridge is given in 

Fig. 1. Although the structural scheme of this footbridge partially resembles the one of a 

“cable-stayed bridge”, in this specific case the steel cables are replaced by two couples of long 

tubular steel elements. Each of the two couples is anchored to one of the two masts located on the 

opposite sides of the crossed channel (Fig. 1). 

 

3.1 Geometry and materials data 
 
The bridge span is 83 m and the deck width is 3.82 m, with 3.22 m of free crossing width. 

Glued laminated timber (GLT) of high strength GL28c is used for all the main structural timber 

elements, while glued laminated timber of strength GL24c is chosen for the walking deck. All the 

steel elements are made of the same material of strength S355JR. The two curved beams laterally 

bounding the deck have a cross-section of 0.20 by 1.941 m, and are mounted on neoprene supports 

at each end. They are transversally linked each to the other by a sequence of “H” shaped 

connectors made of tubular steel elements. These elements support five longitudinal timber beams 

on which the walking deck is mounted and fixed by high-strength screws. On both sides of the 

footbridge, the lateral beams are anchored, at their thirds, to the steel mast by means of the two 

aforementioned oblique tubular steel elements (not cables!) of external diameter 273 mm and 

thickness 8 mm. The height of the masts (Fig. 1) is about 15 m, and they are made by elements of 

hollow steel section of external diameter 457.5 mm and thickness 14.2 mm. It is worth noticing 

that the designer solution of replacing cables by rather stiff elements make the adoption of 

dampers ineffective since the relative velocities are lower than the threshold of effectiveness of 

such dampers. 

 
3.2 Numerical modelling 
 

463



 

 

 

 

 

 

Daniele Bortoluzzi, Sara Casciati, Lorenzo Elia and Lucia Faravelli 

 

In order to build a numerical model of the system, a Finite Element discretization is 

implemented within the Mentat-Marc (www.mscsoftware.com) software environment. A synthesis 

of the mass distribution along the footbridge is given in Table 1. 

The numerical model is built, calibrated, and validated based on the results of two in situ 

experimental campaigns (Bortoluzzi et al. 2013a, Bortoluzzi et al. 2013b, Chen et al. 2015). In 

particular, the actual behavior of the joint between the tubular stays and the deck is identified (see 

Casciati et al. 2013a for the details) and the suitable material features (Casciati et al. 2013b) are 

assigned to fit the response time histories collected during the experimental campaigns. The 

agreement between the test records and the numerical results ensures the reliability of the adopted 

numerical model. 

The long span feature suggested the designer to equip the timber footbridge with a supporting 

steel skeleton, which resulted to be quite flexible and dominant on the dynamic response of the 

bridge. The recorded signals confirmed the predominant role of the long tubular stays in 

determining the vibration of the system at frequencies in the range from 1 to 2 Hz. Actually, as a 

result of the modal analysis carried out on the numerical model, the possible combinations of their 

vertical (in plane) movements correspond to the lowest frequency value, and those of their 

horizontal (out-of-plane) movements correspond to an intermediate frequency range; they both 

induce modest movements of the deck. This different orthogonal behavior is due to the 

connections of the stays, which are represented by hinges in the vertical plane, but can transfer the 

moments in the orthogonal plane. A further slightly higher frequency sees the movement of all the 

oblique elements in the same (transversal/out-of-plane) direction resulting in a torsion of the 

central third of the deck (Table 2). A graphical representation of these modes is skipped, since it 

would require too many figures to cover a slight motion of the deck coming with the first mode of 

each of the four stays, both in-plane and out-plane, to be coupled either in phase or in opposition 

of phase. 

The experimental damping properties are fitted by identifying the Rayleigh’s coefficients, 

0.1681 and 11.63e-5, for the damping matrix of the two main GLT beams. Direct 

estimation of the modal damping values (which result of a mere 1% in both the two basic modes) 

is an alternative way which is often followed in the modelling process, especially when one 

preliminarily knows which are the most significant modes.  

Beam and shell elements are used to generate the FE model. The numerical model of the whole 

bridge is shown in Fig. 2. The response to wind excitation is investigated with focus on the cases 

in which the vibrations are of no importance for the bridge safety, but significant enough when the 

user comfort is considered. 
 

 

Fig. 1 Lateral view of the pedestrian timber bridge 
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(a) 

 
(b) 

Fig. 2 (a) 3-D view of the FEM implemented in Mentat-Marc and (b) Top view of the deck 
 

 
Table 1 Masses of the structural and non-structural elements 

System component 
Single element 

mass[Kg] 

Number 

of elements 
Mass [Kg] 

Larch revetment - - 11051 

GLT main longitudinal beams  16140 2 32880 

Wooden walking surface  - - 7730 

Timber beams under the walking surface 828 5 4140 

“Internal” tubular steel stays  1760 4 7040 

“External”  tubular steel stays 845 4 3380 

Steel pillars 6270 2 12540 

Steel railing - - 1200 

Steel bracings - - 3365 

Steel transversal beams 169.7 30 5090 

TOTAL  88416 
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Table 2 Frequency ranges for the lowest modes. The modal analysis is performed in Mentat-Marc 

(www.mscsoftware.com) environment 

Set ID Frequency [Hz] Involved Elements Oscillation plane 

1 1.06 Tubular stay x2 – x3 

2 1.41 Tubular stay x2 - x1 

3 1.96 Tubular stay x2 - x1 & x2 – x3 

 

 

3.3 Simulation of realizations of the wind-velocity field 
 

Let x2 x3 be the plane view used for the simulation, where the axis x2 is oriented along the deck 

of the footbridge, and the axis x3 coincides with the gravity axis. The wind velocity V is usually 

idealized as the sum of two components: the “mean” part (U), assumed constant along an 

appropriate time interval, and the fluctuating part (u), due to the atmospheric turbulence, modeled 

in each point as a stationary zero mean Gaussian random process. The wind velocity field is given 

by 

     3
, ,V x =U +u x ?t x t ,                       (6) 

where 

       3

3

0

1  
  
 

U = ln e
x

x
k z

,                        (7) 

Indeed, near the ground, within the inner boundary layer, the mean wind velocity has constant 

direction identified by the unit-vector e and, for a neutral stratification condition, it assumes a 

logarithmic profile in which k=0.41 is the Van Karman constant (Solari et al. 2006), z0 the 

roughness length, and u* the friction velocity.  

Thus, three parameters have to be defined: z0, u*, and the time step t by which the simulation 

time axis is discretized. This last parameter was chosen to be t = 0.05 sec. as a compromise 

between achievable accuracy and required computational effort. The duration of the simulated 

time history is assigned to be 60 sec. in view of the exemplification purpose of these analyses. Of 

course, in the actual design process, longer durations would be better recommended. 

Concerning the remaining two parameters, the Italian code (NTC 2008) prescriptions are 

adopted. Assuming u*=7 m/s, z0 = 0.30 m, and U(x3) = U(x3) e1, where e1 is the unit-vector along 

the axis x1 (orthogonal to x2 x3), one achieves an average value of U(x3) equal to about 27 m/s for 

the footbridge under study. 

In order to discretize the random field, one has to introduce the points of interest along the 

footbridge profile. In these points a wind velocity time history is then simulated. For the structure 

under study 23 nodes are selected, as shown in Fig. 3. In particular, eight nodes cover the masts 

and the oblique steel tubular elements; while the remaining fifteen nodes are equally spaced along 

the deck. 

The simulation scheme adopted in this paper follows the references Deodatis (1996), Solari and 

Picardo (2001), Shinozuka and Jan (1972) and Ubertini (2010). The “weighted amplitude waves 
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superposition” (WAWS) is used to simulate the fluctuating part. The procedure is summarized in 

the flow-chart of Fig. 4. A realization of the simulated time histories of the wind velocity 

components in the two directions along x1 and x3 is plotted for node n1 in Fig. 5.  

 

 

 
 

Node ID 
x2 

[m] 

x3 

[m] 
Node ID 

x2 

[m] 

x3 

[m] 

1 12.47 1.79 12 77.07 2.67 

2 18.33 2.08 13 82.94 2.38 

3 24.20 2.38 14 88.81 2.08 

4 30.07 2.67 15 94.67 1.79 

5 35.95 2.96 16 4.63 9.39 

6 41.82 3.25 17 10.52 9.64 

7 47.70 3.45 18 24.81 9.75 

8 53.57 3.52 19 9.26 16.28 

9 59.44 3.45 20 102.51 9.39 

10 65.32 3.25 21 96.62 9.64 

11 71.19 2.96 22 82.34 9.75 

 23 97.88 16.28 
 

Fig. 3 Grid of nodes for wind velocity field simulation 

 

 

Fig. 4 Flowchart for the wind velocity field simulation 
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Fig. 5 Wind velocity components along the x1 and x3 axes as simulated for node n1 

 

 

Once the wind velocity is obtained, standard formulae provide the values of the forces in the 

nodes. When introducing the time histories as boundary conditions in the finite element analyses, 

one can either consider them as instantaneously applied (with consequent impact phenomena), or 

smooth them by applying an initial and a final linear ramp (to avoid these impact phenomena). The 

second option is adopted in the reported simulations. 

 

3.4 Finite Element Analysis results 
 

The resulting forces of different intensity act on both sides of the footbridge, as prescribed in 

NTC (2008). Two different numerical analyses are performed: 

 structural “static” analysis, from which the baseline for the dynamic vibration is obtained; 

 structural “dynamic transient” analysis. 

Subtracting the “static” response from the “dynamic” one in terms of displacements, it is 

possible to isolate the pure dynamic response of the pedestrian bridge. As an example, the 

displacement and accelerations time histories evaluated for the node n22 in the transversal and 

vertical directions are shown in Fig. 6. The time duration of the analysis is assigned to be 120 sec; 

i.e., twice the duration of the wind velocity time history. In this manner, the free vibrations of the 

system, once the external excitation stops, are also simulated. 

 

 

4. The TMD design and its performance 
 

4.1 Details on the TMD design 
 

In the case under study, the deck dynamics results from the stiff longitudinal timber beams, 

while the steel supporting skeleton is rather flexible. In particular, the values around 1 Hz of the 

frequencies of the modes along x3 and x1 (see Table 2) are associated to all the central nodes of the 

stays, which move in a synchronous manner (first mode of the stay, as said). This observation 

suggests to append the TMD directly to the middle point of the tubular steel stays (see Fig. 7(a)). 
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The selected tuning frequency is equal to 1.05 Hz for the motion along the x3 (gravity) axis, and 

1.40 Hz for the motion along the x1 (transversal to the deck) axis. The values are slightly lower 

than those in Table 2; indeed, they account for the reduction of frequency introduced by adding 

mass. 

In section 2 it was emphasized that the standard design of the TMD requires computational 

developments from the structural matrices which can be easily carried out within the software 

environment Matlab. The FEA model of Fig. 2 is characterized by 500 nodes and mixes beam and 

shell elements in order to fit not only the frequencies in Table 2 but also the higher ones. To cover 

the low frequencies only, a 200-nodes model is accurate enough and makes the structural matrices 

more manageable.   

The modal mass associated to the vertical mode is found to be 4000 kg, with 1000 kg in each of 

the four stay central nodes. For =0.05, the added mass would then be 50 kg per stay.  

For the mode in the horizontal direction, the reduced model yields to a decoupling of two very 

close frequency values, so that only two nodes move synchronously (with unity displacement). In 

this case, a modal mass of 1800 Kg is found and must be divided by the number of synchronous 

nodes (i.e., by 2), leading to 900 Kg each. For =0.05, the added mass would then be 45 Kg. 

 

 

  
(a) 

  

(b) 

Fig. 6 Node n22: (a) Displacement and acceleration response along the vertical axis (x3 axis) and (b) 

Displacement and acceleration response along the transversal axis (x1 axis) 
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Eventually, the TMD suitable mass is derived to be 50 Kg and is applied at each stay central 

node, having set =0.0556 for the mode in the horizontal direction. It is worth noticing merly 

using the data in Table 1 provides a stay mass of 1760 kg. The added mass of 50 kg would 

therefore result in a misleading value of  of 0.0284. 

When adopting the table (7.3, page 236) for the TMD design given in Abe and Fujino (1994), 

one enters with the selected  value and a very low damping of the primary system (of about 1%, 

which represents a conservative value of damping for wood structures) and obtains, for the 

motions along x3 and x1, stiffness values of 1950 N/m and 3400 N/m, respectively, and damping 

coefficients of 60 Ns/m and 80 Ns/m, respectively, thus resulting in a device damping ratio of 

10%.  

The alternative design approach suggested in this paper works on the large FEA model and 

consists of the following steps: 

1) The sub-system whose vibrations have to be mitigated is first identified. In the consi

dered case study, it is represented by the four tubular stays of total mass 1760 Kg 

(see Table 1). Each stay is discretized into four hollow elements leading to a nodal 

mass of 440 Kg per node. For further calculations, the attention is focused on the t

hree internal nodes. 

2) When considering the mode at 1.05 Hz and a rigid link to the added mass, the mo

dal analysis provides the following (dimensionless) modal masses: 3.22, 6.55 and 4.5

2 for the three internal nodes, respectively, and 0.77 for the added mass. These valu

es correspond to = 5.39%; the error is 7% with respect to the “lightest” FE mesh,

and it will be seen to be dependent on the discretization. 

3) For the mode at 1.40 Hz and a rigid link to the added mass, the modal analysis pr

ovides the following (dimensionless) modal masses: 4.09, 7.31 and 4.12 for the three

internal nodes, respectively, and 0.87 for the added mass. The resulting value of  i

s 5.61%, with an even lower error with respect to the “lightest” FE mesh. 

Thus it is seen that the alternative approach leads to consistent results within a suitable degree 

of approximation. If the reasoning is repeated with a model in which the stays are just discretized 

into two elements, one obtains higher over-estimations of the values of ; namely, 0.75 and 0.76 in 

the two directions x3 and x1, respectively. 

Further implementation details about the proposed TMD’s solution are summarized in Figs. 

7(b)-(d). 

 
4.2 Passive control performance 
 

The performance of the proposed TMD architecture in Fig. 7, denoted as “TMD_A”, is 

evaluated by computing the root mean square values of the acceleration and displacement time 

histories obtained at nodes n8 and n22 of Fig. 3 in both the directions x1, x3. Some examples of the 

analyzed time histories are plotted in Figs. 8 and 9, respectively. The calculations are carried out 

by considering both the whole duration of these signals and only their tails (after the 60 sec. of 

wind excitation); the results are reported in Tables 3 and 4, respectively. 

A significant mitigation of the vibrations is achieved at the central node, n22, of the l.h.s stay, 

whereas at the deck node, n8, only the free response seems to be reduced. Indeed, when the entire 

duration of the signals at node n8 is considered in the calculations, the devices seem to be only 

able to reduce the peaks in terms of both acceleration and displacement, not the root mean square 

470



 

 

 

 

 

 

Design of a TMD solution to mitigate wind-induced local vibrations… 

 

values. Nevertheless, from the response of node n8 it is evident that the addition of the stay TMDs 

is not deteriorating the deck performance. 

 

 

(a) 

 

(b) (d) 

 

Fig. 7 (a) View of TMD1 and TMD3 hung on the tubular elements in the l.h.s. of the footbridge, and view of 

TMD2 and TMD4 hung on the tubular elements in the r.h.s. of the footbridge, (b) Lateral view of the 

location of the i-th TMD, (c) Cross-section of the i-th TMD and (d) Construction detail of the i-th 

TMD 

 

 (c) 
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 (a) 

 (b) 

 (c) 

Fig. 8 Response time histories as obtained before and after mounting the passive control system denoted as 

“TMD_A”. Zoom between 0 to 70 sec of the acceleration responses for the node n22 along x1 (a) and 

x3 (b), respectively; (c) acceleration along x1 at the node n8 
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Table 3 Root mean square values computed on the whole duration (120 sec) of the acceleration and 

displacement time histories obtained from the numerical analyses. The peak values are also 

reported in italic, and they are expressed in “m/s2” for the accelerations, and in “mm” for the 

displacements 

 

node n8 

acceleration displacement 

x1 x3 x1 x3 

No TMD 
0.1348 

0.6079 

0.0665 

0.3503 

1.2015 

5.8083 

0.5593 

2.7658 

TMD_A 
0.1335 

0.6217 

0.0659 

0.3571 

1.1754 

5.9399 

0.5467 

2.8283 

 

 

node n22 

acceleration displacement 

x1 x3 x1 x3 

No TMD 
1.089 

4.8971 

0.1605 

0.7539 

15.8961 

73.4899 

3.8396 

19.8873 

TMD_A 
0.8296 

3.6528 

0.0822 

0.5396 

12.7703 

58.4994 

1.9309 

14.0121 

 
 
 
 
Table 4 Root mean square values computed on the tails (the first 15 sec after the event) of the of the 

response time histories obtained from the numerical analyses. The peak values are also reported in 

italic, and they are expressed in “m/s2” for the accelerations, and in “mm” for the displacements 

 

node n8 

acceleration displacement 

x1 x3 x1 x3 

No TMD 
0.0108 

-0.0121 

0.1174 

0.0896 

0.1405 

0.1686 

0.0669 

0.0580 

TMD_A 
0.0058 

0.0011 

0.0597 

-0.2571 

0.0513 

0.1547 

0.0239 

0.0735 

 

 

node n22 

acceleration displacement 

x1 x3 x1 x3 

No TMD 
0.0051 

-0.0059 

0.1014 

0.0883 

1.5997 

0.6423 

2.4365 

0.2851 

TMD_A 
0.0027 

0.0012 

0.0113 

0.0275 

0.9543 

0.2421 

0.2498 

0.1143 
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A further understanding of the effects of the TMD is achieved in the frequency domain by 

analyzing the results summarized in Figs. 10 and 11. These figures clearly confirm the above 

observations about the TMD’s effect in terms of vibrations mitigation. In fact, by looking at the 

frequencies considered in the design of the TMD’s (namely, 1.05 and 1.40 Hz), it is seen that the 

designed TMD’s solution is able to smooth the spectral peaks for both the acceleration and 

displacement signals obtained from the numerical simulations. These observations are evident for 

the central node, n22, of the l.h.s. stay, whereas the TMD’s effects are not so significant for the 

deck node n8, as already underlined above. 
 
 
 
 

 (a) 

 (b) 

Fig. 9 Response time histories as obtained before and after mounting the passive control system denoted as 

“TMD_A”. Zoom between 0 to 70 sec of the displacement responses for the node n22 along x1 (a) and 

x3 (b), respectively 
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 (a) 

 (b) 

 (c) 

Fig. 10 Response spectra as obtained from the acceleration responses along x1 (a) and x3 (b) at the node n22; 

and (c) from the acceleration response along x1 at the node n8,  before and after mounting the 

passive control system denoted as “TMD_A” 
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 (a) 

 (b) 

Fig. 11 Response spectra as obtained from the displacement responses along x1 (a) and x3 (b) at the node n22; before 

and after mounting the passive control system denoted as “TMD_A” 

 
 

5. Conclusions   
 

This paper investigates the potential of passive control solutions to mitigate the vibrations 

induced by the wind excitation on a slender timber footbridge. It is seen that, for a single structural 

mode, a passive solution based on tuned mass dampers (TMD’s) results quite adequate when local 

rather than global oscillations are considered. The way in which standard studies (Abe and Fujino 

1994) on the coupling of a secondary mass with a single degree of freedom system can be 

exploited when dealing with a large structural system is discussed. Mainly the potential offered by 

commercial finite element software tools is shown to be fully satisfactory in view of the TMD 

design. The explicit analysis is then numerically performed for an existing case study. Of course, 
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full validation could only be achieved by installing the control devices on the footbridge and 

testing them under severe wind conditions. Further investigations could usefully address the 

potential of alternative active and semi-active control schemes (Casciati et al. 2007).    
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