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Abstract.    In recent years the monitoring of structural behavior through acquisition of vibrational data has 
become common practice. In addition, recent advances in sensor development have made the collection of 
diverse dynamic information feasible. Other than the commonly collected acceleration information, Global 
Position System (GPS) receivers and non-contact, optical techniques have also allowed for the synchronous 
collection of highly accurate displacement data. The fusion of this heterogeneous information is crucial for 
the successful monitoring and control of structural systems especially when aiming at real-time estimation. 
This task is not a straightforward one as measurements are inevitably corrupted with some percentage of 
noise, often leading to imprecise estimation. Quite commonly, the presence of noise in acceleration signals 
results in drifting estimates of displacement states, as a result of numerical integration. In this study, a new 
approach based on a time domain identification method, namely the Unscented Kalman Filter (UKF), is 
proposed for correcting the “drift effect” in displacement or rotation estimates in an online manner, i.e., on 
the fly as data is attained. The method relies on the introduction of artificial white noise (WN) observations 
into the filter equations, which is shown to achieve an online correction of the drift issue, thus yielding 
highly accurate motion data. The proposed approach is demonstrated for two cases; firstly, the illustrative 
example of a single degree of freedom linear oscillator is examined, where availability of acceleration 
measurements is exclusively assumed. Secondly, a field inspired implementation is presented for the 
torsional identification of a tall tower structure, where acceleration measurements are obtained at a high 
sampling rate and non-collocated GPS displacement measurements are assumed available at a lower 
sampling rate. A multi-rate Kalman Filter is incorporated into the analysis in order to successfully fuse data 
sampled at different rates. 
 

Keywords:    Structural Health Monitoring (SHM); online system identification; heterogeneous data fusion; 
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1. Introduction 
 

In the past two decades, Structural Health Monitoring (SHM) using vibration measurements 
has attracted considerable attention in various engineering fields, including the aerospace 
(Basseville et al. 2007), (Bucharles and Vacher 2002); mechanical (Mani et al. 2006), (Doebling et 

                                                       
Corresponding author, Assistant Professor, E-mail: chatzi@ibk.baug.ethz.ch 
a Ph.D., E-mail: clemente.fuggini@dappolonia.it 



 
 
 
 
 
 

Eleni N. Chatzi and Clemente Fuggini 

al. 2009); and civil engineering (Yuen and Katafygiotis 2006), (Papadimitriou et al. 2011), 
(Moaveni et al. 2011), (Fraraccio et al. 2008) communities. In order to conduct online monitoring, 
real-time control, and system identification of structural parameters, the availability of acceleration 
response measurements as well as displacement response data is often required. Recent years have 
delivered tremendous advances in sensor technologies for dynamic system monitoring, including 
wireless applications (Gao et al. 2006); highly accurate MEMS sensors; laser technologies; 
interferometric radar techniques; and global positioning system (GPS) receivers. This, in turn, 
allowed the acquisition of highly accurate acceleration, velocity and position records at high 
sampling rates (Psimoulis and Stiros 2008). In the presence of advanced hardware solutions at a 
relatively low cost, spatially dense heterogeneous sensor arrays have now become feasible 
solutions for the monitoring of large-scale civil structures. 

In any Structural Health Monitoring (SHM) scheme applied to a civil structure, accuracy, 
durability and availability are requirements that must be strictly satisfied in order to guarantee 
reliable long-term applications. For maximizing the information and increasing the quality of data 
obtained through sensors, data processing techniques relying on fusion have come forth. Such 
techniques utilize underlying mathematical models or simple physical principles in order to extract 
improved information from recorded signals. Acceleration information in particular is more readily 
available at high sampling rates and independent of a fixed-reference point. Therefore it is often 
used for extraction of integral quantities such as velocity or displacement (Berg and Housner 1961, 
Boore and Bommer 2005). However, information extracted through acceleration is often related to 
shortcomings such as a random phase error, as indicated in the work of Moschas and Stiros 
(Moschas and Stiros 2012), or more commonly, to inaccurate, drifting estimates of integral 
quantities, such as displacement (Stiros 2008). 

The “drift effect” is a result of the numerical integration of the low frequency noise contained 
in the data. Naturally, integration errors are even more pronounced in the presence of fluctuations 
in the sampling rate which might occur depending on the accuracy of the available data acquisition 
unit (Stiros and Kokkinou 2008). This effect is detrimental for implementations in structural 
control or early warning systems, which largely rely on the detection of extreme levels of 
displacement or force. Within the context of force and state tracking, state-of-the-art identification 
approaches dealing with the joint input-response identification problem (Naets et al. 2013), 
(Lourens et al. 2012) are highly effected by such biases. Throughout the literature, various 
methods are found for tackling this reoccurring issue. Most commonly, acceleration data is filtered 
with some high pass filter, thus removing low frequency content, and subsequently integrated or 
detrended. The major drawback of such an approach, is that it obviously leads to a process that is 
no longer enforced in real-time, as the post processing of windowed data is obligatory. 
Additionally, as will be shown in the application sections, this process is in fact a highly invasive 
one, often leading to erroneous signal estimates for the integral quantities, i.e., displacement or 
rotation.  

In a more effective data processing approach, the aforementioned availability of various types 
of information can be exploited in order to improve data quality through fusion (Park et al. 2013). 
Several works have pointed out the benefit of fusing acceleration and displacement response data 
for obtaining improved real-time estimates through appropriate Kalman filtering techniques 
(Chatzi and Smyth 2009), (Smyth and Wu 2007), (Kim et al. 2014). As noted in the work of (Kim 
et al. 2014), displacements estimated through filtering might still suffer from drifts, especially 
when dealing with a large interval of displacement updates and significant acceleration 
measurement errors. In order to deal with this issue, smoothing techniques can be enforced for 
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enhancing the accuracy of the filtering formulation. Unlike the real-time implementation of 
Kalman filtering, fixed-interval smoothing is implemented off-line, or at best in a “near-online” 
manner using some portion of the time histories of the measured data. In this paper, a novel 
approach is presented for obtaining an improved estimate, i.e., removing the drift issue, in an 
online manner. 

Naturally, a number of challenges arise when seeking to estimate response on the fly through 
noisy (Hong et al. 2013) or incomplete observations (Beck et al. 1999). A first intricacy is related 
to the fact that the system itself, or the observed quantities, might comprise a nonlinear function of 
the states. For this purpose, identification techniques suitable for handling nonlinearities are 
required. State-of-the-art nonlinear identification techniques include the Least Squares Estimation 
(LSE) (Smyth and Wu 2007), (Lin et al. 2001), the extended Kalman Filter (EKF) (Mariani and 
Corigliano 2005), the Unscented Kalman Filter (UKF) (Wan and Van Der Merwe 2000), (Chatzi 
and Smyth 2009) and the sequential Monte Carlo methods (particle filters, PF) (Chen et al. 2005), 
(Maskell and Gordon 2001). 

The approach introduced herein, relies on one of the aforementioned time domain identification 
methods, namely the UKF, for correcting displacement drift in real-time. The UKF is selected as it 
has proven to be quite suitable for online implementation and is also quite adept in handling noise 
(Chatzi et al. 2010). The critical innovation, enabling the success of this scheme, consists in the 
introduction of artificial white noise (WN) observations into the filter equations, for the 
unobserved displacement quantities. This results in an on-line correction of the drift issue, thus 
yielding highly accurate motion data. The presented numerical application binds theoretical and 
computational tools together, demonstrating the potential in improving signal accuracy and 
succeeding in real-time prediction of structural response.  

The presented work is organized as follows. Firstly, the workings of the linear KF and of its 
nonlinear equivalent (UKF) are outlined in Section 2 for reasons of completeness. Moreover, the 
principles of the multi-rate and Smoothing schemes are customized for implementation with the 
UKF. In Section 3 the workings of the proposed artificial white noise observation approach are 
illustrated through a simple example. In Section 4, a single degree of freedom oscillator problem 
of varying complexity is presented, demonstrating the efficacy of the method given acceleration 
information. Finally, in Section 5 the proposed approach is validated on a displacement and 
acceleration fusion problem, for a simulation experiment on the monitoring of a super-tall tower 
structure in China. Section 6 concludes the work. 

 
 

2. Computational tools 
 
Consider a linear dynamical system described by the following continuous state-space (process) 

equation 

                                             (1) 

where x(t)n  is the state variable vector at time t , A
c
,  B

c
 are the continuous state and 

input matrices, u(t)  is the input force vector, and ( )tw  is the zero mean Gaussian process 

noise vector with covariance matrix ( )tQ . 
Using numerical integration methods, such as the fourth order Runge – Kutta scheme, Eq. (1) 
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can be rewritten as follows in discrete time 

x
k1

 Ax
k
Bu

k
 w

k
                                             (2) 

where x
k
,u

k
n are the state variable vectors at t  kt , kw  is the process noise vector 

with covariance matrix kQ , and the discrete state and input matrices A, B  are obtained from 

Eq. (1) via integration. Additionally, the linear measurement (observation) equation at time 
t  kt  is 

                                             (3) 

where m
k y  is the zero mean observation vector at t k t  , C is the observation matrix, 

and  is the zero mean Gaussian measurement noise vector with corresponding covariance 

matrix kR . 

 
2.1 The discrete Kalman Filter 
 

The linear Kalman Filter (KF) aims at estimating the state vector xk 
n  of a discrete 

system that is governed by the linear stochastic difference Eq. (2) and the observation Eq. (3). The 
estimate is based on m  observations of vector yk ,  k  1m. An important note is that yk  
can be composed of partial information, i.e., not all structural dofs need to be monitored 
(measured). 

Let's define x̂k1 
n  to be an estimate of the state at time k 1. Then a prior estimate of 

the state x̂k
 , at time k , can be obtained via the state space equation 

x̂
k
  Ax̂

k1
Bu

k1
 w

k1
                                             (4) 

A posterior state estimate is then defined as a linear combination of the prior estimate 
(Prediction Step) and the weighted difference between an actual measurement and a measurement 
prediction (Update Step) as shown below 

x̂
k
 x̂

k


Prediction Step

K(y
k
Cx̂

k
 )

Update Step

                                         (5) 

The difference (yk Cx̂k
 )  is termed the measurement innovation, or residual. It reflects the 

discrepancy between the predicted measurement Cx̂k
  and the actual measurement yk . 

The matrix K , known as the Kalman gain, is essentially a gain or blending factor that 
minimizes the posterior error covariance defined as 

P
k
 E[e

k
e

k
T ] where, e

k
 x

k
 x̂

k
                                   (6) 

The goal is to minimize the expected value of the square of the magnitude of vector ek . This is 
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equivalent to minimizing the trace of the a posteriori estimate covariance matrix Pk , which 
eventually leads to: 

K
k
 P

k
CT (CP

k
CT R)1                                             (7) 

Looking at the above expression, it follows that as the measurement error covariance R  
approaches zero, the gain K  influences the residual more heavily, i.e., the actual measurement is 

“trusted” more. On the other hand, as the prior estimate error covariance Pk
  approaches zero, the 

gain K  affects the residual less or the predicted measurement is trusted more. 
The above formulation results in the following two-step procedure: 

 
Prediction Step 

x̂
k
  Ax̂

k1
Bu

k1

P
k
  AP

k1
AT Q

k1

                                             (8) 

Update Step 

K
k
 P

k
CT (CP

k
CT R

k
)1

x̂
k
 x̂

k
 K

k
(y

k
Cx̂

k
 )

P
k
 (I K

k
C)P

k


                                       (9) 

The Kalman filter is optimal when the model perfectly matches the real system, the entering 
noise is white and the noise covariances are exactly known. 

At this point, it is very important to clarify the nature of the influence of the covariance 
matrices kQ , kR . The process noise covariance reveals the confidence put on the utilized model 

of the system. The lower this is, the more accurate the model is considered to be. The observation 
noise covariance reveals the confidence put in the acquired measurements. The lower this is, the 
tighter the estimator is forced to fit the recorded data. Practical implementation might be difficult 
when the noise covariance matrices Qk  and Rk  are not known a priori which is usually the 
case. One approach for estimating these matrices from routine operating data is the 
Autocovariance Least-Squares (ALS) technique (Rajamani 2007), (Rajamani and Rawlings 2009). 

 
2.2 The unscented Kalman Filter 
 
The UKF is an approximation of the standard (discrete) Kalman Filter, applicable for the case 

of nonlinear systems. In order to simulate nonlinear behavior, the UKF approximates the state as 
Gaussian Random Variable (GRV), represented by a set of carefully chosen deterministic points 
known as Sigma Points. The Sigma Points are sample (discrete) points which are distributed so as 
to completely capture the true mean and covariance of the GRV and when propagated through the 
actual nonlinear system they capture the posterior mean and covariance accurately to the second 
order for any nonlinearity (third order for Gaussian inputs). If the dimension of the state vector is L, 
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then a total number of 2L+1 Sigma Points is required, as explained next. This is further illustrated 
in Fig. 1 for the case of a two dimensional state variable. As in the linear Kalman Filter case, a 
prediction and an update step is once again involved, as elaborated in what follows.  

The UKF appears to be superior to the commonly used alternative approximation, the Extended 
Kalman Filter (EKF), especially for higher-order nonlinearities as are often encountered in civil 
engineering problems. The EKF in contrast, only achieves first-order accuracy. Remarkably, the 
computational complexity of the UKF is of the same order as that of the EKF. This section 
provides a basic overview of the filter equations. For more details the interested reader is referred 
to (Julier and Uhlmann 1997), (Wan and Van Der Merwe 2000). 

Consider the general dynamical system described by the following nonlinear continuous 
state-space (process) equation as 

                                             (10) 

where x(t)n  is the state variable vector at time t , ( )tw  is the zero mean Gaussian process 

noise vector with covariance matrix ( )tQ . 
Using numerical integration methods Eq. (10) can be rewritten as follows in discrete time 

x
k1

 F(x
k
,w

k
)                                              (11) 

where x
k
n  is the state variable vector at t  kt , kw  is the process noise vector with 

covariance matrix kQ , and function F  is obtained from Eq. (10) via the integration scheme. 

Additionally, the nonlinear measurement (observation) equation at time t  kt  is 

                                             (12) 

 
 

Fig. 1 Unscented Kalman Filter Visualization for 2-dimensional problem 
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where m
k y  is the zero mean observation vector at t k t   and  is the zero mean 

Gaussian measurement noise vector with corresponding covariance matrix kR . 

From a Bayesian perspective, the problem of determining filtered estimates of kx  based on 

the sequence of all available measurements up to time k , 1:ky  is to recursively quantify the 

efficiency of the estimate, by assuming different values. For that purpose, the construction of a 
posterior Probability Density Function (PDF) is required 1:( | )k kp x y . The UKF approximates the 

posterior density 1:( | )k kp x y  by a Gaussian density, which is represented by a set of 

deterministically chosen points. More specifically, given the state vector at step 1k  , and 
assuming that this has a mean value of x̂

k1
 and covariance 1kP , we can calculate the statistics 

of kx  by using the Unscented Transformation, or in other words by computing the set of 2 1L   

sigma points i
k  with associated weights iW . 

In order to do so, the original state vector is redefined as the concatenation of the original state 
vector and noise variables as 1 1 1 1[ ]T T T T

k k k k

   x x w υ . Then, the Sigma Points are distributed 

symmetrically around the mean 1ˆ k

x  as follows  

[ ]
]P)+( -x̂  P)+(+x̂  x̂=

=)()()(=

111

1-1- 1-1-

α
k

α
k-

α
k

α
k-

α
k-

TvTwT
k

α
k

λLλL

χχχχ
kk

              (13) 

where ∈αkP ԹL×L is the corresponding augmented covariance matrix incorporating the process 

and observation noise components: ( , , )diag P P Q R . L  is the dimension of the augmented 

state estimate vector 1ˆ kx ,  ,  ,   are the KF parameters, and 2 ( )L L      is a 

scaling parameter. For further details, one may refer to (Wan and Van Der Merwe 2000), (Ristic et 
al. 2004). 

These Sigma Points are propagated through the original nonlinear system function ( )kF x  

LiχχFχ  w
k

i
kkk 2,...,0=   ),,(= i,

1-1-
i

1-                      (14) 

where L  is the dimension of the state vector x . 
The set of the sample points | 1

i
k k   represents the predicted density 1: 1( | )k kp x y . 

Consequently, the mean and covariance of the state at time step k  are approximated using a 
weighted sample mean and covariance of the posterior Sigma Points. Under this assumption, a 
variation of the standard Kalman Filter process can be enforced. This consists in a two-stage 
evaluation comprising a time-update step and a measurement-update step. The time-update is 
executed as follows 

2

| 1 | 1
0

ˆ
L

m i
k k i k k

i

W  


 x                                              (15) 
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   Tkk
i

kk

L

i
kk

i
kk

c
ikk XXWP 11

2

0
111

ˆˆ



                       (16) 

Note that the notation 
k


 used previously is identical to the notation 

k|k1
 used here for 

convenience. Moreover, the weights for the state and covariance components of the Sigma Point 
vector are given in the following relation 

2
0 0 0 0[ ] (1 )

1
, 1, , 2

2( )

m c m

c m
i i

W W W W
L

W W i L
L

  




       

  




                             (17) 

The predicted measurement mean and covariance are then equal to 

                                             (18) 

2

| 1 | 1
0

ˆ
L

m i
k k i k k

i

W 


 y Y                                                (19) 

                             (20) 

The second stage of the estimation, termed the measurement-update step, takes place as follows 

)ˆ(ˆˆ
11   kkkkkk yyKXX                       (21) 

| 1
yy T

k k k k k k P P K P K                                              (22) 

where kK  is the Kalman Gain matrix at step k  

1( )xy yy
k k k

K P P                                            (23) 

     




L

i

T

kk
i

kkkk
i

kk
c

i
xy

k yyXWP
2

0
1111

)( ˆˆ                     (24) 

 
2.3 Multi-rate Kalman Filter 
 
When fusion of signals sampled at different rates is required, a multi-rate formulation of the 

UKF can be utilized. Let us assume availability of acceleration and displacement signals, sampled 
at different intervals, aT , dT , respectively where / ,d aT T M M N . A multi-rate Kalman 
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filter can be applied to obtain the optimal estimates of the displacement and velocity. Since no 
displacement measurements are available between the times dkT , where k  is an integer, this is 

equivalent to optimal filtering with arbitrarily large measurement errors. Consequently, the 
measurement covariance related term appearing in Eq. (12) of the Measurement Update step (Fig. 
1), 1

yy
P  is arbitrarily large and hence the Kalman gain 0K . Thus, only the time update is 

performed and the optimal estimate is 

)(ˆˆ
111 kkkk EXX 


  

 

)( 111 kkkk VarPP 

                             (25) 

When displacement measurements become available, at time instants dkT , both the time and 

measurement update are regularly performed. It is important to note however that even when 
implementing such a scheme, displacement estimates can still drift particularly for larger sampling 
ratios. Smoothing techniques can help tackle this problem; however their efficacy largely depends 
upon data quality and noise content. In addition, the use of smoothing calls for a non-causal 
procedure as described next, which is not ideal for online implementations. 
 

2.4 Kalman filter smoothing 
 
Smoothing can produce improved estimates of the state by processing a window of the 

response, i.e., no longer relying solely on the previous and current state (Markov assumption). 
Smoothing works through a combination of the forward Kalman filtering and backward filtering 
over the entire sequence of available measurements and is therefore an off-line procedure. In the 
second application presented herein, an Unscented Rauch-Tung-Striebel (RTS) smoother is appied 
for performance evaluation purposes. The original RTS algorithm was introduced by Rauch in 
1965 (Rauch et al. 1965), however the formulation described in (Sarkka 2008), (Terejanu et al. 
2007) is adopted here for coupling this concept with the UKF. Following this approach, smoothing 
is accomplished by first filtering up to the current measurement and then sweeping back a fixed 
number of steps with the RTS algorithm. If the number of backward steps S  is small, then the 
state estimation is “near online”. The smoothed estimates ˆ s

kx  over the interval ( , )T S T  can 

be obtained by 

                                 (26) 

Where ˆ s
kx  is the updated state estimate from the forward filter, while the smoothing gain s

kK  is 

defined as 
1

111 )(ˆ 



 kkkk

s
k PxPK                         (27) 

The purpose of this work is to demonstrate how the use of schemes of this type can in fact be 
overruled, so that the simulation is maintained at the lowest possible computational cost, yielding 
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it suitable for real-time implementation. 
 
 
3. Artificial white noise observations 

 
In an effort to track the state evolution in real-time while alleviating the “drift effect”, a concept 

relevant to the approach described in the (Kim et al. 2014) is introduced herein. In the cases 
examined by Kim et al. availability of collocated displacement measurements is assumed and a 
multi-rate Kalman filter is enforced. The acceleration measurement error is considered as a 
combination of offset bias (e.g., mechanical or electrical hysteresis and accelerometer installation 
errors) and a zero-mean stochastic noise process. The filter equations are formulated by setting the 
state variables of the Kalman filter as the acceleration error and its single and double integrators, 
i.e., velocity and displacement integration errors, respectively. This approach proves efficient for 
the problem of fusing collocated displacement and acceleration measurements although, as noted 
by the authors, the “drift effect” is once again present and a smoother is utilized for its correction.  

In the method introduced herein, the more generalized cases of non-collocated acceleration and 
displacement data; and of pure acceleration (no displacement) records are investigated. In this 
approach, modification of the filter equations lies in the appropriate expansion of the observation 
equation set in order to include a set of artificial zero-mean White Noise (WN) observations k

y  

for the unobserved displacement states ∈xu
k Թl  

                                                     (28) 

where 1k l


y 0 is  the artificial observation value, set to zero, and  is the noise level assumed 

for these artificial observations. It is reminded at this point that a very low level would indicate 
confidence in this false measurement, which is undesirable. The target is to maintain the mean at a 
zero level while not overriding the system model estimates. In this way detrending is essentially 
executed in an online manner. Therefore, higher noise amplitudes should be attributed to these 
observations as indicated next. 

 
3.1 Illustration on the integration of a noisy acceleration signal 
 
In order to demonstrate the influence of the artificial observations terms, the toy-example of 

numerical integration for the acceleration response of a single degree of freedom (sdof) linear 
oscillator is explored next. The properties of the oscillator, which is schematically shown in Figure 
2a, are set as 900k   N/m, 100m   kgr, 25c   Ns/m. A record of the 1994 Northridge 
earthquake (Fig. 2(b)), scaled at a peak acceleration of .3 g, is used as the input base excitation, 
simulating an sdof system under earthquake excitation. The noise-free (“clean”) system is 
numerically simulated for a total duration of 20 sec and the response acceleration is contaminated 
with white noise of different levels as defined by their Root-Mean-Square (RMS) noise to signal 
ratio. The RMS is a statistical measure of the magnitude of a time history. It is reminded here, that 
for discrete signals, the RMS ratio is defined as the square root of the ratio of the sums of squared 
components for each time signal. A sampling frequency of 200 Hz is utilized in this example. 
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Fig. 3 Integrated Displacement and Velocity using the RK method 
 
 

where since the continuous system matrix A  is nilpotent, i.e., 2 0A , it follows that 

  2

0

1

2!

t
d

t

d

e t

e d t t 





   

      
 

A

A

A I A

B B I A B
                                   (31) 

The above state-space equation is complemented by an artificial observation 0ky   as 

formerly introduced in Eq. (28) 

y
k
  x

k


k
                                                          (32) 

The results for displacement are displayed in Fig. 4 for varying levels of the RMS ratio of the 

noise process   to the displacement signal. It is reminded at this point, that this is an illustrative 
example which helps demonstrate the workings of this scheme on the simple integration of a noisy 
acceleration signals without assuming availability of supplemental measurements, such as 
displacement as in (Smyth and Wu 2007), (Kim et al. 2014). As observed in Fig. 4, when the noise 
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covariance of the artificial observation is kept at a very low level (a), the filter forces the model to 
adhere to the false, zero observation, leading to an incorrect estimate for both the KF and UKF 
approach. However, once the noise level is a bit relaxed (b) this effect is relaxed as well leading 
the solution closer to what is dictated by the model (i.e., the integrator). In fact in subfigure (b) the 
noise level is such that the linear KF achieves a very good prediction of the integrated 
displacement. The UKF performance is improved but still distorted by the tighter confidence on 
the artificial observation. Further relaxation (c), (d) of the noise level assigns less weight on the 
artificial observation which leads the linear KF to diverge, as it is essentially now operating solely 
on the grounds of the process equation (state-space).  

Unlike the linear KF, the UKF consistently provides an improved estimate of the displacement 
for increasing noise levels, with optimal performance for the noise RMS noise to signal ratio lying 
within the range of .5 to 50. This demonstrates the greater versatility of the UKF versus the KF in 
the proposed scheme, which is why in what follows the UKF will be used for all simulations (both 
linear and nonlinear). It is worth noting here that it is not possible to predefine the optimal value of 

the   noise level to be used. What is important however is that the method works for a wide 
range of such values, usually above some lower threshold and not for one unique optimal. This 
renders the method easily applicable without a need for extensive fine-tuning. As aforementioned 
in Section 2.1, the same holds for the process and observation noise levels of the linear KF, which 
are typically defined from existing (routine) data. 

 
 
 

 

Fig. 4 Integrated Displacement using the RK, the linear KF, and the Unscented KF methods for different
noise levels 

 
 

307



 
 
 
 
 
 

Eleni N. Chatzi and Clemente Fuggini 

A second note lies in the following; in the case of permanent deformations, which could 
sometimes be the result of nonlinearity, this method would not be applicable in this form. The 
current formulation only applies for cases where vibration takes place around the same equilibrium 
position y=0, which is however quite often the case. The method could be expanded to potentially 
account for permanent deformation, and therefore shifts in the mean value of the specified noise 
level, however this is left as future work. 

In what is discussed above, no information on the actual model of the system is included in the 
state-space formulation and no additional reliable observation is assumed. As is demonstrated in 
the following section, results are significantly improved when additional information is 
incorporated into the analysis process. 
 
 
4. Single degree of freedom numerical example 
 

4.1 Sdof linear oscillator with known system model - state identification 

 

In this section, we take the analysis one step further, by taking the dynamic equation of motion 
into account for the formulation of the state-space (process) equations. A single degree of freedom 
oscillator is once again considered (Fig. 2(a)) with known structural properties: 900k   N/m, 

100m   kgr, 25c   Ns/m. A sampling rate of 200 Hz is utilized all through this example. The 
continuous system now assumes the following form 

            (33) 

where  is the state vector of the system;  is the noise corrupted (5% 

RMS ratio) input ground motion (scaled record of Northridge earthquake); and ( )tw  is the 

process noise, of covariance Q 1e 8  . The continuous system is discretized using a simple 

forward Euler integration scheme at a sampling frequency of 200  Hz. Measurements of the total 
acceleration are once again assumed available, contaminated with considerable noise of 15% RMS 
ratio. The relevant observation equation then becomes 

                                 (34) 

As indicated by the performance of the estimator (Fig. 5), taking the underlying system model 
into account, resolves the drift issue even at quite increased noise levels. However, this is not the 
case when uncertainty in the structural properties is involved, as examined next. 

 
4.2 Sdof linear oscillator with uncertain system model - Joint state & parameter identification 
 
Once again we gradually increase the complexity of the problem considered, this time taking 

model uncertainty into account. More specifically, the system properties are assumed unknown a 
priori and their online identification is sought during acquisition, rendering this a joint state and 
parameter identification problem. We therefore assume that the / ,  /k m c m  values are to be 
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estimated online. The previous formulation can easily be brought into a joint identification form by 
augmenting the state vector in order to include the unknown parameter vector [ ]Tk cθ  

        (35) 

where  is now the augmented state vector of the system which inevitably 

results in a nonlinear system function f , due to the bilinear products of state components 

( 1 ( )m kx t , ). The implementation of a nonlinear system identification method is 
therefore mandatory in this case. The observation Eq. (34) is once again utilized and an 
off-assumption of initial conditions 0/ | 6k m  , 0/ | 0.5c m   is made. As illustrated in Figs. 6 

and 7 the performance of the filter is now suboptimal. An initial integration error is clearly marked 
in the first seconds of the analysis, leading to the identification of erroneous system parameters, 
which subsequently worsens state tracking as well. The influence of the “drift effect” is obvious 
throughout the estimation. It needs to be noted that the filter is able to accurately track the 
measured (observed) acceleration, as demonstrated in Fig. 8, however the errors inserted into the 
process equation, i.e., the state-space formulation through integration, generate this inferior 
performance. 

 

 
 

Fig. 5 State estimates using the Unscented KF for known linear system model 
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Fig. 6 State estimates using the Unscented KF for uncertain linear system model 
 
 

 
 

Fig. 7 Parameter estimates using the Unscented KF for uncertain linear system model 
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Fig. 8 Observation tracking using the Unscented KF for uncertain linear system model 
 
 

 

 

Fig. 9 State estimates using the Unscented KF for uncertain linear system model and artificial observations
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The same system is now modified through the addition of the artificial white noise observation, 

y , of Eq. (32) using a covariance 0.1R   

                           (36) 

 As observed in Figs. 9 and 10 the system now converges to the true parameter values, while 
achieving an accurate tracking of structural response. The converged damping parameter estimate 
is somewhat deviating from the exact value, however this is a known issue in damping parameter 
identification and the divergence level observed here is not significant. Furthermore, as pointed out 
earlier in Section 3.1, the convergence is not really sensitive on the choice of this covariance level, 
provided it is not too low. It is reminded that a very low value would force the signal to adhere to 
this fictitious observation, which is of course undesirable.  

 

 

 

Fig. 10 Parameter estimates using the Unscented KF for uncertain linear system model and artificial 
observations 
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Fig. 12 State estimates using the Unscented KF for uncertain nonlinear system model both with and without
artificial observations 

 

 

 

Fig. 13 Stiffness and damping parameter estimates using the Unscented KF for uncertain nonlinear system 
model both with and without artificial observations 
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Fig. 14 Bouc-Wen model parameter estimates using the Unscented KF for uncertain nonlinear system 
model both with and without artificial observations 

 
 
5. Large scale structure inspired application 

 
The previous example demonstrated the efficacy of the proposed method in the presence of 

acceleration measurements alone. However, it is interesting to additionally point out its 
effectiveness for the fusion of displacement and acceleration records. For this purpose an actual 
high-rise structure in China, the Guangzhou TV tower, is chosen as the test case for this second 
application. A dense monitoring system, comprising over 700 sensors (Fig. 15(a)), has been 
implemented on the 610 m tall structure, by the Hong Kong Polytechnic University for both 
in-construction and in-service real-time monitoring. A number of interesting works have been 
conducted concerning the modal identification of the structure under ambient loading using a 
stochastic subspace identification (SSI-data) approach (Faravelli et al. 2011), (Faravelli et al. 
2010a), (Faravelli et al. 2010b). Additionally, in previous work by Fuggini (2009), Casciati et al. 
(2009), and Faravelli et al. (2009), the issue of fusing GPS information with non-collocated 
accelerometer data for the identification of the torsional response at the top section of the tower 
was investigated. 

In the current work, the computational technique introduced earlier is employed on a 
numerically simulated case of the aforementioned tall-tower torsion problem. This example is of 
particular interest since it calls for the fusion of heterogeneous data, sampled at different rates as in 
the works of (Smyth and Wu 2007), (Kim et al. 2014).  
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uni-axial accelerometers is set to 50 Hz, as indeed was the case on the actual structure.  
 

5.1 Governing geometric relations 
 
In order to detect the torsional behavior of the tower, the geometric formulas for an oval 

cross-section must be set up. In the considered case study the GPS receiver is placed at the center 
of the oval inner tube, and the two uniaxial accelerometers are located at a distance r  from the 
center, while the accelerometer position vector forms an angle   with the Y  axis (Fig. 15(b)). 
The GPS receivers measure the displacements at the center of the cross-section in the two 
horizontal directions. The data collected from both the accelerometers at the far edges of the inner 
tube of the tower and the GPS receiver at the center of the section, shall allow for the tracking of 
the torsional response. The in-plane displacements, x  and y , due to the pure rotation of the 
cross-section are simply calculated by subtracting the displacements obtained at the center from 
the one simultaneously measured at the edges, as follows 

0 0,p px X X y Y Y                                               (38) 

where 0X  and 0Y  are the displacements measured by the GPS receiver, and pX  and pY  are 

the displacements calculated from the accelerometer records in the corresponding directions. 
Based on the geometry described in Figure 16, the following geometric relations hold 

cos( ) cos
sin( )

r r y
r rsin x

  
  
  
   

                                         (39) 

By rearranging the two formulas in Eq. (38), the angle of rotation,  , can be calculated from 
either one of the two in-plane displacements 

1

1

cos cos

sin sin

y

r
x

r

  

  





    
 

    
 

                                         (40) 

For the considered case-study, the values of r  and   are equal to 7303 mm and 30o, 
respectively, as specified in Fig. 15(b). 

In previous work (Casciati et al. 2009), numerical integration and filtering was used in order to 
obtain the displacement time histories recorded by the accelerometers for both directions X  and 
Y . Since the GPS and the accelerometer signals are independently recorded, a suitable 
synchronization is strongly needed in order to perform a comparative analysis. As can be inferred 
from Eqs. (40), two independent expressions exist for the evaluation of the angle of rotation  . 

However, the measurement signals 0X , 0Y  originating from the GPS can come with 

imprecisions relating to the geometric dilution of precision (GDOP). In addition, the pX , pY  

estimates are obtained through filtering and numerical integration, therefore we expect to obtain 
diverging    estimates from the above independent equations. Depending on the noise level these 
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where ,  are the measured accelerations, and 1w , 2w  are the associated process noise 

sources assumed to be white Gaussian noise processes. The observation equation is based on the 
GPS measurements 0mX , 0mY  obtained at a lower sampling rate. Using both of the equations in 

(31) this can be written as 

1 3 0
1

1 0 1 1 1 1

1 1 0
2

2 0 3 3 2 2

cos cos

sin( ) sin

sin sin
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 
        

                       (43) 

where the measured quantity 1z  is assumed to be equal to the GPS displacements, 0mX , in the 

x  direction and involves the calculation of   which in turn depends on the measured GPS 

displacement, 0mY , in the y  direction. The second component of the measurement vector 

 0 0

T

m mz X Y  is defined accordingly for the other direction. As mentioned earlier,  ,  , are 

known constants and  1 2

T    is the measurement noise, assumed to be white Gaussian. 

By employing numerical integration at a sampling interval of aT , the system Eq. (42) and the 

observation Eq. (43) can be written in compact discrete form 

 
1k d k d pm k

k k kH
   
 

x A x B x w

y x υ
                                         (44) 

In the above equation, notice how the observation is in fact a nonlinear function, H , of the 
state. 

 
5.2 Implementation and results 
 
In order to produce simulations of the above system, time histories for the , ,   

signals are initially generated and the GPS measurement signals 0X , 0Y  are subsequently 

reproduced using Eq. (43). We then proceeded to contaminate the original pX , pY  

accelerometer measurements with a low level of random white noise (noise to signal RMS ratio 
1% ). The finally obtained time histories of the GPS and integrated accelerometer signals are 

plotted in Figs. 17 and 18 for a time segment of 5 min out of the total 40 min of produced records. 
It should be noted here that for the derivation of the pX , pY  displacement signals, the noisy 

accelerometer readings ,  need to be properly filtered with a high-pass filter 

( 0.02cf Hz ) in order to avoid the drifting effect due to low frequency noise content. In addition, 

the signal is also detrended after numerical integration. This process, is quite invasive and may 
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ultimately lead to substantially different estimates for pX , pY , as observed in Figure 18, which 

may more importantly yield inaccurate estimates for the section angle of rotation  . Naturally, 

when using this noisy input for the two independent formulas of Eq. (40) for deriving  , we are 
bound to obtain significantly divergent estimations for the angle of rotation. In Fig. 19 the 
estimates of   are compared to the assumed clean estimate (which is unique) for three cases; a) 

for the noisy signals corresponding to Figs.17 and 18(b)) for , , signals contaminated with 

a higher white noise level of 1.5% RMS ratio; and c) for signals generated using a high pass filter 
with a lower cutoff frequency ( 0.01cf  ). 

 
 

 
Fig. 17 GPS in-plane displacement time histories 

 
 

 
Fig. 18 Accelerometer derived displacement time histories 
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Fig. 19 Time history for angle of rotation   a) for the noisy 
..

pX , , 0X , 0Y  signals corresponding 

to Figs. 17 and 18(b)) for ,  signals contaminated with a higher white noise level of 

5%RMS ratio; and c) for signals generated using a high pass filter with a lower cutoff frequency

( 0.01cf Hz ) 
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In Fig. 19, 1 , 2 , denote the angle of rotation estimates as these are obtained from the two 

independent formulas of Eq. (40). As is obvious in the figure, both the noise level as well as the 
post-processing of the acceleration signals, involving filtering and detrending, critically influence 
the finally obtained estimates of rotation  . In previous works, for this purpose, averaging of the 
two deviant results obtained from each geometric relation was performed in order to yield the final 
estimate. Obviously this procedure, other than highly inefficient for significant noise levels, is also 
not suitable for online monitoring applications, as both filtering and detrending are based on the 
availability of a significant portion of data. In this work we explore whether the online 
identification method we propose can cope with these issues. Initially, the multi-rate UKF regime 
described in section 2.3 was implemented. In addition, the Unscented Rauch-Tung-Striebel (URTS) 
Smoother of section 2.4 was applied in an effort to circumvent the drift problem which is expected 
to occur during integration which takes place when moving from the continuous time setup to the 
discretized equivalent. 

Fig. 21 demonstrates the finally estimated pX , pY  time series, making it clear that the 

smoother is not enough to circumvent the drift in the displacement estimates. Although, the filter is 
able to successfully track the observations 0X , 0Y  (Fig. 20) drifted estimates for the pX , pY  

and   time histories are produced which is clearly unsuitable for monitoring purposes. An 
alternative process is needed which can exempt us from this reliance on the integrated data and 
most importantly render the process online so that it is suitable for active control applications. The 
problem is more pronounced during the first steps of the analysis. The noise content of both the 
GPS and acceleration signals as well as the fact that the two are non-collocated constitute the drift 
correction a non trivial task. 

 

 

 

Fig. 20 Estimates of the observed quantities 0X , 0Y  with and without the UKF Smoother 

322



 
 
 
 
 
 

Online correction of drift in structural identification using artificial white noise observations… 

 

 

 

Fig. 21 Estimates of the unmeasured states pX , pY  with and without the UKF Smoother 

 
 
We try to tackle the problem by implementing the artificial white noise observation scheme 

proposed herein. Two extra observations are assumed in place of the unobserved pX ,  pY  time 

histories, corresponding to zero mean white noise (WN) signals of low variance. For this purpose, 
Eq. (43) is now modified to include artificial WN observations for pX ,  pY  

1 0 1 1 1

2 0 3 2 2

3 1 3

4 3 4

sin( ) sin
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k k k k

k k k k

k k k
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k k k
p

y X x r r
y Y x r r
y X x

y Y x

   
   




     
     
  
  

                                   (36) 

Therefore no educated assumption is made upon them, nonetheless as it turns out from the 
estimation results this is enough to account for the drifting effect. The pX ,  pY  estimates are 

forced to not drift as the estimation evolves. For the results presented in Figs. 22 and 23, an 
observation noise level of ~ 30% RMS ratio to the actual displacement signal ( pX ,  pY ) is 

assumed for 3 , 4 . 
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Fig. 22 Displacement time histories for accelerometer sensor points, using the artificial white noise
observations 

 
 
 

 
 

Fig. 23 Time history for angle of rotation (UKF estimate), using the artificial white noise observations 
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As shown schematically in Figs. 22 and 23 the UKF is now successful in tracking pX ,  pY , 

while the two   estimates are now very well weighted with an absolute error norm of merely 
1.2%. An alternative process could be pursued, in an off-line scenario, by feeding the filtered, 
integrated and detrended (and therefore biased) pX ,  pY  results into the observer in the place of 

the artificial observations. As it turns out, the normalized root mean square deviation (NRMSD) of 
the 1 , 2  estimates with respect to the actual   time history, is somewhat improved when 

using the artificial observation approach versus the off-line scheme. The relevant numbers for the 
off-line scheme and the online artificial WN observation approach are 

1 2

1 2

off-line: 0.044  0.043

online: 0.032 0.0

&

3& 1

   
 

   
 

 
 

 
 

                           (46) 

where the NRMSD is defined as: 
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 


 








                                             (47) 

 
 
 

(a) NRMSD of the 0X ,  0Y  estimates (b) NRMSD of the 1 ,  2  

Fig. 24 Mean normalized root mean square deviation (NRMSD) of the 0X ,  0Y ,   estimates 
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In order to explore how sensitive this technique is to the assumed artificial noise level, 
parametric runs were performed for different values of the added noise. Figs. 24 (a) and (b) display 
the relevant NRMSD plots for the   and GPS displacement estimates ( 0X ,  0Y ). These indicate 

that the estimate accuracy seems to be rather insensitive to the choice of observation noise level, as 
long as it is not a very low one (above 10% RMS yields good performance). 

 

 
5. Conclusions 

 
A numerical procedure for the online correction of integrated quantities, such as displacements 

and rotations, has been proposed in this study. The online tracking of such quantities, which is 
sought for monitoring and control purposes, is not a trivial task as noise contamination often leads 
in imprecise estimation due to integration errors. For this purpose: 

 A new approach based on a time domain identification method, namely the Unscented 
Kalman Filter (UKF), is proposed for correcting the “drift effect” in the displacement or 
rotation estimates on-the-fly as data is attained. 
  The method relies on the introduction of artificial white noise (WN) observations into the 
filter equations in place of the unobserved integral quantities. This scheme renders the 
estimation process real-time while, at the same time, proves relatively insensitive to the 
selection of observation noise level. 
  The efficacy of the proposed approach is demonstrated for the simple example of a sdof 
linear oscillator where availability of acceleration measurements is exclusively assumed.  
 In a second application, a data fusion problem for the torsional identification of a tall tower 
structure is investigated. A multi-rate Kalman Filter is incorporated into the analysis in order to 
successfully fuse data sampled at different rates. The proposed scheme is shown to outperform 
alternative, “near online” correction methodologies such as smoothing. 
 The approach introduced herein, alleviates the need for filtering and detrending before 
proceeding to integration of accelerometer data, which would lead to an off-line process. 
Moreover, the applications demonstrate the robustness of the method, even in presence of 
significant levels of noise, provided an underlying physical, geometric or analytical model of 
the system is available.  
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