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Abstract.    The magneto-rheological visco-elastomer (MRVE) is used as a smart core to control the 
stochastic micro-vibration of a sandwich plate with supported mass. The micro-vibration response of the 
sandwich plate with MRVE core and supported mass under stochastic support motion excitations is studied 
and compared to evaluate the vibration suppression capability. The effects of the supported mass and 
localized magnetic field on the stochastic micro-vibration response of the MRVE sandwich plate are taken 
into account. The dynamic characteristics of the MRVE core in micro-vibration are described by a 
non-homogeneous complex modulus dependent on vibration frequency and controllable by applied 
magnetic fields. The partial differential equations for the coupled transverse and longitudinal motions of the 
MRVE sandwich plate with supported mass are derived from the dynamic equilibrium, constitutive and 
geometric relations. The simplified ordinary differential equations are obtained for the transverse vibration 
of the MRVE sandwich plate under localized magnetic fields. A frequency-domain solution method for the 
stochastic micro-vibration response of sandwich plates with supported mass is developed based on the 
Galerkin method and random vibration theory. The expressions of frequency-response functions, response 
power spectral densities and root-mean-square velocity responses of the plate in terms of the one-third 
octave frequency band are obtained for micro-vibration evaluation. Finally, numerical results are given to 
illustrate the large response reduction capacity of the MRVE sandwich plate with supported mass under 
stochastic support motion excitations, and the influences of MRVE parameters, supported mass and 
localized magnetic field placement on the micro-vibration response. 
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1. Introduction 

 
In many fields, there exist vibration-sensitive precise apparatuses and facilities which require 
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extremely high operation stability. For example, to obtain an advanced light source or stable 
electron beams, a synchrotron radiation facility is required to control its vibration with 
displacement and acceleration less than several micrometers and millimeters per square second, 
respectively. This micro-amplitude vibration is called micro-vibration. The vibration-sensitive 
equipments are disturbed inevitably by actual environments such as vehicle traffic and machine 
operation, which are in random with wide frequency bands and long time periods. Thus the 
stochastic micro-vibration control of the vibration-sensitive equipments is a very significant 
subject (Yang and Agrawal 2000, Nakamura et al. 2000, Yoshioka et al. 2001, Xu et al. 2003, 
Hwang et al. 2003, Lee et al. 2013). Generic micro-vibration criteria for the vibration-sensitive 
equipments have been presented in terms of the root-mean-square velocity spectrum (Gordon 1991, 
Amick 1997), which differs from the conventional criteria of strong vibration control. The 
micro-vibration reduction of structures supporting equipments has been studied by using passive 
and active isolators (Yang and Agrawal 2000, Nakamura et al. 2000, Yoshioka et al. 2001, Xu et al. 
2003, Hwang et al. 2003). However, the practical effectiveness of the vibration control using 
several supplemental devices will be restricted by point energy dissipation and micro-vibration 
uncertainty. Smart composite structures with area energy dissipation can effectively reduce the 
stochastic micro-vibration (Ying and Ni 2009, Ni et al. 2011). 

Magneto-rheological visco-elastomer (MRVE) is a promising smart material, which is 
fabricated generally by magnetically polarizable iron particles, non-magnetic silicone rubber and 
silicone oil (Shiga and Okada 1995, Carlson and Jolly 2000). The MRVE improves the potential 
disadvantage of magnetic particle settlement in magneto-rheological fluids, and combines the 
advantageous properties of magneto-rheological fluid devices (Dyke et al. 1996, Symans and 
Constantinou 1999, Spencer and Nagarajaiah 2003, Wang and Liao 2011, Casciati et al. 2012, 
Guan 2012) and viscoelastic substrate materials. For example, the MRVE stiffness and damping 
can be changed reversibly in milliseconds under applied magnetic fields. Many studies have been 
presented on the MRVE fabrication and test for magnetic mechanical properties and dynamic 
behaviors (Ginder et al. 2002, Bellan and Bossis 2002, Demchuk and Kuz’min 2002, Shen et al. 
2004, Nikitin and Samus 2005, Gong et al. 2005, Böse 2007, Kallio et al. 2007, Koo et al. 2010, 
Ying et al. 2013). The static modeling for the MRVE shear modulus under applied magnetic fields 
was given based on the magnetic dipole interaction and polymeric nonlinear elasticity. A complex 
shear modulus was proposed for describing the MRVE dynamic characteristics under applied 
magnetic fields based on the polymer dynamics in the frequency domain. The MRVE nonlinear 
dynamic model and equivalent linear model in the frequency domain for the micro-vibration were 
also proposed. The MRVE based tunable vibration isolators, absorbers and dampers, and tunable 
magneto-rheological fluid-elastomer composite dampers and isolators have been designed and 
tested for strong vibration controls (York et al. 2007, Hu and Wereley 2008, Hoang et al. 2011, 
Jung et al. 2011). 

For another potential application, the MRVE can be used as smart cores to construct composite 
structures with controllable dynamic characteristics, and then structural vibration can be controlled 
effectively. Sandwich beams and plates are typical composite structures. Their vibration with 
uncontrollable viscoelastic damping has been studied early (Ditaranto 1965, Mead and Markus 
1969, Yan and Dowell 1972, Mead 1972, Frostig and Baruch 1994). The recent study on MRVE 
sandwich beams has been presented including the periodic vibration and adjustable stiffness (Zhou 
and Wang 2005, 2006); frequency-response characteristics (Choi et al. 2010); periodic vibration 
analysis using the finite element method (Nayak et al. 2013); dynamic stability under periodic 
axial loads (Dwivedy et al. 2009) and micro-vibration responses (Ying and Ni 2009, Ni et al. 
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2011). The vibration control of piezoelectric composite structures has also been studied 
(Schoeftner and Buchberger 2013, Zenz et al. 2013). Only several studies on MRVE sandwich 
plate dynamics have been presented (Ying et al. 2014). For example, the harmonic acoustic wave 
transmission characteristics of an infinite MRVE sandwich plate have been analyzed 
(Hasheminejad and Shabanimotlagh 2010), and the modal frequencies and damping of an MRVE 
sandwich plate have been calculated by using the finite element method (Yeh 2013). However, the 
controlled mass such as the vibration-sensitive equipment supported on a composite structure 
needs to be taken into account for the micro-vibration control. The stochastic vibration reduction 
of the composite structure under localized magnetic fields needs to be considered for an actual 
magnetic field covering incompletely large structure. Thus the stochastic micro-vibration 
suppression capability of the MRVE sandwich plate with supported mass under a localized 
magnetic field needs to be studied further. 

In this paper, the stochastic micro-vibration response of a sandwich plate with MRVE core and 
supported mass under stochastic support motion excitations is studied and the micro-vibration 
suppression capability of the sandwich plate is evaluated. The effects of the supported mass and 
localized magnetic field on the stochastic micro-vibration response of the MRVE sandwich plate 
are taken into account. A frequency-domain solution method for the stochastic micro-vibration 
response is developed. Firstly, the basic assumptions for the MRVE sandwich plate are given, and 
the dynamic characteristics of the MRVE core in micro-vibration are described by a complex 
modulus dependent on vibration frequency and controllable by applied magnetic fields. The partial 
differential equations for coupled transverse and longitudinal motions of the MRVE sandwich 
plate with supported mass are derived based on the dynamic equilibrium, constitutive and 
geometric relations. Secondly, the displacements of the MRVE sandwich plate are expanded as 
series in space, and the Galerkin method is used to convert the partial differential equations into 
ordinary differential equations. The equations are simplified further to those only for the transverse 
motion of the MRVE sandwich plate with supported mass under the localized magnetic field. Then 
based on the random vibration theory, the frequency-response function and response power 
spectral density matrices of the plate system are derived. The root-mean-square velocity response 
expression of the MRVE sandwich plate with supported mass in terms of the one-third octave 
frequency band is obtained as the micro-vibration criterion. Finally, numerical results are given on 
the root-mean-square velocity response spectrum, and the effects of sandwich plate parameters, 
supported mass and localized magnetic field on the micro-vibration response. The micro-vibration 
suppression capability of the MRVE sandwich plate with supported mass under stochastic support 
motion excitations is evaluated. 

 
 

2. Vibration equations of MRVE sandwich plate with supported mass 
 
Consider a sandwich plate with controllable MRVE core and a supported concentrated mass as 

shown in Fig. 1. The sandwich plate is subjected to stochastic support micro-motion excitations 
and the micro-vibration of the plate or supported mass can be controlled by the MRVE core under 
various magnetic fields. The length and width of the sandwich plate are a and b, respectively. The 
two facial layers are the linearly elastic material and have the identical elastic modulus of E1, 
Poisson’s ratio of , mass density of 1 and thickness of h1. The MRVE core layer is soft relative 
to the facial layers and has the complex shear modulus of G2, mass density of 2 and thickness of 
h2. The supports have the vertical displacement w0, which is a stochastic micro-motion excitation.  
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Fig. 1 Sandwich plate with MRVE core 
 
 

The supported mass is fixed on the plate and has the mass per unit area of m, which volume is 
small relative to the plate and can be neglected. The facial layers are a non-magnetic material and 
the core layer is the magnetically controlled material. The localized magnetic field is considered so 
that the complex modulus of the MRVE core varies with applying region. The magnetic field of 
intensity Bm is applied vertically with the center of (x0m, y0m) and length-width of (am, bm). Then 
the complex modulus G2 becomes G2m(Bm) for the region covered by the localized magnetic field. 

The MRVE has the stiffness and damping controllable by applied magnetic fields. Its shear 
strain depends linearly on the applied shear stress for small deformation. Its dynamic behavior or 
stress-strain relationship can be described by using the complex modulus dependent on vibration 
frequency and controllable by applied magnetic fields (Ying et al. 2013). The shearing dynamic 
model of the MRVE in micro-vibration is 

2m22 ),j(  BG                             (1) 

where 2 and 2 are respectively the shear stress and shear strain;  is the vibration frequency and 

1j  . The complex modulus is the function of vibration frequency and applied magnetic field 
intensity, and can be expressed by separating real part and imaginary part as 

)],(j1)[,(),j( mm
R

m2 BBGBG                      (2) 

where the real part GR is called the storage modulus representing the MRVE stiffness; the 
imaginary part GR is called the loss modulus; and  is called the loss factor representing the 
MRVE damping. In micro-vibration with frequency less than certain value, the storage modulus 
and loss factor are approximately GR=0+1 and =0, where coefficients 0, 1 and 0 only 
depend on applied magnetic fields (Ying et al. 2013). 
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For the sandwich plate, it is assumed that: (1) the two elastic facial layers and MRVE core layer 
are respectively homogeneous and continuous; and the facial layer materials are isotropic while the 
core material is transversely isotropic under an applied magnetic field along the z-axis; (2) the 
normal stress of the core layer is relatively small and neglected; (3) the normal stresses of the 
facial layers in the direction of z-axis are relatively small and neglected; (4) the vertical 
displacement of the sandwich plate is invariant along the thickness; (5) the cross section of each 
facial layer is perpendicular to its axis line in deformation; and the cross section of the core layer is 
a plane in deformation; (6) the longitudinal and rotational inertias of the plate are relatively small 
and neglected; (7) the interfaces between the facial layers and core layer are continuous all the 
time (Ni et al. 2011, Yan and Dowell 1972, Mead 1972). 

Based on the above assumptions, the displacements and stresses on the interfaces between the 
facial layers and core layer are continuous. The vertical displacement of the sandwich plate 
relative to the supports is w=w(x, y, t). The horizontal displacements of the lower and upper facial 
layers along the x-axis and y-axis are expressed respectively as 

x
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where u10, v10, u30 and v30 are respectively the mid-layer displacements of the lower and upper 
facial layers; z1 and z3 are the local transverse coordinates of the two facial layers. The horizontal 
normal strains and shear strains of the facial layers can be obtained by using the geometric 
relations with displacements (3) and (4). The corresponding normal stresses and shear stresses of 
the lower and upper facial layers are respectively 
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By using the equilibrium conditions in the directions of x-axis and y-axis, the other shear 
stresses of the lower and upper facial layers are obtained as 
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Based on the above assumptions, the cross section of the MRVE core layer is a plane in 
deformation. By using the displacements on the two interfaces of the sandwich plate, the shear 
strains of the core are obtained as 
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where hs=h1+h2. According to the dynamic model (1) with the complex modulus G2(j, Bm), the 
shear stresses of the MRVE core are 
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Based on the continuity conditions of shear stresses on the interfaces between the facial layers 
and core layer, the differential equations for the horizontal displacements of the facial layers are 
obtained as 
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where u=u10=u30 and v=v10=v30. The dynamic equilibrium equation of each element of the 
sandwich plate with the supported concentrated mass in the direction of z-axis is 
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where 0w  is the stochastic support acceleration of vertical micro-motion; () is the Dirac delta 

function; (xsm, ysm) are the coordinates of the mass in plane (x, y); aht=21h1+2h2 and ht=2h1+h2. 
Substituting the shear stress expressions (7), (8) and (10) into Eq. (13) yields the following 
differential equation for the vertical displacement of the plate 
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where D1=E1h1
3/6(12) and 2=2/x2+2/y2. The partial differential Eqs. (11), (12) and (14) 

describe the coupled transverse and longitudinal vibrations of the MRVE sandwich plate with 
supported mass under support motion excitations. In the case of the localized magnetic field, the 
complex modulus G2 of the MRVE core is the function of x and y, determined by the magnetic 
field distribution. For the simply supported rectangular plate, the boundary conditions obtained are 
(Mead and Markus 1969, Ying et al. 2014) 
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The vibration Eqs. (14), (11) and (12) with the boundary conditions (15) can be rewritten in the 
dimensionless form as follows 
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where the amplitude of the support motion w0 is Wa; and the dimensionless coordinates and 
displacements are 
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3. Stochastic micro-vibration solution of MRVE sandwich plate with supported 
mass 
 
Under the homogeneous boundary conditions (19), the vibration displacements of the MRVE 

sandwich plate with supported mass can be expanded in harmonic functions as (Mead 1972) 
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yjyV j π)12sin()(s  ,  yjyV j π)12cos()(c                 (22) 

where qij(t), rij(t) and sij(t) are functions of time; N1 and N2 are integers. According to the Galerkin 
method, substituting displacements (21) into Eqs. (16)-(18), multiplying the equations respectively 
by UkcVlc, UksVlc, UkcVls, and integrating them with respect to x  and y  yield ordinary 
differential equations for qij and algebraic equations for rij and sij. By eliminating functions rij and 
sij, the ordinary differential equations for qij(t) can be obtained and rewritten in the matrix form as 
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where the modal displacement vector Q, modal excitation vector F, modal mass matrix M and 
modal stiffness matrix K are 























2

2

1

NQ

Q

Q

Q


,  























jN

j

j

j

q

q

q

1

2

1


Q ,  























2

2

1

0

Δ

0

N

ww

C

C

C

CF


 ,  























lN

l

l

l

c

c

c

1

2

1


C , 

NN
ta ylxkyjxim

h
 ]π)12cos(π)12cos(π)12cos(π)12[cos(

4 smsmsmsmIM


, 

smsm2

1

π)12cos(π)12cos(
)12)(12(π

)1(4
ylxkm

lk

h
c

lk
ta

kl 






, 

)]()()()([ 5
1

213
1

24
1

2173
1

245
1

21
1

2468 BBBBBBBBBBBBBBBBBBBK   , 

NNijkl
s

jijlikji b
h

h
ba

D
ba  }]

π
)(δδ

4

π
){[( 3

2

22
221

4
22

8B ,  NNijklj
s bb

h

h
 ]

2π
[ 3

2
7B , 

NNijkli
s ba

h

h
 ]

2π
[ 3

2
6B ,  NNijklj

s bb
hh

h
 ]

π
[ 2

21
5B ,  NNjlikjiba

E


 ]δδ
)1(8

π
[ 1

2

2 
B , 

NNijkli
s ba

hh

h
 ]

π
[ 1

21
3B ,  NNijkljlikji b

hh
b

E
a

E






 ]

2
δ}δ

)1(4

π

)1(8

π
[{ 2

21

2
2

1
2

21
2

4 
B , 

NNijkljlikji b
hh

b
E

a
E







 ]
2

δ}δ
)1(8

π

)1(4

π
[{ 1

21

21
2

2
2

1
2

1 
B , 

149



 
 
 
 
 
 

Z.G. Ying, Y.Q. Ni and Y.F. Duan 

 

a

i
ai

12 
 ,  

b

j
bj

12 
 ,  









ki

ki
ik 0

1
δ ,  









lj

lj
jl 0

1
δ , 

 
2/1

2/1 ccss21 dd)()()()( yxyVyVxUxUGb ljkiijkl , 

 
2/1

2/1 sscc22 dd)()()()( yxyVyVxUxUGb ljkiijkl , 

 
2/1

2/1 cccc23 dd)()()()( yxyVyVxUxUGb ljkiijkl , 

i, k=1, 2, …, N1,  j, l=1, 2, …, N2                       (24) 

in which I is the N-dimensional identity matrix; N=N1N2; G2=G2m[j, Bm(x,y)] for the region 
covered by the localized magnetic field and G2=G2m(j, 0) for the other region. The stiffness K is 
a complex matrix and controlled by the applied magnetic field due to the MRVE core with 
modulus G2. 

The stochastic environment micro-motion such as train-induced disturbance can be described 
by an evolutionary spectral density which is obtained approximately by the output of a filtering 
system with the input of slowly modulated white noise. The equivalent quasi-stationary spectral 
density can be derived from the filtering system. The spectral density is used for the stochastic 
support micro-motion excitation of the sandwich plate, which is expressed as (Yang and Agrawal 
2000, Ni et al. 2011) 
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where t1, t2, t3, g1, g2, s0, g1, g2, g1 and g2 are constants. 
Eq. (23) represents a stochastically excited multi-degree-of-freedom system derived from the 

MRVE sandwich plate with supported mass, which has the complex stiffness K dependent on 
vibration frequency and controllable by applied magnetic fields. The stochastic micro-vibration 
response of the plate system can be estimated by using its power spectral density function. The 
frequency-response function matrix H and then the power spectral density matrix SQ of the system 
response obtained are (Ni et al. 2011) 

12 )()(  MKH                          (26) 
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)()()()( *T  HSHS FQ                       (27) 
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CCSF  wS                          (28) 

where the superscript * denotes the complex conjugate; and SF is the power spectral density matrix 
of the stochastic excitation F. By using expressions (21) and (27), the response spectrum of 
vertical displacement of the sandwich plate relative to the supports is obtained as 
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The absolute displacement is 0wwwa  . The response spectrum of absolute vertical 

displacement of the sandwich plate is further obtained as 
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where the spectrum vector *

0wQS  is the complex conjugate of 
0wQS ; and 

0wQS  is the cross 

power spectral density vector of the system response and support motion excitation. The 
corresponding absolute velocity response spectrum of the sandwich plate is 
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Then the stochastic micro-vibration response of the sandwich plate and supported mass can be 
estimated. For example, the absolute velocity response spectrum at the midpoint of the sandwich 
plate can be calculated by Eq. (32) with x = y =0. 

In terms of the one-third octave frequency spectrum for micro-vibration (Gordon 1991, Amick 
1997), the root-mean-square velocity response of the sandwich plate is expressed as (Ying and Ni 
2009, Ni et al. 2011) 

2/1]d),,π2([),,(  u

l a

f

f wcV fyxfSyxfRMS                  (33) 

where fc=c/2 is the center frequency of the one-third octave frequency band with the lower limit 
fl=0.89fc and upper limit fu=1.12fc. For the velocity in the unit of m/s, the logarithmic 
root-mean-square velocity response is given by 

120)],,([log20),,( 10  yxfRMSyxfLRMS cVcV              (34) 

The root-mean-square velocity response spectrum (33) or (34) is the principal micro-vibration 
criterion for vibration-sensitive precise instruments. In most cases, the allowable root-mean-square 
velocity is less than 50 dB within the frequency band of [8, 80] Hz (Gordon 1991, Amick 1997). 
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4. Numerical results on micro-vibration control effectiveness 
 
To show the micro-vibration suppression capacity, consider a sandwich plate with MRVE core 

and supported mass under stochastic support micro-motion excitation, which has basic parameters 
as follows: a=4 m, b=3 m, h1=5 cm, h2=10 cm, 1=1500 kg/m3, 2=700 kg/m3, m=50 kg/m2, xsm=0, 
ysm=0, E1=0.5 GPa, =0.3, 0=0.3 MPa, 1=0.01 MPas, 0=0.3; s0=0.03, t1=5 s, t2=10 s, t3=15 s, 
g1=0.3 s, g2=0.1 s3, g1=10.8 Hz, g2=38 Hz, g1=0.75, g2=0.35. The sandwich plate parameters 
chosen are based on an actual floor slab and the stochastic excitation parameters chosen are based 
on an environment micro-motion spectrum (Ni et al. 2011, Yang and Agrawal 2000). Fig. 2 shows 
the power spectral density of the stochastic support micro-motion excitation with the 
root-mean-square acceleration of 0.0322 m/s2.  
 
 

 

Fig. 2 Power spectral density (PSD) of micro-motion excitation 
 
 

 

Fig. 3 Logarithmic root-mean-square velocity (LRMSv) spectra of plates with and without MRVE. 
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Fig. 4 Logarithmic root-mean-square velocity (LRMSv) spectra of sandwich plate for different thicknesses 
h2 

 
 
Numerical results on the principal micro-vibration criterion, that is the root-mean-square 

velocity response spectrum of the MRVE sandwich plate with supported mass under various 
magnetic fields are obtained and shown in Figs. 3-15. Fig. 3 shows the logarithmic 
root-mean-square velocity response spectrum at the midpoint of the sandwich plate with MRVE 
under completely covered magnetic field, which is compared with that without MRVE. It is 
obtained that the micro-vibration response can be greatly reduced by using the MRVE (maximum 
response from 70 dB to 36 dB with 49% relative reduction in [8, 80] Hz), especially for the center 
frequency fc>35 Hz (from 70 dB to 11 dB with 84% relative reduction). 

 
4.1 Micro-vibration responses for various geometric parameters 
 
The influences of the MRVE thickness, plate length and width on the root-mean-square 

velocity response of the sandwich plate with supported mass under completely covered magnetic 
field are shown in Figs. 4-7. Fig. 3 illustrates that the root-mean-square velocity response at the 
midpoint of the MRVE sandwich plate is reduced remarkably for h2 from 0 to 10 cm (h2/ht=1/2) 
and Fig. 4 illustrates that the root-mean-square velocity response at the midpoint of the MRVE 
sandwich plate changes slightly for h2 from 5 cm (h2/ht=1/3) to 20 cm (h2/ht=2/3).  
Then it is obtained that the root-mean-square velocity response of the MRVE sandwich plate is 
reduced remarkably with the increase of the MRVE thickness h2 from zero to a small value (for 
example, 5 cm), and for the thickness larger than the value, the root-mean-square velocity response 
of the sandwich plate changes slightly with the further increase of the MRVE thickness h2. Fig. 5 
shows the logarithmic root-mean-square velocity response at the midpoint of the MRVE sandwich 
plate for different length-width ratios b/a under certain length (a=4 m) (maximum responses are 45, 
34, 36 dB for b/a=0.3, 0.5, 1, respectively, in [8, 80] Hz). Figs. 6 and 7 illustrate that the 
logarithmic root-mean-square velocity response at the midpoint of the MRVE sandwich plate 
varies largely with length a under certain length-width ratio (b/a=0.5, 1) (for example, maximum 
response from 44 dB [a=2 m] to 24 dB [a=6 m] for b/a=1 in [8, 80] Hz). It is obtained that the 
root-mean-square velocity response of the MRVE sandwich plate can be reduced for the center 
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frequency fc>8 Hz by the increase of the plate length or width, because the increase of the plate 
length or width results in the modal damping increase and the decreases of the MRVE sandwich 
plate stiffness and modal frequencies. 

 

4.2 Micro-vibration responses for various MRVE parameters 
 

The influences of the MRVE storage modulus and loss factor on the root-mean-square velocity 
response of the sandwich plate with supported mass under completely covered magnetic field are 
then considered. The root-mean-square velocity response at the midpoint of the MRVE sandwich 
plate changes slightly with the MRVE storage modulus coefficient 0. 
 

 

 

Fig. 5 Logarithmic root-mean-square velocity (LRMSv) spectra of sandwich plate for different 
length-width ratios b/a (a=4m) 

 

 

Fig. 6 Logarithmic root-mean-square velocity (LRMSv) spectra of sandwich plate for different lengths a 
(b/a=0.5) 
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Fig. 7 Logarithmic root-mean-square velocity (LRMSv) spectra of sandwich plate for different lengths a 
(b/a=1) 

 
 

 

Fig. 8 Logarithmic root-mean-square velocity (LRMSv) spectra of sandwich plate for different values of 
MRVE storage modulus coefficient 1 

 
Fig. 8 shows the logarithmic root-mean-square velocity response at the midpoint of the MRVE 

sandwich plate for different values of the MRVE storage modulus coefficient 1. The storage 
modulus coefficient 1 has complicated effects on the root-mean-square velocity response in the 
concerned frequency band, because the increase of the frequency-dependent storage modulus 
coefficient results in the increase of the MRVE sandwich plate stiffness for higher frequency more 
than lower frequency and the modal frequencies varying correspondingly. Fig. 9 illustrates that the 
logarithmic root-mean-square velocity response of the MRVE sandwich plate is reduced by the 
increase of the MRVE loss factor 0 (maximum response from 39 dB [0=0.2] to 31 dB [0=0.6] in 
[8, 80] Hz). 
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Fig. 9 Logarithmic root-mean-square velocity (LRMSv) spectra of sandwich plate for different values of 
MRVE loss factor 0 

 
 
4.3 Micro-vibration responses for various supported masses and positions 
 
The influences of the concentrated mass supported by the sandwich plate and its position on the 

root-mean-square velocity response of the MRVE sandwich plate under completely covered 
magnetic field are shown in Figs. 10-12. Fig. 10 illustrates that the logarithmic root-mean-square 
velocity response at the midpoint of the MRVE sandwich plate decreases with the increase of the 
supported mass m for the position of xsm=0 and ysm=0 (in particular, for the center frequency fc>20 
Hz, maximum response from 31 dB [m=10 kg/m2] to 19 dB [m=50 kg/m2]), because of the 
increase of vertical inertia. 

 
 

 

Fig. 10 Logarithmic root-mean-square velocity (LRMSv) spectra of sandwich plate for different values of 
supported mass m 
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Fig. 11 shows the logarithmic root-mean-square velocity response at the midpoint (x=0, y=0) of 
the MRVE sandwich plate for different positions (xsm, ysm) of the supported mass. It is seen that the 
root-mean-square velocity response of the sandwich plate has the smallest value for the supported 
mass fixed at the midpoint, in particular, for the center frequency fc>15 Hz. Fig. 12 shows the 
logarithmic root-mean-square velocity response at the support point (x=xsm, y=ysm) of the MRVE 
sandwich plate for different positions (xsm, ysm) of the supported mass (maximum responses are 18, 
24, 27, 24 dB for {xsm/a, ysm/b}={0, 0}, {0, 1/4}, {1/4, 0}, {1/4, 1/4}, respectively, and for the 
center frequency fc>20 Hz). The root-mean-square velocity response of the support point or 
supported mass is small relatively for the mass at the midpoint and high frequency. 

 
 

 

Fig. 11 Logarithmic root-mean-square velocity (LRMSv) spectra of sandwich plate (x=y=0) for different 
positions of supported mass (xsm, ysm) 

 
 

 

Fig. 12 Logarithmic root-mean-square velocity (LRMSv) spectra of sandwich plate at the support point 
(x=xsm, y=ysm) for different positions of supported mass (xsm, ysm) 
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Fig. 13 Logarithmic root-mean-square velocity (LRMSv) spectra of sandwich plate for different lengths 
(am) and widths (bm) of localized magnetic field (x0m=y0m=0) 

 
 
 
4.4 Micro-vibration responses for various magnetic field distributions 
 
The complex modulus of the MRVE core can be changed by the applied magnetic field, and 

then various magnetic field distributions are considered. The MRVE parameters are as follows: 
0=0.3 MPa, 1=0.01 MPas, 0=0.3 for applied magnetic field and 0=0.03 MPa, 1=0.001 MPas, 
0=0.3 for unapplied magnetic field. The influences of the center and region of the localized 
magnetic field on the root-mean-square velocity response of the MRVE sandwich plate with 
supported mass at the midpoint are shown in Figs. 13-15. Fig. 13 shows the logarithmic 
root-mean-square velocity response at the midpoint of the MRVE sandwich plate for different 
region lengths am and widths bm of the localized magnetic field (x0m=y0m=0). It is obtained that the 
root-mean-square velocity response changes slightly with the region size covered by the magnetic 
field under the region larger than certain area, for example, with am/a=3/4 and bm/b=2/3, because 
the effect of the further increase of the covered region on the damping and stiffness of the first 
several plate modes becomes slight.  

Figs. 14 and 15 show the logarithmic root-mean-square velocity response at the midpoint of the 
MRVE sandwich plate for different centers (x0m, y0m) of the localized magnetic field (am/a=1/4, 
bm/b=1/3). 

It is obtained that the region center of the localized magnetic field moderately deviating from 
the plate center (for example, x0m/a=1/6, y0m/b=1/6 with am/a=1/4, bm/b=1/3) can achieve better 
effectiveness of the root-mean-square velocity response reduction (based on the first two peak 
responses [39 dB and 26 dB corresponding to that localized magnetic field] in [8, 80] Hz). In 
consequence, the micro-vibration response of the sandwich plate with supported mass under 
stochastic support micro-motion excitations can be controlled effectively by using the MRVE core 
with applied localized magnetic fields. 
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Fig. 14 Logarithmic root-mean-square velocity (LRMSv) spectra of sandwich plate for different centers 
(x0m, y0m) of localized magnetic field (y0m=0, am/a=1/4, bm/b=1/3) 

 

Fig. 15 Logarithmic root-mean-square velocity (LRMSv) spectra of sandwich plate for different centers 
(x0m, y0m) of localized magnetic field (x0m/a=1/6, am/a=1/4, bm/b=1/3) 

 
 

5. Conclusions 
 
The stochastic micro-vibration response of a sandwich plate with MRVE core and supported 

mass under stochastic support motion excitations has been analyzed and calculated to evaluate the 
micro-vibration suppression capability. The transverse and longitudinal coupled vibration 
equations for the MRVE sandwich plate with supported mass have been derived from the dynamic 
equilibrium, constitutive and geometric relations. The simplified ordinary differential equations for 
the transverse vibration of the MRVE sandwich plate under localized magnetic fields have been 
obtained. The effects of the supported mass and localized magnetic field on the stochastic 
micro-vibration response of the MRVE sandwich plate have been taken into account. A 
frequency-domain solution method for the stochastic micro-vibration response of sandwich plates 
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with supported mass has been developed by using the Galerkin method and random vibration 
theory. The frequency-response functions, response power spectral densities and root-mean-square 
velocity response expressions of the plate in terms of the one-third octave frequency band have 
been obtained. The developed analysis method is applicable to sandwich plates with supported 
mass and arbitrary cores described by complex moduli subjected to arbitrary stochastic excitations 
described by power spectral density functions. Numerical results illustrate that (1) the 
micro-vibration response of sandwich plates with supported mass under stochastic support motion 
excitations can be suppressed greatly by using the MRVE core with applied localized magnetic 
fields; (2) the storage modulus coefficient (1) and loss factor (0) of MRVE cores have large 
effects on the micro-vibration response of MRVE sandwich plates with supported mass; (3) the 
root-mean-square velocity response of the supported mass (m) at the midpoint of the plate is 
smaller than that in other positions; (4) the thickness (h2) of MRVE cores larger than a certain 
value (smaller than 1/3 plate thickness) and the covered region (am, bm) of localized magnetic 
fields larger than a certain area (smaller than 1/2 plate area) have slight effects on the 
micro-vibration response of MRVE sandwich plates with supported mass. The above results are 
valuable for the micro-vibration control design of sandwich plates with supported mass by using 
MRVE under localized magnetic fields. 
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