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Abstract.    This paper presents nonlinear analysis of an arbitrary functionally graded circular plate 
integrated with two functionally graded piezoelectric layers resting on the Winkler-Pasternak foundation. 
Geometric nonlinearity is considered in the strain-displacement relation based on the Von-Karman 
assumption. All the mechanical and electrical properties except Poisson’s ratio can vary continuously along 
the thickness of the plate based on a power function. Electric potential is assumed as a quadratic function 
along the thickness direction. After derivation of general nonlinear equations, as an instance, numerical 
results of a functionally graded material integrated with functionally graded piezoelectric material obeying 
two different functionalities is investigated. The effect of different parameters such as parameters of 
foundation, non homogenous index and boundary conditions can be investigated on the mechanical and 
electrical results of the system. A comprehensive comparison between linear and nonlinear responses of the 
system presents necessity of this study. Furthermore, the obtained results can be validated by using previous 
linear and nonlinear analyses after removing the effect of foundation. 
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1. Introduction 
 

Application of material for different environments and barring the opposite conditions was one 
of frequently encountered problems for engineers and material scientists. A group of material 
scientist in Japan has proposed solution of this problem. They proposed materials with variable 
properties. The property of these materials can be changed continuously and gradually along the 
thickness direction. These materials named FGM’s. For application of these materials in 
electromechanical systems as sensor or actuator, structure made of these materials can be 
integrated with piezoelectric layers. Pierre and Jacques Curie have presented the piezoelectric 
effect scientifically in 1880. Piezoelectric structures are very applicable in the industrial systems as 
sensor or actuator in various geometries such as plates, cylinders and shells. Derivation of the 
relation between the applied loads and displacement in a piezoelectric structure such as circular 
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plate may be considered as an important subject especially when the plate undergoes large 
deformation. A foundation has important effect on the responses of the electromechanical system 
and needs more investigations.  

Woo and Meguid (2001) investigated the nonlinear analysis of a functionally graded plates and 
shallow shells. They proposed an analytical solution for the coupled large deflection of the FG 
plates and shallow shells. Von Karman theory is employed for considering the large transverse 
deflection. GhannadPour and Alinia (2006) investigated the large deflection analysis of a 
rectangular FG plate based on the Von Karman theory for simulation of the large deflection. The 
solution was obtained using minimization of the total potential energy with respect to unknown 
parameters. Hui-Shen (2007) considered the nonlinear response of a FG plate due to heat 
conduction. It was assumed that the plate to be shear deformable. Higher order shear deformation 
theory was employed for analysis of the problem. Classical plate theory (CPT) has been used to 
study free axisymmetric vibrations of orthotropic annular plates with variable thickness resting on 
a Pasternak-type elastic foundation (Gupta et al. 2008).  

Huang et al. (2008) presented exact solutions for functionally graded thick plates resting on 
Winkler–Pasternak elastic foundations using the three-dimensional theory of elasticity. The effects 
of stiffness of the foundation, loading and non-homogenous index on mechanical responses of the 
plates were investigated. Ebrahimi and Rastgo (2008) investigated the free vibration of smart 
circular thin FG plate using the classical plate theory. The power function is employed for 
simulation of the material properties distribution along the thickness direction. Plate was 
composed of a FG layer and two FGP layers at top and bottom of that. The obtained results were 
verified by those obtained results from three dimensional finite element analyses. Alinia and 
GhannadPour (2009) investigated the large deflection analysis of a rectangular FG plate with 
logarithmic distribution of material properties. Sarfaraz Khabbaz et al. (2009) investigated the 
nonlinear analysis of FG plates under pressure based on the higher-order shear deformation theory. 
The first and higher order shear deformation theories were employed to investigate the large 
deflection of FG plate. The effect of the thickness and non-homogenous index were investigated 
on the distribution of the displacements and stresses. Khoshgoftar et al. (2009) investigated thermo 
elastic analysis of a FGP cylinder under pressure. It was assumed that all mechanical and electrical 
properties except Poisson ratio vary continuously along the thickness direction based on a power 
function. Arefi and Rahimi (2010) studied thermo-elastic analysis of a functionally graded 
cylindrical shell using first order shear deformation theory.  

Behravan et al. (2010) presented static analysis of functionally graded annular plate resting on 
elastic foundation with various boundary conditions by using a semi-analytical approach. Three 
dimensional theory of elasticity has been used for derivation of governing equations. The effect of 
the nonhomegenous index, the elastic foundation coefficients (Winkler-Pasternak), the thickness to 
radius ratio and edge supports have been discussed on the bending behavior of the FGM annular 
plate. Alipur and Shariyat (2010) employed  first-order  shear-deformation  theory to formulate  
bending  and  stress  analyses  of  two-directional  functionally  graded  (FG) circular  
plates  resting  on  non-uniform  two-parameter  foundations. For increasing the accuracy of 
the results, they accounted shear stresses using three dimensional theory of elasticity. Benyoucef et 
al. (2010) presented static analysis of simply supported functionally graded plates subjected to a 
transverse uniform load resting on an elastic foundation. The material properties of the plate are 
assumed to be graded in the thickness direction according to a simple power-law distribution in 
terms of volume fractions of material constituents. The foundation is modeled as a two-parameter 
Pasternak-type foundation. Ait Atmane et al. (2010) studied Free vibration analysis of simply 
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supported functionally graded plates (FGP) resting on a Winkler–Pasternak elastic foundation by a 
new higher shear deformation theory. The equation of motion for FG rectangular plates resting on 
elastic foundation was obtained through Hamilton’s principle. Zenkour et al. (2011a) studied the 
bending response of an orthotropic rectangular plate resting on two-parameter elastic foundations. 
Analytical solutions for deflection and stresses were developed by means of the simple and mixed 
first-order shear deformation plate theories. The results were compared with those obtained in the 
literature using three-dimensional elasticity theory or higher-order shear deformation plate theory 
to check the accuracy of the simple and mixed first-order shear deformation theories.  

Rahimi et al. (2011) investigated a functionally graded piezoelectric rotating cylinder as 
mechanical sensor under pressure and thermal loads analytically for evaluation of angular velocity 
of rotary devices. Zenkour (2011b) investigated on the bending response of simply supported 
orthotropic plates. The mixed first-order shear deformation plate theory (MFPT) was employed to 
study the bending responses. The foundation was modeled using Winkler elastic foundation. 
Zenkour et al. (2013a) presented bending response of an orthotropic rectangular plate resting on 
two-parameter elastic foundations under thermo-mechanical loadings using a unified shear 
deformation plate theory. Zenkour et al. (2013b) also studied bending responses of a functionally 
graded plate resting on elastic foundations and subjected to a transverse mechanical load. A 
relationship between the simple and mixed first-order transverse shear deformation theories was 
presented as the main result of that study. The obtained results using both simple and mixed 
first-order theories were compared with them. Arefi et al. (2011), Arefi and Rahimi (2011, 2012a, 
b, c, d, e 2014a, b), Arefi (2013) and Arefi and Nahas (2014) have presented some linear and 
nonlinear analysis of functionally graded piezoelectric structures. 

This paper tries to present nonlinear electromechanical responses of an arbitrary functionally 
graded piezoelectric circular plate resting on the Winkler-Pasternak foundation. This problem has 
been considered with general distribution of material properties along the thickness direction. In 
the other word, no functionality has been considered throughout the derivation of final equations. 
The author can solve this problem for different functionalities without loss of generality. The effect 
of non-homogeneity and Winkler-Pasternak foundation is considered on the responses of the 
system. To understand the effect of nonlinear analysis on the responses of the system, a 
comparison between linear and nonlinear responses is performed. 

 
 

2. Formulation 
 
This paper tries to presents general formulation for studying the nonlinear behavior of an 

arbitrary functionally graded circular plate integrated with smart layers. The circular plate is 
constrained with Winkler-Pasternak foundation.     

General functionality along the thickness direction is considered for this problem. This 
generality can be considered using a function F(z)  as follows 

0( ) F(z)P z P                                  (1) 

where, ( )P z is any mechanical and electrical property except Poisson ratio and 0P is same 
property at known surface such as inner or outer surfaces. Nonlinear electromechanical analysis of 
a FGM circular plate embedded with two smart layers at top and bottom is analyzed using the CPT. 
Based on the CPT, the displacement of every layer is defined by two terms including the 

83



 
 
 
 
 
 

Mohammad Arefi and M.N.M. Allam 

 

displacement of mid-plane and rotation about the mid-plane (Ugural 1981, Ebrahimi and Rastgo 
2008, Arefi and Rahimi 2012). Therefore, we will have 

0
0

0

( )
( , ) ( )

( , ) ( )

dw r
u r z u r z

dr
w r z w r

  

 

                          (2) 

where, 0 0,u w are displacement components of the plate mid-plane ( 0z  ) and ( ,0, )u u w


is 
displacement vector. Considering Eq. (2), the nonlinear strain components are obtained as (Lai et 
al. 1999) 

 1 ( ) ( )2
T T      u u u u

   
                        (3) 

where, ij  are the strain components and   is del operator. The nonlinear components of the 

strains are obtained using substituting Eq. (2) into Eq. (3) as follows 

22
0 0 0 0 0

2

1
, , 0

2rr r
du d w dw u dwz

z
dr dr r r drdr

          
 

                 (4) 

Fig. 1 shows the schematic figure of a functionally graded circular plate embedded with 
functionally graded piezoelectric layers at top and bottom resting on the Winkler-Pasternak 
foundation. Stress-strain relations for FGM and FGPM sections in general state are (Khoshgoftar 
et al. 2009) 

ij ijkl kl ijk kC e E                               (5) 

 

 

Fig. 1 FG circular plate with piezoelectric layers resting on Winkler-Pasternak foundation 
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where, ij and kl are the stress and strain components, kE  is electric field, ijklC and ijke are 

the stiffness and piezoelectric coefficients. 
For FGM section e eh z h    where electric potential hasn’t effect on stress components, the 

constitutive equations may expressed as follows 

e e
rr rrrr rr rr

e e
rr rr

C C

C C

 

   

  

  

  


  
                          (6) 

In Eq. (6), normal stresses are depending on the normal strains and shear stress is a function of 
shear strain only. Due to these assumptions 0e e e e

rrr r rr r rC C C C        . Furthermore, due to 
small ratio of the plate thickness with respect to the length and width of the plate, the normal stress

zz and shear stresses ,rz z  is ignorable. 

The constitute equations for piezoelectric sections of the plate (FGP)   e e ph z h h are 

expressed as 

p p
rr rrrr rr rr rrr r rrz z

p p
rr rr r r z z

C C e E e E

C C e E e E

 

     

  

  

    

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                      (7) 

The assumptions expressed after Eq. (6) must be considered for piezoelectric section 
0p p p p

rrr r rr r rC C C C        . Electric field kE is obtained using gradient of a potential 

function ( , )r z  with minus sign as follows (Khoshgoftar et al. 2009) 

( , )

( , ) 0

( , )

r

z

r z
E

r
r z E

r z
E

z





 


   
  

   


                                 (8) 

Short circuit condition of piezoelectric layers can be satisfied if we use ( )f z as follows: 
(Ebrahimi and Rastgo 2008) 

2
2 2

( , ) ( ) ( )

( ) ( ) 0 ( ) 1 e p

p

r

e e p

z h h

h

r z r f z

z h z h h f z

 

 
 

 

                 

                (9) 

The electric displacement iD , that must satisfy Maxwell’s equations in the electromechanical 
systems is defined as (Khoshgoftar et al. 2009) 

i ijk jk ik kD e E                               (10) 

where, ik are the dielectric coefficients.   
The electric displacement equations for the piezoelectric sections of the FGP plate 

e e ph z h h   are 
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r rrr rr r rr r rz z

z zrr rr z zr r zz z

D e e E E

D e e E E
 

 

   
   

    
    

                       (11) 

After definition of necessary mechanical and electrical components, we can employ energy 
method to evaluate the nonlinear mechanical and electrical responses of the system.   

The energy per unit volume of the plate u  is given by 

   1 1

2 2
T T

rr rr r r z zu u D E D E          E D                  (12) 

In order to evaluate the energy per unit volume of the structure, the components of ε, σ, E, D 
must be specified. These components can be expressed as follows 

22
0 0 0 0 0

2

22
0 0 0 0 0

2

- :

1
{ } { }

2

1
{ } { }

2

:                                              

e e

e e
rr rrrr rr

e e
rr

e e p

rr

h z h

du d w dw u dwz
C z C

dr dr r r drdr

du d w dw u dwz
C z C

dr dr r r drdr

h z h h

C



  







 

       
  


         

  


22

0 0 0 0 0
2

22
0 0 0 0 0

2

2
0 0

1 ( , ) ( , )
{ } { }

2

1 ( , ) ( , )
{ } { }

2

{

p p
rrrr rr rrr rrz

p p
rr r z

r rrr

du d w dw u dwz r z r z
z C e e

dr dr r r dr r zdr

du d w dw u dwz r z r z
C z C e e

dr dr r r dr r zdr

du d w
D e z

dr



    

 

 

             


              

 
2

0 0 0
2

22
0 0 0 0 0

2

1 ( , ) ( , )
} { }

2
   

1 ( , ) ( , )
{ } { }

2

r rr rz

z zrr z zr zz

dw u dwz r z r z
e

dr r r dr r zdr

du d w dw u dwz r z r z
D e z e

dr dr r r dr r zdr





  

  

            


              
  

(13) 

By introduction of the potential energy, the total energy equation of the plate under uniform or 
non-uniform pressure is expressed by (Ugural 1981) 

( )

( )

1
( , ) ( ) ( )

2

e p

e p

h h

A h h A A

U u r z dzdA p r wdA L r wdA


 

                     (14) 

where, ( )L r is distributed pressure on the plate. This pressure includes normal pressure and the 
effect of Winkler- Pasternak foundation. In the general state, for mentioned foundation we will 
have 

( ) fL r f                              (15) 

where, ff is force due to Winkler-Pasternak foundation which in general form have direct and 

shear effects as follows 
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2
ff kw G w                                  (16) 

where,  in radial coordinate system, 
2

2
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1w w
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 . The energy equation for two different 

sections of the plate takes the form 
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In order to present matrix of coefficients, we have to constitute total energy as follow 
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3. Derivation of the governing equations of the system   
 
Using Eq. (1) and extending that for all mechanical and electrical properties except Poisson 

ratio yields 
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   0 0 0 0( ), ( ), ( ), ( ) , , , F(z),   -( )e p e pE z C z e z z E C e h h z h h            (19) 

Substitution of this distribution in energy equation presents 

A

A

U dAU                                 (20) 

where, AU is energy functional per unit area of the structure given by 
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where, is defined as follows 
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1
i i

i

P L


                                 (22) 

where, ,i iP L are given in Appendix A.  

Final differential equations of the system may be obtained by using the Euler equation as 
follows 
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where,   0 0
0 0 ,, , , , , r
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where, U  is integration of AU  on the area of the structure. AU  is presented as follows 

 

 

2
20 0 0

0 0 0 12

2
0 0 0 0

0 0 0 0 0 22 2

22 2
0 0 0 0

0 0 0 02 2 2

[ ]

2
[ 2 ]

1
[

A rr rrrr

rrrr rr rr

rrrr rr rr

U
Mu u Mu

C M C C L
r rr

u d w u dwM M
MC C C C C L

r r r drdr r

d w u d w dw
C C C C

r drdr dr r

 

   

  

 
     
 

                

         

2

3

0 0
0 0 4 0 0 5

2 2
0 0 0 0 0 0

0 6 0 72 2

2
2

0 8 0 9 0 10

]

[2 ] [2 ]

[ 2 ] [ 2 ]

[ ] [ ] [ 2 ]

rrr rr rrz z

rr z
rrr rrz

rr zz rz p

L

u ud
Me e L Me e L

r dr r

d w e dw d w e dwd
e L e L

r dr dr r drdr dr

d d
L L L

dr dr

 

 

 

 

     


 



         
   
   

          
   

       
 

2

2
( )

11 1

2 2
r w

w w

r rr
kw G

 




     
   

(24) 

88



 
 
 
 
 
 

Nonlinear responses of an arbitrary FGP circular plate resting… 

 

By substitution of functional from Eq. (20) into Euler equation (Eq. (23)), we will have three 
fundamental equations as follows 
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(25) 

Above three nonlinear differential equations of the system can be solved analytically by 
supposing three unknown fields. Due to existence of nonlinear terms in above equations, 
presentation of equations in matrix form is not useful for readers. 

 
 

4. Results and discussion 
 
Derived governing differential equations can be solved for a special functionally graded 

material as numerical solution. For numerical solution of the problem, power function distribution 
may be considered for material. This distribution may be considered for both FGM and FGPM 
sections as follows 
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where, mE  and cE  is properties at bottom and top of plate, respectively. The nonlinear 

differential equations of the system may obtained by taking variations with respect to employed 
unknown functions. Alternatively, we can propose series solution using trigonometric terms for 
displacement components and electric potential. 

The plate is fixed to inner and outer edges and therefore, the displacements and the slope of that 
at these two edges are considered zero. Furthermore, the homogenous boundary conditions are 
considered for the electric potential (Ebrahimi and Rastgo 2008). Top and bottom of piezoelectric 
layers are short circuited. The solution procedure may continue with assumption of three fields for 
the displacements and electric potential. The polynomial function is employed for these 
assumptions as follows (GhannadPour and Alinia 2006, Alinia and GhannadPour 2009) 
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           (27) 

where, ,m mU W and m describes the amplitudes of the displacement components and electric 
potential, m defines the number of the required terms for definition of the three fields. 

By substituting the material distribution from Eq. (26) into Eqs. (19) and then substituting the 
three fields from Eq. (27) into Eq. (25), we will have three equations of the system.  

The effect of parameters of Winkler-Pasternak parameters and non-homogeneity can be 
considered on the responses of the system. Shown in Fig. 2 is the distribution of maximum 
nonlinear dimensionless transverse displacement in terms of stiffness parameter of foundation (k) 
for different values of non-homogenous index.  

The obtained results in Fig. 2 indicate that the dimensionless transverse displacement increases 
with increasing the non-homogenous index. Furthermore, it can be concluded that with increasing 
the stiffness parameter of foundation, the maximum displacement decreases. 

 
 

 

Fig. 2 The distribution of dimensionless transverse displacement in terms of dimensionless stiffness 
parameter for different non-homogenous indexes 
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Fig. 3 The distribution of dimensionless transverse displacement in terms of dimensionless shear 
parameter for different non-homogenous indexes 

 
 
The same investigation has performed to evaluate the effect of shear parameter G on the 

dimensionless transverse displacement of the plate. Shown in Fig. 3 is the distribution of 
maximum dimensionless transverse displacement in terms of shear parameter of foundation (G) 
for different values of non-homogenous index. These figures indicate that increasing the shear 
parameter of foundation decreases maximum displacement. 

 
 

 

Fig. 4 The distribution of dimensionless electric potential in terms of dimensionless stiffness parameter 
for different non-homogenous indexes 
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Fig. 5 The distribution of dimensionless electric potential in terms of dimensionless shear parameter for 
different non-homogenous indexes 

 
 
The effect of Winkler-Pasternak parameters can be studied on the maximum dimensionless 

electric potential of the system. Shown in Fig. 4 is distribution of dimensionless electric potential in 
terms of stiffness parameter of foundation for different values of non-homogenous index. It is 
obvious that with increasing the non-homogenous index, dimensionless electric potential 
monotonically and considerably increases. 

Shown in Fig. 5 is distribution of dimensionless electric potential in terms of shear parameter of 
foundation for different values of non-homogenous index. It can be concluded that with increasing 
the non-homogenous index, dimensionless electric potential increases. Furthermore, the obtained 
results indicate that increasing the non-homogenous index amplifies decreasing manner of 
dimensionless electric potential in terms of increasing shear parameter. 

 
4.1 Linear analysis, comparison with nonlinear responses  
 
In this section, the effect of used nonlinear analysis is investigated rather than a linear analysis. 

This investigation can performed using comparison between responses of the linear and nonlinear 
analyses in terms of two parameters of foundation. Shown in Figs. 6 and 7 are linear and nonlinear 
dimensionless transverse displacements in terms of stiffness and shear parameters of foundation, 
respectively. 

 
4.2 Convergence of the results 
 
The convergence of the results can be investigated for different values of stiffness parameters 

and in terms of non homogenous index. Fig. 8 show this convergence. You can find that with 
increasing the value of non homogenous index, the amplitude of dimensionless transverse 
displacement converges to an asymptotic value. 
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Considering Eq. (24), it is important to discuss on the required terms (m) of polynomial in Eq. 
(24). Table 1 presents the trend of convergence for three fields (two displacements and one electric 
potential). 

It can be concluded that considering two terms is sufficient in order to obtain acceptable results. 
 
 

 

Fig. 6 Comparison between linear and nonlinear dimensionless transverse displacement in terms of 
dimensionless stiffness parameter 

 

 

Fig. 7 Comparison between linear and nonlinear dimensionless transverse displacement in terms of 
dimensionless shear parameter 
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Table 1 The required terms for considered polynomials in Eq. (24) 

n=1 

1 term 2 terms 3 terms 4 terms 

3( )10 mw   2.32 4.07 4.05 4.05 

( )V  189 285 280 280 

n=2 

1 term 2 terms 3 terms 4 terms 

3( )10 mw   2.42 4.03 4.02 4.02 

( )V  328 496 495 495 

 
 
4.3 The effect of boundary conditions on the results 
 
This section evaluates the effect of boundary conditions on the results of the system. Simply 

support and fixed boundary conditions have been considered for this comparison. The all previous 
results have been considered for fixed boundary condition (as presented in Eq. (27)). The 
simply-supported boundary conditions can be modeled by following distributions 
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           (28) 

Shown in Figs. 9 and 10 are dimensionless electric potential and transverse displacement of 
annular plate in terms of shear parameter of the foundation, respectively. 
 

 

Fig. 8 The convergence of dimensionless transverse displacement for increasing the non homogenous 
index 
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Fig. 9 The comparison between dimensionless electric potential of simply supported and fixed plate 
 
 
4.4 Comparison between present and previous results 
 
A comprehensive comparison between present and previous (Arefi and Rahimi 2012) results is 

performed in this section. For this comparison, the effect of foundation in this study has been 
disregarded. Fig. 11 shows comparison maximum dimensionless transverse displacement between 
present and previous (Arefi and Rahimi 2012a) results. The same comparison can be performed for 
dimensionless electric potential in Fig. 12.    

 
 

Fig. 10 The comparison between dimensionless transverse displacement of simply supported and fixed 
plate 
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Fig. 11 The comparison between dimensionless transverse displacement of present and previous (Arefi 
and Rahimi 2012) a results 

 
 

 

Fig. 12 The comparison between dimensionless electric potential of present and previous (Arefi and 
Rahimi 2012a) results 

 
 

5. Conclusions 
 
Nonlinear electromechanical analysis of an arbitrary functionally graded circular plate 

integrated with functionally graded piezoelectric layers resting on the Winkler-Pasternak 
foundation has been performed in this paper. Functional of the system has been derived by 
considering stress-strain and electric displacement equations. The obtained differential equations 
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of the system can be applied for solution of problems with arbitrary functionality. The effect of 
different parameters such as non-homogenous index and foundation parameters was studied on the 
mechanical and electrical responses. In order to evaluate the effect of a nonlinear analysis on the 
responses of the system rather than a linear analysis, the comparisons between linear and nonlinear 
responses has performed for mechanical and electrical parameters. A linear analysis is performed 
and the obtained results are compared with those results that are extracted from the nonlinear 
analysis. This comparison indicates that employing a nonlinear analysis has important effect on 
improvement of the results rather than a linear analysis. 

Furthermore a convergence test has been performed for evaluation of the effect of necessary 
used terms that is needed for exact solution. 
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Nomenclature 

 
ijklC  Stiffness coefficient 
e
ijklC , p

ijklC  Stiffness coefficient for FG and FGP layer 

K, G Parameters of foundation 
iD  Electric displacement 

ijke  Piezoelectric coefficient 

kE  Electric field components 
2 eh  Thickness of FG layer 

ph  Thickness of FGP layer 

,a b  Inner and outer radii 
p  Applied pressure 

( )E z  Distribution of material properties 

n  Non-homogeneity index 
,r z  Components of coordinate system 
,u w  Displacement components 
0 0,u w  Displacement components at mid-plane 

ij  Strain components 

ij  Stress components 

u  Energy per unit volume 

AU  Energy per unit area 

U  Total energy of system 
ik  Dielectric coefficient 

, ,m m mU W   Amplitude of assumed function 

  Electric potential 

m  Number of required terms for displacement and electric potential field 
 

 
 
 
FGM:  functionally graded material 
FG:  functionally graded 
FGP: functionally graded piezoelectric 
FGPM: functionally graded piezoelectric material 
CPT: classical plate theory 
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