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Abstract.    A novel finite element (FE) model updating method based on multi-resolution analysis (MRA) 
is proposed. The true stiffness of the FE model is considered as the superposition of two pieces of stiffness 
information of different resolutions: the pre-defined stiffness information and updating stiffness information. 
While the resolution of former is solely decided by the meshing density of the FE model, the resolution of 
latter is decided by the limited information obtained from the experiment. The latter resolution is 
considerably lower than the former. Second generation wavelet is adopted to describe the updating stiffness 
information in the framework of MRA. This updating stiffness in MRA is realized at low level of resolution, 
therefore, needs less number of updating parameters. The efficiency of the optimization process is thus 
enhanced. The proposed method is suitable for the identification of multiple irregular cracks and performs 
well in capturing the global features of the structural damage. After the global features are identified, a 
refinement process proposed in the paper can be carried out to improve the performance of the MRA of the 
updating information. The effectiveness of the method is verified by numerical simulations of a box girder 
and the experiment of a three-span continues pre-stressed concrete bridge. It is shown that the proposed 
method corresponds well to the global features of the structural damage and is stable against the perturbation 
of modal parameters and small variations of the damage. 
 

Keywords:    model updating; multi-resolution analysis; damage identification and second generation 
wavelet 

 
 
1. Introduction 
 

The finite element (FE) model updating technique is to calibrate the numerical models against 
the real structures (Mottershead et al. 2011). It can also be used to identify structural damages (Yu 
and Chung 2012, Yun et al. 2009).  

The FE model is updated by minimizing the penalty function reflecting the differences between 
the measured and calculated system properties. Many forms of penalty functions have been 
developed in the literatures. These penalty functions may be based on the residues of frequencies 
and mode shapes (Brownjohn et al. 2001), modal flexibility (Jaishi and Ren 2006), transfer 
functions (Esfandiari et al. 2010, Imregun et al. 1995) or frequencies and strain energies (Jaishi 
and Ren 2007), etc. The optimization method used to minimize the penalty function include, 
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among others, sensitivity-based methods (Mottershead et al. 2011, Bakir et al. 2007), genetic 
algorithm (GA) (Levin and Lieven 1998) and evolutionary algorithm (EA) (Kyprianou et al 2001). 

An inherent weakness of the updating process is the indeterminacy: the FE model of a real 
structure is usually complex requiring a large number of parameters to be updated while the 
information that can be extracted from the experimental data is, unfortunately, very limited. In this 
case, the updating process will be both inefficient and unreliable.  

Therefore, in order to improve the efficiency of the updating process, not only do we need 
improved optimization methods (Zapico-Valle et al. 2010), but also an educated guess to limit the 
number of updating parameters. The response surface method (Ren and Chen 2010) is an effort of 
this type to calibrate a limited number of structural parameters according to measured responses. 
The updating process is more stable in this case compared with traditional updating processes. 
Damage function method (Teughels et al. 2002, Fang 2008) and the automatic parameter selection 
method (Kim and Park 2008) are with the similar objective to limit the number of parameters 
involved in the updating process. The multistage updating strategy (Perera and Ruiz 2008, Weng et 
al 2011, Law et al. 2001, Titurus et al. 2003) proposes the idea of two-stage damage identification. 
These methods locate the damage roughly at the global level in the first step and perform a finer 
identification to identify the damages at local level in the second step. These methods may also 
reduce the number of updating parameters.  

Despite all these efforts, problems still exist. For instance, concrete structures, the most 
important type of structures in civil engineering, may have very complex damage patterns, such as 
multiple irregular cracks or multiple groups of irregular cracks. This issue poses a critical 
challenge to the selection of damage parameters if the aforementioned methods are adopted 
because none of the information about the position, number or the shape of cracks is known before 
hand.    

In the paper, we try to solve this problem. A novel method based on multi-resolution analysis 
(MRA) is proposed to capture the global feature of the damage automatically. 

 
 

2. The multi-resolution strategy for FE model updating 
 
Fig. 1 shows the example of beams. Fig. 1(a) shows an un-cracked beam, Fig. 1(b) shows a 

beam with only one crack and fig1.c shows a beam with multiple irregular cracks. The stiffness of 
each beam is also shown in the right column of the figure. The reductions of the stiffness due to 
the cracks are indicated in figures by the “real curve” in solid lines.  

The ideal objective of the model updating is to update the stiffness of the beam in Fig. 1 to find 
the best-fit of the “real curves”. In doing so, we need a relatively finely meshed FE model so that 
the variations in the stiffness may be reflected clearly. Because the number, positions and the sizes 
of these cracks are not known before hand, the researchers may not be able to tell which beam, 1.b 
or 1.c, need to be modeled with finer elements. As a result, two beams may be modeled at the 
same level of precision or resolution. (In this paper, a FE model with a finer mesh is termed as a 
model of higher resolution.) 

During the updating process, it is usually supposed that:  
1) The experimental modal parameters are retrieved by modal testing methods;  
2) Measurements of acceleration time history are made at a limited number of positions, 
3) The identified modes are displacement modes;  
4) The values of the mode shapes are known only at the measurement points up to the 
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accuracy of experiments, i.e., the mode shapes have a limited resolution;  
5)   The measured frequencies are of limited accuracy also;  
6)   Only a small number of structural modes and corresponding frequencies are available for 

FE model updating. 
We face a dilemma here. The ideal objective of model updating needs the FE model to be 

meshed as finely as possible, while the limited experimental information only tends to support the 
updating of very few parameters. Under the circumstances, it would be more practical to find the 
approximated curves of stiffness shown in Fig. 1 instead of the real curves. If the approximated 
curves are well defined, the modal parameters from the approximated curves will be close to those 
modal parameters from the real curves. 

The approximated curve corresponds to the global feature of the damage. The approximated 
curve is a low resolution version of the “real curve”. The former has smaller variations than the 
latter. Therefore, it needs less data points to represent.  

A parallel situation is the wavelet decomposition (Mallat 2009) of signals to find the trend line 
(approximated curve) by removing the higher frequency components from a data series. However, 
a direct wavelet decomposition of the “real curve” is not suitable here, as we need to constrain the 
decomposition with the similarity of modal parameters between the experimental model and the 
updated FE model. The “approximated curve” in this case is usually not the replica of the trend 
line of wavelet decomposition. 

 
 

3. FE model updating based on MRA   
 

The true stiffness of a structure, )K(x , i.e., the real curve in fig.1.b&c, can be seen as the 
summation of two curves 

 
 

Fig. 1 Example Beam 
 

c. RC Beam with Multiple Cracks

a. Un-cracked RC Beam 

b. RC Beam with One Crack  
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)()()K( xxKx         (1) 

where )(xK is the pre-defined stiffness at position x , and )(x  is the updating function of 

stiffness. While the resolution of )(xK is determined by the meshing density of the finite element 

model, the resolution of )(x corresponds to the quantity of information that can be extracted 
from the experiment. Usually, the FE model needs to be meshed as finely as necessary to produce 
accurate computational results, giving rise to a relatively high resolution to the pre-defined 
stiffness function, )(xK . The experiments, however, can only provide very limited modal 

information to be used. As a result, the updating stiffness function, )(x , has a poorer resolution.  

If j is the pre-determined level of resolution, the approximation of space V of )(x at level j
and 1j  are jV  and 1jV , respectively. The difference space is jjj VVW /1 .  

jV  is spanned by the scaling function )(, kxkj   

}),2(2)(|)({ 2/
,, ZkkxxxspanV jj
kjkjj        (2) 

the difference space, jjj VVW /1  is spanned by the wavelet function, )(, kxkj   

}),2(2)(|)({ 2/
,, ZkkxxxspanW jj
kjkjj           (3) 

where k is the sampling position. 
A low resolution form of )(x  at approximation level j  may be achieved 





Zk

kj
j

k
j xcx )()( ,        (4) 

And at approximation level 1j  




 
Zk

kj
j

k
Zk

kj
j

k
j xdxcx )()()( ,,

1                   (5) 

The larger the value of j , the more accurately the stiffness function is represented, however, at 

the cost of using more detail and approximation coefficients k
jd  and k

jc , and vice versa. In the 

wavelet analysis 

 )(~),(,)(
~

),( ,, xxdxxc kj
j

kkj
j

k      (6) 

where )(
~

, xkj is the dual of )(, xkj  and )(~
, xkj is the dual of )(, xkj  (Mallat 2009). However, 

(6) is not true in our case because the approximated stiffness function has to satisfy the 
eigen-function of structural dynamics. Therefore, the values of j

kc and j
kd have to be found by 

model updating process.  

Let ,...3,2,1},,{  kdc j
k

j
k  be the state vector. The modal parameters of the FE model are 

...2,1),,( iii  , where i  is the thi frequency and i  is the thi  mode shape. The experimental 

50



 
 
 
 
 
 

A multi-resolution analysis based finite element model updating method… 

modal parameters are ...2,1),,( iii  . The error index vector is defined as 
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where weights are introduced to balance the relative importance of different modal parameters  

),,,/1,,/1( 11 mm nndiagW         (8) 

The Modal Amplitude Coherence for the thi mode is defined as 

5.0*** |)||/(||| iiiiiiiMAC       (9) 

In (8), 1in  for well identified mode shapes; 1in  for poorly identified mode shapes. 

Mode shapes are needed in the updating process to make sure the corresponding frequency 
belongs to the same mode. However, in practice, some of the mode shapes may be identified 
poorly. For practical purpose, we use smaller weights for these poorly identified mode shapes so 
that the modal testing error will not affect the updating process too much. 

The objective of the model updating process is to minimize the norm of the vector )}({ r  

...2,1},,{||,)}({||min  idcr ii .     (10) 

If the approximation coefficients at level j are to be found, we use the state vector, 

,...3,2,1},{  kc j
k , as the updating parameters. To go to the next finer level, we have two 

options: adding detail coefficients to the state vector ,...3,2,1},,{  kdc j
k

j
k , or use 

,...3,2,1},{ 1   kc j
k .  

If the first option is adopted, the optimization at the finer level of resolution can be performed 
by supplementing detail coefficients to the already-computed approximation coefficients. If the 
second option is adopted, all the approximation coefficients at the next finer level of resolution 
have to be computed. The already-computed approximation coefficients at current level of 
resolution will be wasted. The computational cost is higher in this case.  

The second generation wavelets should be utilized in the MRA of the updating stiffness 
information. The reason is explained as follows. The sampling points of the wavelet and scaling 
function in the FE model is determined by the position of the nodes of the elements, which are 
distributed unevenly in a bounded domain. This situation cannot be dealt with by the traditional 
wavelet, which works for even sampling in unbounded domain. The second generation wavelet, on 
the other hand, can be adapted to uneven sampling and finite boundaries, therefore, is utilized in 
this paper. 
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4. Lifting the lazy wavelet to the interpolating second generation wavelet 
 
Lifting scheme was proposed by Sweldens (1996, 1997) to form more complex wavelets from 

simpler ones. One application of the methodology is to build the bi-orthogonal second generation 
wavelet of interpolating type from the Lazy wavelet. The process involves two steps: dual lifting 
and lifting. 

The Lazy wavelet is nothing but sub-sampling operators applied on a discretized 
function/signal to separate even indexed and odd indexed samples. The operator for even 
sub-sampling is defined as E  and the operator for odd sub-sampling is defined as D . The 

multi-resolution analysis operator from space 1jV to its subspace jV  is define as H
~

, and the 

operator from 1jV to jW as G
~

, the corresponding inverse operator are H and G , respectively. 

The filter operators of a Lazy wavelet can be presented as  

EHH Lazy
j

Lazy
j  ~

      (11a) 

DGG Lazy
j

Lazy
j 

~
      (11b) 

Define operator S
~

as *int~
DHS jj  , where int

jH is an interpolating filter. By using the dual 

lifting scheme, which corresponds to the prediction step in the work of Sweldens (1996, 1997), a 
set of bi-orthogonal filters may be obtained as  

DSEH jj

~int             (12a) 

EH j int~
            (12b) 

DG j int               (12c) 

ESDG jj
*int ~~

                        (12d) 

With the following lifting scheme, which corresponds to the updating step, one has 

DSEHH jjj

~int                      (13a) 

DSESSGSHH jjjjjjj  )
~

1(
~~~ *intint           (13b) 

DSSESHSGG jjjjjjj )
~

1( ***int*int          (13c) 

ESDGG jjj
*int ~~~

           (13d) 

From these filters, the wavelet and scaling functions can be built. This scheme allows the 
adaptation of the wavelet to irregular supports and finite boundaries. By using interpolating 
operator of different number of interpolating points, various types of scaling and wavelet functions 
may be formed. This is usually achieved by so called “Cascade algorithm” (Sweldens and 
Schroder 1996). As the second generation wavelet is adapted to uneven sampling and finite 
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boundaries, the scaling functions and wavelet functions are also adapted to particular 
approximation level and sampling position. 

 
 

5. The two-step updating strategy 
 
The damage identification is usually performed with simplified models because they appear to 

be more cost effective and stable. The structure shown in Figs. 2 and 3, for instance, may be 
modeled by tapered beam elements, and the updating process may be carried out by utilizing the 
beam model. Because the beam model may not be able to duplicate the behavior of the undamaged 
real structure precisely, initial modeling error may be introduced in the simplified beam model. In 
this case, the mode shapes and frequencies of the simplified beam model may not match those of 
the real structure perfectly. Moreover, the mechanical behavior of the structure may become even 
more complex near the position of damage, which may not be possible to be represented simply by 
a beam model, hence updating error will also appear at the updating stage for damage 
identification.  

This problem cannot be solved by involving more modal modes. Because the behavior of 
higher order mode of the real structure may deviate from the characteristic of an ideal beam even 
more notably, the introduction of the higher order modal information may do more harm than good 
to the identification.  

 
 

Fig. 2 Sketch of the beam (damage indicated by the circle) dimension in mm 
 
 

Fig. 3 Cross-section of the Beam, Dimension in mm
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Therefore, we propose a two stage updating strategy:  
a). Calibrating the simplified model against a more precise FE model or the undamaged real 

structure by minimizing the norm of the vector in Eq. (10). The error index is computed with 
modal parameters of simplified model and the more precise FE model or undamaged structure. In 
this step we obtain a calibration curve of stiffness. 

At this stage, we degenerate the geometrically complex real structure to a geometrically simple 
structure to ease the numerical burden of the updating. If the model to be updated is 
three-dimensional, as in the example, the updating information is also three-dimensional and need 
multi-dimensional wavelet to represent, which is more complex to handle. For a beam element 
model, one dimensional wavelet is applicable. 

The meshing of the simplified model may be as fine as desired. Although the resolution of the 
calibration curve of stiffness is impaired by the limited modal information available, the scaling 
functions and the wavelet functions may perform as interpolation operators to translate the limited 
number of updating coefficients into the element information within the model boundary.  

The nature of the calibration procedure is to superimpose a lower resolution calibration 
stiffness function, )(xA , onto a higher resolution pre-defined stiffness function )(xK as stated in 
Eq. (1).  

b). Updating the calibrated simplified model against the modal information of the damaged 
structure to find another updating curve of the stiffness reduction, )(xB . The computation method 
is the same as step a). This curve is to be superimposed onto the resultant stiffness function 
obtained in step a). In this step, the damages are identified by observing the major features of the 
stiffness reduction curve. For the same reason mentioned above, the updating curve of the stiffness 
reduction is also low in resolution.  

 
 

6. Numerical validation 
 
The following example demonstrates the proposed updating method for damage identification. 

The material of the box girder shown in Figs. 2 and 3 is concrete, whose Young’s modulus 

PaE 10103  and Poisson ratio 2.0 . The structure is modeled by a fine FE model with 7500 
plate elements. A concentrated crack is simulated by releasing some nodes in the upper flange at 
the fixed end. A simplified FE model is also established by using 128 tapered beam elements, 
whose mechanical parameters are computed by using the geometrical and material properties of 
the box girder. The computation with ANSYS shows, in Table 1, the differences between the 
modal parameters of undamaged plate element and simplified beam models. Only vertical modes 
are shown in the table to simplify the discussion. 

 
Table 1 Frequencies of the Vertical Modes 

Frequency f1 f2 f3 

Undamaged plate element model 7.487 21.274 39.734 

Damaged plate element model 6.849 19.787 35.054 

Undamaged beam model 6.257 18.865 38.530 
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The results in Table 1 indicate the initial modeling error exists for the beam element model and 
the calibration of simplified model is needed. In order to do so, we define the virtual work of the 
internal force of the beam model as 

 






l

I dx
x

u
x

x

u
W

0 2

2

2

2

)~K(][           (14) 

whereu is the nodal displacements and )~K(x is the stiffness matrix function to be represented in 
MRA format.  

As in the common FE theory, after applying the principle of virtue work, the element stiffness 
function may be obtained as 


l

mn
e dxxqxqx

mn 0
)()()K(K ''''~        (15) 

Where )(xqi is the shape function for beam element corresponding to thi degree of freedom and 

2

2

)(
x

qxq i
i 

'' . Substituting (1) and (5) into (15), we have 

  
l

mn
k

kn
j

k
k

kj
j

k
e dxxqxqxdxcxK

mn 0

''''
,, )()(])~()~()~([K  .   (16) 

FE model at different approximation levels can be built by utilizing Eq. (16). Four points 
interpolation filter (Sweldens and Schroder 1996) is used for the second generation wavelet in this 
paper. Fig. 4 shows the computed scaling function and the wavelet function at the lowest 
resolution level, i.e. level 0. There are 5 sampling points for the scaling function and 4 sampling 
points for the wavelet function at level 0. The boundary effect is automatically taken into account 
in the lifting process as can be seen in the figure. 

 
 

Fig. 4 The Scaling Function and Wavelet Function at Level 0
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The FE model for the simplified model can be built using (16). After solving the eigen-equation 
of the simplified FE model, the error vector )}({ r in (10) can be computed and its norm is 
minimized with GA to produce the approximation and wavelet coefficients.  

The following updating is performed at approximation level 0 and 1 to check convergence of 
the method:  

a) At level 0, updating is performed by assigning 0,0  jd j
k to recover 0, jc j

k only; 

b) On the basis of a), assume 0,0  jd j
k  to find 0, jd j

k  and  

c) At level 1, updating is performed by assigning 0,0,  jdc j
k

j
k  to find 0,, jdc j

k
j

k  

together. 
The results are shown in Figs. 5-7 as updating stage A. Fig. 5 shows the updating coefficients 

obtained in step b). The approximation (scaling) coefficients are indexed in the figure as 1,2,3,4,5 
and detail (wavelet) coefficient as 6,7,8,9. These data represent the amplitudes of the scaling and 
wavelet functions. Fig. 6 shows the resultant stiffness. In the figure, “Initial” stands for the 
pre-defined stiffness of the beam elements computed via the geometrical dimensions of the box 
girder; “L0” represents the identified stiffness in step a); “L0+D0” is the result from step b) and 
“L1” the result of step c). It can be observed that the solutions at level 0 and 1 are close, indicating 
that the computation is converging.   

The residues in the error vector are shown in Fig. 7. In the figure, “L0” and “L1” represent 
level 0 and level 1 approximations, respectively; indices 1-3 indicate the relative error of first three 
natural frequencies in percentage and indices 4-6 stands for the MAC1 values of the first three 
mode shapes. It can be seen that the residues are satisfactorily small.   

After the calibration, the beam model is updated against the damaged model. The results are 
shown in Figs. 5 and 8 as updating stage B and as “DID-L1” in Fig. 6. The corresponding stiffness 
reduction curve is shown in Fig. 9. 

 
 

Fig. 5 Updating Coefficients of Scaling and Wavelet Functions 
 
 

 
Fig. 6 Updated EI
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Fig. 7 Residues of the Error Vector in Update Stage A
 
 

Fig. 8 Residues of the Error Vector in Update Stage B
 
 

Fig. 9 Curve of the Stiffness Reduction
 
 
It can be judged from Fig. 9 that the concentrated crack at the fixed end causes a decrement of 

the stiffness in a number of beam elements. The position of the crack is indicated by the lowest 
portion of the curve. As the proposed method intends to identify the low resolution version of the 
stiffness reduction curve, it is reasonable that the main feature of the damage spread out across the 
affected region. It is like using a low pass filter to process a sharp “spike” signal, which will 
remove the sharp component and give rise to a spread out, less concentrated, moderately sloped 
curve. 

 
 

7. The stability of the proposed method   
 
It has been stated in section 2 that the MRA based model updating method is to find the 
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the “approximated curve” reflect the global feature of the real curve and is not very sensitive to 

1 2 3 4 5 6
-0.1

-0.05

0

0.05

0.1
 Residues, Update Stage A

1,2,3: Frequencies; 4,5,6:Modes

 

 

L1, |r|=0.055
L0, |r|=0.088

1 2 3 4 5 6
-0.02

-0.01

0

0.01

0.02

0.03
Residues, Update Stage B

1,2,3: Frequencies; 4,5,6:Modes

 

 

L1, |r|=0.01
L0, |r|=0.033

0 20 40 60 80 100 120 140
-10

-5

0

5
x 10

9 Stiffness Reduction

Element No.

57



 
 
 
 
 
 

Xin Zhang, Danying Gao, Yang Liu and Xiuli Du 

small changes in the configuration of structural damages. For example, as shown in figure 1c, the 
shape of the “approximated curve” should not change significantly when the number of the 
irregular cracks changes or when the intensity of these cracks varies. Because such variations in 
the configuration of damage also bring about perturbations in modal parameters, which are the 
corner stone of model updating, the stability of the proposed method against the perturbations of 
modal parameters due to small variations of the damage configuration has to be checked. 

Three damage cases (Fig. 10) of the beam in Figs. 2 and 3 are designed to perform the stability 
check. In case 1, the beam has a crack,Cr1, at the fixed end; In case 2, the beam has three parallel 
cracks, Cr1+Cr2+Cr3, at the fixed end; in case 3, in addition to the three cracks in case 2, the beam 
also has another three cracks, indicated as Cr4 in the figure, at the region of positive moment. All 
adjacent cracks are separated by 1m. 

The definition of damage cases and the corresponding modal parameters are summarized in 
Table 2. The identified stiffness reduction curves are shown in Fig. 11.  

The following observations are made from Fig. 11: 
a) It is noted that the depth of the crack in case 1 is shallower than the case in Fig. 9, 

therefore, the value of stiffness reduction is also smaller than Fig. 9, but the shapes of the 
curves in these two cases are similar, indicating the updating results are stable to the changes 
of the crack depth.  

b) Case 2 has more cracks than case 1, therefore, has a larger reduction of stiffness. The 
shapes of the stiffness reduction curve are similar in cases 1 and 2, indicating the updating 
results are stable to the changes of the number of adjacent cracks. 

c) Case 3 has the same damage condition as case 2 on the left hand side of the beam; 
therefore, the curves in case 2 and 3 are almost identical at this part. This also shows the 
numerical stability of the proposed method. 

d) Compared to case 2, case 3 has three more cracks at the positive moment region. The 
stiffness reduction curve in case 3 has a dip at the position of cracks (around element no. 80). 
The method is effective to identify multiple groups of cracks.   

The case study above shows that the proposed MRA-based model updating method 
corresponds to the global feature of the structural damage and is stable against the small changes 
of the damage.  

 
 

Table 2 Combination of Cracks for Stability Study 

 Combination of Cracks Frequency (Hz) 

Case Cr1 Cr2 Cr3 Cr4 f1 f2 f3 

1 Y    6.38 18.91 38.55 

2 Y Y Y  5.79 18.47 36.70 

3 Y Y Y Y 4.67 17.41 34.13 

Note: 1. The cracks are simulated by assigning the damaged element with a small Young’s Modular. 
2. Cr4 is a crack group of three parallel cracks separated by 1m. 

3. The frequencies listed are the first three vertical mode frequencies. 
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Fig. 11 Stability of the MRA-Based Model Updating
 
 

8. Refining the identification results  
 

As explained in section 5 and further confirmed in section 6, the identified stiffness reduction 
curves suffer from the issue of information spreading-out due to the fact that we are working on 
low levels of resolution.  

This issue can be partly circumvented given some fundamental understandings of the 
relationship between the true stiffness reduction curve and its low resolution representation. Based 
on the experiences from numerical experiments, we have the following statements: 

1) The true stiffness reduction curve due to a concentrated crack is a spike. The low 
resolution representation of the spike is a “valley curve” whose minima locate at the 
position of the spike.  

2) The true stiffness reduction curve due to a group of closely spaced multiple cracks is a 
series of spikes. The corresponding low resolution representation is a “basin curve” 
possibly with a flat bottom. If the resolution is too low, the “basin curve” becomes a 
“valley curve”. 

3) Because the wavelet is a decaying wave, the superposition of the wavelet and scaling 
function gives rise to a fluctuating curve. The fluctuating curve may decay slowly at 
positions away from the spike.  

4) The decaying feature applies both to the “valley curve” and “basin curve”. 
5) The fluctuations of the low resolution curve may create “shadows” making the 

neighboring small damages difficult to identify. 
Based on these understandings, a method to refine the identification in section 5 and 6 may be 

provided. The procedure is as follows: 
1) Compute the low resolution stiffness reduction curve in the same way as in section 5 and 

6.  
2) Identify the major feature, i.e., the major valleys/basins, of the low resolution curve.  
3) Proceed to the next finer resolution level and set the values of the coefficients outside the 

major valleys/basins to zero. In this case, the updating algorithm produces a stiffness 
reduction cure of higher resolution, whose values outside the major valleys/basins are 
basically zero. This step is to limit the number of the coefficients to be retrieved by the 
updating process. If the damage pattern of the structure is not too complex, the next finer 
level of resolution may need no more non-zero coefficients than the current level. 

4) Compute for the error vector in Eq. (7).  
5) If the norm of the error vector becomes smaller, proceed to still next finer level of 
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resolution in the same way as in step 3).  
6) If the norm of the error vector increase, it is assumed that there may be smaller damages 

in the “shadows” of major valleys/basins. In this case, we may select the valleys/basins 
of the secondary importance and group them with major valleys/basins. Repeat the 
procedure from the step 3). The valleys/basins of the secondary importance are those 
valleys/basins whose fluctuations are larger than other valleys/basins but smaller than the 
major valleys/basins.  

7) The procedure continues until the result is acceptable.  
This refinement procedure is applied to the stiffness reduction curves in Fig. 11. The results are 

shown in Fig. 12. It can be seen, the quality of the identification has been improved significantly. 
 
 

9. The experimental validation 
 
A concrete bridge is used to validate the proposed method. The bridge is a part of the City 

Express. Two parallel bridges carry the east-west traffic and west-east traffic respectively. The two 
parallel bridges were designed identical only with opposite crown slops. The two bridges were 
constructed under the same contract. Due to overloading, the bridge carrying the west-east traffic 
cracked at the east span after 10 years in service. The position of the crack is known, but the value 
of stiffness reduction is not known. This creates a manageable condition for the application of the 
proposed method: the undamaged east-west bridge can be used as the reference bridge for the 
damaged west-east bridge to calibrate the FE model. 
 

 

 

Fig. 12 Refined Stiffness Reduction Curve
 
 

 
Fig. 13 Cross Section of the Experimental Bridge
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The bridge is a three-span ( mmm  25 35 25  ) simply supported continuous pre-stressed 
concrete box girder. The drawings of the bridge girder are shown in Figs. 13 and 14. The 
parameters in the Fig. 13 are not constant values along the span and listed in Table 3.  

Operational modal testing was carried out on both of the two bridges. First three vertical modes 
were identified. The identified modal frequencies are listed in Table 4. A FE model of 128 tapered 
beam elements was built with MatLab for model updating. In order to accommodate the dyadic 
wavelet refinement process, each span should consist of 2n elements. Therefore, the span where the 
damage exists is meshed with 64 elements; the other two spans are meshed with 32 elements.  

At the calibration stage, the FE model was calibrated against the undamaged east-west bridge at 

level 1 by assigning 0,0,  jdc j
k

j
k for all the 128 elements. Because the cross section of the 

girder is almost constant, the modeling error of stiffness is not significant. The modal parameters 
of the calibrated FE model are listed in Table 4. 

 
 

hanging epth

Fig. 14 Elevation of the Girder at the Central Line (dimension in mm) 
 
 

Table 3 Parameters of the Bridge Cross Section 

Parameters (m) Parameters (m) 

1B  12.75 1T  0.150 

2B  6.75 or 6.55 2T  0.450 

3B  3.1 or 3.0 3T  0.2 or 0.3 

4B  6.75 or 6.55 4T  0.2 or 0.3 

1H  1.504 to 1.304 5T  0.4 or 0.5 

2H  1.620 to 1.496 6T  0.5 
 
 

Table 4 Vertical Modes Frequencies of the Bridge 

Frequency f1 f2 f3 

The undamaged east-west bridge 4.05 6.47 6.77 

The damaged west-east bridge 3.90 6.20 6.65 

 The beam element model before calibration 4.00 6.4 6.71 

The beam element model after calibration 4.04 6.48 6.77 

 

61



 
 
 
 
 
 

Xin Zhang, Danying Gao, Yang Liu and Xiuli Du 

Fig. 15 Percentage of Stiffness Reduction-the Refined Result
 
 
At the damage identification stage, only the 64 elements in the damaged span are subjected to 

updating. The other 64 elements in the other two spans are kept the same as in the calibration stage. 
By the method stated in section 5 and the 7, the refined stiffness reduction curve is obtained and 
shown in Fig. 15. In the figure, the stiffness reduction is divided by the local stiffness of the 
undamaged beam. Therefore, the value in the figure is the percentage of stiffness reduction. The 
crack is known to exist at element no. 35. The identification result shows the damage is around 
element no. 36~37, and the stiffness reduction is about 25% of the original stiffness. The result 
correlates with the known information of damage well. 

 
 

10. Conclusions 
 
Based on the theory of multi-resolution analysis (MRA), the finite element (FE) model 

updating process is understood as the superposition of two pieces of information of different 
resolutions: the pre-defined stiffness information and the updating stiffness information. The 
resolution of the former is determined by the meshing density of the FE model, the resolution of 
the latter, on the other hand, is determined by what we can retrieve from the experiments. The 
latter is unavoidably lower than the former in resolution. With the help of the second generation 
wavelet, the updating stiffness can be represented in the form of MRA using fewer coefficients for 
the wavelet and scaling functions to picture the major features of the updating information. After 
the identification of the major features, the refinement process proposed in this paper can bring the 
updating to the next finer levels of resolution. The damage identification becomes clearer and 
more reliable.  

The MRA of the updating stiffness information is not equivalent to the traditional wavelet 
decomposition of the corresponding data. It has to be performed in the context of the similarity of 
the eigen-systems. This is achieved in this paper by a two-stage method minimizing the error of 
the eign-parameters of the structural system followed by a refinement process.  

The proposed method is validated by numerical simulations and experiments. The numerical 
simulations show that the method is stable to small changes of the crack depth and the number of 
adjacent cracks. It is effective to identify multiple groups of cracks. The experiments show the 
adaptability of the proposed method to the applications of real world situation. 

 
 
 

0 10 20 30 40 50 60 70
-0.3

-0.2

-0.1

0

0.1
Refined Stiffness Reduction

Element No.

62



 
 
 
 
 
 

A multi-resolution analysis based finite element model updating method… 

References 
 
Bakir, P.G., Reynders, E. and Roeck, G.D. (2007), “Sensitivity-based finite element model updating using 

constrained optimization with a trust region algorithm”, J. Sound Vib., 305(1-2), 211-225. 
Brownjohn, J.M.W., Xia, P.Q., Hao, H. and Xia, Y. (2001), “Civil structure condition assessment by FE 

model updating methodology and case studies”, Finite Elem. Anal. Des., 37(10), 761-775. 
Esfandiari, A., Bakhtiari-Nejad, F., Sanayei, M. and Rahai, A. (2010), “Structural finite element model 

updating using transfer function data”, Comput. Struct., 88(1-2), 54-64. 
Fang, S.E., Perer, R. and Roeck, G.D. (2008), “Damage identification of reinforced concrete frame by finite 

element mode updating using damage parameterization”, J. Sound Vib., 313(3-5), 544-559. 
Imregun, M., Visser, W.J. and Ewins, D.J. (1995), “Finite element model updating using frequency response 

function data—I. Theory and initial investigation”, Mech. Syst. Signal Pr., 9(2), 187-202. 
Jaishi, B. and Ren, W.X. (2006), “Damage detection by finite element model updating using modal 

flexibility residual”, J. Sound Vib., 290(1-2), 369-387. 
Mian, N.M.M. and Silva, J.M.M. (1997), Theoretical and experimental modal analysis, John Wiley & Sons 

INC. 
Jaishi, B. and Ren, W.X. (2007), “Finite element model updating based on eigenvalue and strain energy 

residuals using multi-objective optimization technique”, Mech. Syst. Signal Pr., 21(5), 2295-2317. 
Kim, G.H. and Park, Y.S. (2008), “An automated parameter selection procedure for finite element model 

updating and its applications”, J. Sound Vib., 309(3-5), 778-793. 
Kyprianou, A., Worden, K. and Panet, M. (2001), “Identification of hysteretic system using the differential 

evolution algorithm”, J. Sound Vib., 248(2), 289-314. 
Law, S.S., Chan, T.H.T. and Wu, D. (2001), “Efficient numerical model for the damage detection of large 

scale”, Eng. Struct., 23(5), 436-451. 
Levin, R.I. and Lieven, N.A.J. (1998), “Dynamic finite element model updating using simulated annealing 

and genetic algorithms”, Mech. Syst. Signal Pr., 21(1), 91-120. 
Mallat, S. (2009), A wavelet tour of signal processing: the sparse way, (3rd Ed.), Elsevier Singapore. 
Mottershead, J.E., Link, M. and Friswell, M.I. (2011), “The sensitivity method in finite element model 

updating: A tutorial”, Mech. Syst. Signal Pr., 25(7), 2275-22962. 
Perera, R. and Ruiz, A. (2008), “A multistage FE updating procedure for damage identification in 

large-scale structures based on multi-objective evolutionary optimization”, Mech. Syst. Signal Pr., 22(4), 
970-991. 

Ren, W.X. and Chen, H.B. (2010), “Finite element model updating in structural dynamics by using response 
surface method”, Eng. Struct., 32(8), 2455-2465. 

Sweldens, W. (1996), “The lifting scheme: a custom-design construction of bi-orthogonal wavelets”, Appl. 
Comput. Harmon. A., 3(2), 186-200.  

Sweldens, W. (1997), “The lifting scheme: a construction of second generation wavelets”, Siam J. Math. 
Anal., 29(2), 511-546. 

Sweldens, W. and Schroder P. (1996), “Wavelets in computer graphics”, SIGGRAPH 96 Course Notes. 
Teughels, A., Maeck, J. and Roeck, G.D. (2002), “Damage assessment by FE model updating using damage 

functions”, Comput. Struct., 80(25), 1869-1879. 
Titurus, B., Friswell, M.I. and Starek, L. (2003), “Damage detection using generic elements: Part I. Model 

updating”, Comput. Struct., 81(24-25), 2273-2286. 
Weng, S., Xia, Y., Xu, Y.L. and Zhu, H.P. (2011), “Substructure based approach to finite element model 

updating”, Comput. Struct., 89(9-10), 772-782. 
Yu, E. and Chung L. (2012), “Seismic damage detection of a reinforced concrete structure by finite element 

model updating”, Smart Struct. Syst., 9(3), 253-271. 
Yun, GJ., Ogorzalek, K.A., Dyke, S.J. and Song, W. (2009), “A two-stage damage detection approach based 

on subset selection and genetic algorithms”, Smart Struct. Syst., 5(1), 1-21. 
Zapico-Valle, J.L., Alonso-Camblor, R., Gonzalez-Martinez, M.P. and Garcia-Dieguez, M. (2010), “A new 

63



 
 
 
 
 
 

Xin Zhang, Danying Gao, Yang Liu and Xiuli Du 

method for finite element model updating in structural dynamics”, Mech. Syst. Signal Pr., 24(7), 
2137-2159. 

 
 
CC 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

64



 
 
 
 
 
 

A multi-resolution analysis based finite element model updating method… 

 
List of Symbols  

 
           State vector 

k
jc , k

jd    Approximation and detail coefficients, respectively 

D , E    Odd sub-sampling and even sub-sampling operator, respectively 
)K(x    True stiffness of a structure 

)(xK    The pre-defined stiffness function at position x  

)(x    Updating function of stiffness 

H
~

, G
~

    The operator from 1jV to jV and jW , respectively 

H , G     The operator from jV and jW to 1jV , respectively 
int
jH         An interpolating filter 

jV , jW    Functional Spaces 

)(x , )(, kxkj  : Scaling function 

)(x , )(, kxkj  : Wavelet function 

)(
~

, xkj    The dual of )(, xkj  

)(~
, xkj    The dual of )(, xkj . 

i     The thi frequency  

i      The thi  mode shape 
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