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Abstract.    This paper presents nonlinear analysis of a functionally graded square plate integrated with two 
functionally graded piezoelectric layers resting on the Winkler-Pasternak foundation. Geometric nonlinearity 
was considered in the strain-displacement relation based on the Von-Karman assumption. All the mechanical 
and electrical properties except Poisson’s ratio can vary continuously along the thickness of the plate based 
on a power function. Electric potential was assumed as a quadratic function along the thickness direction and 
trigonometric function along the planar coordinate. The effect of non homogeneous index was investigated 
on the responses of the system. Furthermore, a comprehensive investigation has been performed for 
studying the effect of two parameters of assumed foundation on the mechanical and electrical components. A 
comparison between linear and nonlinear responses of the system presents necessity of this study. 
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1. Introduction 
 

The properties of material and selection of the best of them for application in different 
environments has an important role in design and fabrication of structures. The important problem 
in selection of materials is existence of opposite conditions that makes hard this process. 
Combination of opposite conditions has forced engineers and material scientists to propose new 
materials with variable properties. These materials have been named functionally graded materials 
(FGM’s). The property of these materials can be changed continuously and gradually along the 
direction of coordinate system. For application of these materials in electromechanical systems as 
sensor or actuator, structure made of these materials can be integrated with piezoelectric layers. 
The piezoelectric effect has been presented scientifically by Pierre and Jacques Curie in 1880. 
Piezoelectric structures are very applicable in the industrial systems as sensor or actuator in 
various geometries such as plates, cylinders and shells. Derivation of the relation between the 
applied loads and displacement in a piezoelectric structure such as square plate may be considered 
as an important subject especially when the plate undergoes large deformation. A foundation has 
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important effect on the responses of the electromechanical system and needs more investigations.  
Woo and Meguid (2001) investigated the nonlinear analysis of a functionally graded plates and 

shallow shells. They proposed an analytical solution for the coupled large deflection of the FG 
plates and shallow shells. Von Karman theory is employed for considering the large transverse 
deflection. GhannadPour and Alinia (2006) investigated the large deflection analysis of a 
rectangular FG plate based on the Von Karman theory for simulation of the large deflection. The 
solution was obtained using minimization of the total potential energy with respect to unknown 
parameters. Hui-Shen (2007) considered the nonlinear response of a FG plate due to heat 
conduction. It was assumed that the plate to be shear deformable. Higher order shear deformation 
theory was employed for analysis of the problem. 

Huang et al. (2008) presented exact solutions for functionally graded thick plates resting on 
Winkler–Pasternak elastic foundations using the three-dimensional theory of elasticity. The effects 
of stiffness of the foundation, loading and non homogeneous index on mechanical responses of the 
plates were investigated. Ebrahimi and Rastgo (2008) investigated the free vibration of smart 
circular thin FG plate using the classical plate theory. The power function is employed for 
simulation of the material properties distribution along the thickness direction. Plate was 
composed of a FG layer and two FGP layers at top and bottom of that. The obtained results were 
verified by those obtained results from three dimensional finite element analyses. Alinia and 
GhannadPour (2009) investigated the large deflection analysis of a rectangular FG plate with 
logarithmic distribution of material properties. Sarfaraz Khabbaz et al. (2009) investigated the 
nonlinear analysis of FG plates under pressure based on the higher-order shear deformation theory. 
The first and higher order shear deformation theories were employed to investigate the large 
deflection of FG plate. The effect of the thickness and non homogeneous index were investigated 
on the distribution of the displacements and stresses. Khoshgoftar et al. (2009) investigated thermo 
elastic analysis of a FGP cylinder under pressure. It was assumed that all mechanical and electrical 
properties except Poisson ratio vary continuously along the thickness direction based on a power 
function. 

Benyoucef et al. (2010) presented static analysis of simply supported functionally graded plates 
subjected to a transverse uniform load resting on an elastic foundation. The material properties of 
the plate are assumed to be graded in the thickness direction according to a simple power-law 
distribution in terms of volume fractions of material constituents. The foundation is modeled as a 
two-parameter Pasternak-type foundation. Ait Atmane et al. (2010) studied Free vibration analysis 
of simply supported functionally graded plates (FGP) resting on a Winkler–Pasternak elastic 
foundation by a new higher shear deformation theory. The equation of motion for FG rectangular 
plates resting on elastic foundation was obtained through Hamilton’s principle. Zenkour et al. 
(2011a) studied the bending response of an orthotropic rectangular plate resting on two-parameter 
elastic foundations. Analytical solutions for deflection and stresses were developed by means of 
the simple and mixed first-order shear deformation plate theories. The results were compared with 
those obtained in the literature using three-dimensional elasticity theory or higher-order shear 
deformation plate theory to check the accuracy of the simple and mixed first-order shear 
deformation theories. 

A functionally graded piezoelectric rotating cylinder as mechanical sensor under pressure and 
thermal loads was investigated analytically by Rahimi et al. (2011) for evaluation of angular 
velocity of rotary devices. Zenkour (2011b) investigated on the bending response of 
simply-supported orthotropic plates. The mixed first-order shear deformation plate theory (MFPT) 
was employed to study the bending responses. The foundation was modeled using Winkler elastic 
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foundation. Zenkour, Allam and Radwan (2013a) presented bending response of an orthotropic 
rectangular plate resting on two-parameter elastic foundations under thermo-mechanical loadings 
using a unified shear deformation plate theory. They (Zenkour et al. 2013b) also studied bending 
responses of a functionally graded plate resting on elastic foundations and subjected to a transverse 
mechanical load. A relationship between the simple and mixed first-order transverse shear 
deformation theories was presented as the main result of that study. The obtained results using 
both simple and mixed first-order theories were compared with them. Some nonlinear analysis of 
functionally graded piezoelectric structures has been presented by the author (Arefi and Rahimi 
2011, 2012, Arefi 2013, Arefi and Nahas 2014, Arefi and Khoshgoftar 2014). 

This paper tries to present nonlinear electromechanical responses of a functionally graded 
square plate with functionally graded piezoelectric layers resting on the Winkler-Pasternak 
foundation. The nonlinear analysis was performed using the energy method (Arefi and Rahimi 
2010, 2012, 2014, Arefi et al. 2012). The effect of non homogeneity and Winkler-Pasternak 
foundation is considered on the responses of the system. 

 
 
2. Formulation 
 
Nonlinear  electromechanical  analysis of  a  FGM  plate  embedded  with  two  

smart  layers  at  top  and bottom is analyses using the classic plate theory (CPT) in this paper. 
Based on the CPT, the displacement of every layer is defined by two terms including the 
displacement of mid-plane and rotation about the mid-plane (Ugural 1981, Ebrahimi and Rastgo 
2008). Therefore, we will have 
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where, 0 0, ,u v w are displacement components of the plate mid-plane ( 0z  ) and ( , , )u u v w


is 

displacement vector. Considering Eq. (1), the nonlinear strain components are obtained as (Lai et 

al. 1999)    
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where, ij  are the strain components and   is del operator. The nonlinear components of the 

strains are obtained using substituting Eq. (1) into Eq. (2) as follows 
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After defining the strain-displacement relation, the constitutive equations for both FGM and 
FGPM sections can be presented. Two assumed sections are depicted in Fig. 1. 

Shown in Fig. 1 is the schematic figure of a functionally graded square plate embedded with 
functionally graded piezoelectric layers at top and bottom of plate resting on the 
Winkler-Pasternak foundation. Stress-strain relations for FGM and FGPM sections in general state 
are (Khoshgoftar et al. 2009) 

ij ijkl kl ijk kC e E                               (4) 

 

where, ij and kl are the stress and strain components, kE  is electric field, ijklC and ijke are 

the stiffness and piezoelectric coefficients. 
For FGM section e eh z h    where electric potential hasn’t effect on stress components, 

constitutive equations can be expressed as follows 
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Fig. 1 The schematic figure of a FG square plate with piezoelectric layers resting on Winkler-Pasternak 

foundation 
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In Eq. (5), normal stresses are depending on the normal strains and shear stress is a function of 
shear strain only. Due to these assumptions 0e e e e

xxxy yyxy xy xyxx xyyyC C C C    . Furthermore, due 

to small ratio of the plate thickness with respect to the length and width of the plate, the normal 
stress zz and shear stresses ,xz yz  is ignorable. 

The constitute equations for piezoelectric sections of the plate (FGP)   e e ph z h h are 

expressed as 

p p p
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             (6) 

The assumptions expressed after Eq. (5) must be considered for piezoelectric section
0p p p p

xxxy yyxy xyxx xyyyC C C C    . Electric field kE  is obtained using gradient of a potential 

function ( , , )x y z  with minus sign as follows (Khoshgoftar et al. 2009) 
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The electric displacement iD  which must satisfy Maxwell’s equation in the electromechanical 
systems is defined as (Khoshgoftar et al. 2009) 

i ijk jk ik kD e E                                (8) 

where, ik are the dielectric coefficients.   
The electric displacement equations for the piezoelectric sections of the FGP plate 

e e ph z h h   are 
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              (9) 

After definition of necessary mechanical and electrical components, we can employ energy 
method to evaluate the nonlinear mechanical and electrical responses of the system.   

The energy per unit volume of the plate u  is evaluated by 
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By introduction of the potential energy, the total energy equation of the plate under uniform or 
non-uniform pressure is expressed by (Ugural 1981) 
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where, ( , )L x y is distributed pressure on the plate due to foundation. In the general state, for 
mentioned foundation we will have 

( , ) fL x y f                              (12) 
where, ff is force due to Winkler-Pasternak foundation which in general form have direct and 

shear effects as follows 

2
ff kw G w                               (13) 

where,  in two dimensional coordinate system x, y, 
2 2

2
2 2
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 . The energy equations for 

two different sections of the plate are presented as follows 
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The nonlinear differential equations of the system can be obtained by taking variations with 
respect to employed unknown functions. Alternatively, we can propose series solution using 
trigonometric terms for displacement components and electric potential. 

The plate is fixed to four simply support edges and therefore, the displacements at four edges 
are considered zero. Furthermore the homogeneous boundary conditions are considered for the 
electric potential (Ebrahimi and Rastgo 2008). Top and bottom of piezoelectric layers are short 
circuited. The solution procedure may be continued with assumption of four fields for the 
displacements and electric potential. The sinusoidal function is employed for these assumptions as 
follows (GhannadPour and Alinia 2006, Alinia and GhannadPour 2009) 
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where, , ,pq pq pqU V W and pq describes the amplitudes of the displacement components and 

electric potential, p and q defines the number of the required sentences for definition of the four 
fields and L is plate length. Short circuit condition of piezoelectric layers can be satisfied if we use 
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( )f z as follows: (Ebrahimi and Rastgo 2008) 
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The solution of the system can be obtained by minimizing the energy equation (Eq. (14)) with 
respect to four amplitudes , , ,pq pq pq pqU V W  . 
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3. Results and discussion   

 
3.1 Material properties 
 
For FGM layer, it is assumed that the bottom of the plate is steel and top of that is ceramic. 

Therefore the distribution of the material properties for FG layer is (Ebrahimi and Rastgo 2008) 
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where, ( )e mE z h E   , ( )e cE z h E  , 2 eh  is thickness of elastic solid section of the plate and n 
is the non- homogeneous index. The distribution of the mechanical and electrical properties for the 
two FGP layers can be supposed as a power function along the thickness direction as follows 
(Khoshgoftar et al. 2009) 
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where, iE  represents the value of the all mechanical and electrical components at ez h  and eh

is thickness of the piezoelectric section. The numeric values for material properties and geometric 
parameters are (Ebrahimi and Rastgo 2008, Khoshgoftar et al. 2009) 
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Due to very large values of Winkler-Pasternak parameters ( ,k G ), required dimensionless 

parameters are introduced as: 4 2, , ,
O

w kEI GEI
L L L


  where reference electric potential 

c
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E
ep  and 

3

12

h
I   is moment of area for unit width. 

 
3.2 The effect of parameters of Winkler-Pasternak parameters on transverse 

displacement 
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Fig. 2 The distribution of transverse displacement in terms of dimensionless stiffness parameter for 
different non-homogeneous indexes and 0G   

 
 
The effect of parameters of Winkler-Pasternak parameters ( ,k G ) can be considered on the 

responses of the system concurrently with considering the effect of non- homogeneous index. 
Shown in Figs. 2 and 3 are the distribution of maximum transverse displacement in terms of 
stiffness parameter of foundation (k) for different values of non homogeneous index. This 
investigation has been performed for two different values of shear parameter of foundation ( 0G 
and 0G  ).  
 
 

 

Fig. 3 The distribution of transverse displacement in terms of dimensionless stiffness parameter for 
different non-homogeneous indexes and 0G   
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The obtained results in Figs. 2 and 3 indicate that the transverse displacement has maximum 
value for n=2. In the other word, the foundation has minimum stiffness coefficient for n=2. 

The same investigation has been performed to evaluate the effect of shear parameter G on the 
transverse displacement of the plate. Shown in Figs. 4 and 5 are the distribution of maximum 
transverse displacement in terms of shear parameter of foundation (G) for different values of non 
homogeneous index. 

 
 

 

Fig. 4 The distribution of transverse displacement in terms of dimensionless shear parameter for different 
non-homogeneous indexes and 0k   

 

 

Fig. 5 The distribution of transverse displacement in terms of dimensionless shear parameter for 
different non-homogeneous indexes and 0k   
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3.3 The effect of parameters of Winkler-Pasternak foundation on electric potential 
 
Electric potential can be considered as another parameter under effect of Winkler-Pasternak 

parameters. Shown in Figs. 6 and 7 are distribution of electric potential in terms of stiffness 
parameter of foundation for different values of non homogeneous index and two zero and nonzero 
shear parameter of foundation. It is obvious that with increasing the non homogeneous index, 
electric potential monotonically and considerably increases.   

 
 

 

Fig. 6 The distribution of electric potential in terms of dimensionless stiffness parameter for different 
non-homogeneous indexes and 0G   

 

 

Fig. 7 The distribution of electric potential in terms of dimensionless stiffness parameter for different 
non-homogeneous indexes and 0G   
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Shown in Figs. 8 and 9 are distribution of electric potential in terms of shear parameter of 
foundation for different values of non homogeneous index and two zero and nonzero stiffness 
parameter of foundation. It can be concluded that with increasing the non homogeneous index, 
electric potential monotonically and considerably increases. 

 
 

 
Fig. 8 The distribution of electric potential in terms of dimensionless shear parameter for different 

non-homogeneous indexes and 0k   
 

 
Fig. 9 The distribution of electric potential in terms of dimensionless shear parameter for different 

non-homogeneous indexes and 0k   
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3.4 Linear analysis, comparison with nonlinear responses  
 
As mentioned in previous sections, this paper evaluates the nonlinear analysis of a functionally 

graded piezoelectric plate resting on Winkler Pasternak foundation. The analysis has been 
performed using a nonlinear analysis using nonlinear strain-displacement equations. In order to 
study the effect of used nonlinear analysis on the electro mechanical responses of the system, this 
section evaluates the responses using linear strain-displacement equations. Linear 
strain-displacement relations are presented in Eq. (20). the comparison between linear and 
nonlinear responses can justify necessity of employing a nonlinear analysis especially in analysis 
of a structure with piezoelectric layers as sensor or actuator. This investigation can be performed 
using comparison between responses of the linear and nonlinear analyses in terms of two 
parameters of foundation. Shown in Figs. 10 and 11 are linear and nonlinear transverse 
displacements in terms of stiffness and shear parameters of foundation, respectively. 
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                         (20) 

Shown in Figs. 12 and 13 are linear and nonlinear electric potential in terms of stiffness and 
shear parameters of foundation, respectively. 

 
 

 
Fig. 10 Comparison between linear and nonlinear transverse displacement in terms of dimensionless 

stiffness parameter 
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Fig. 11 Comparison between linear and nonlinear transverse displacement in terms of dimensionless shear 
parameter 

 
 

 
Fig. 12 Comparison between linear and nonlinear electric potential in terms of dimensionless stiffness 

parameter 
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Fig. 13 Comparison between linear and nonlinear electric potential in terms of dimensionless shear 

parameter 
 
 

4. Conclusions 
 

Nonlinear electromechanical analysis of a functionally graded plate embedded with 
functionally graded piezoelectric layers resting on the Winkler-Pasternak foundation has been 
performed in this paper. The effect of different parameters such as non-homogeneous index and 
foundation parameters was studied on the mechanical and electrical responses. In order to evaluate 
the effect of a nonlinear analysis on the responses of the system rather than a linear analysis, the 
comparisons between linear and nonlinear responses has been performed for mechanical and 
electrical parameters. 

1. It can be concluded form Figs. 2 and 3 that with increasing both parameters of foundation 
(k, G), transverse displacement decreases. This is due to increasing the stiffness of the 
foundation. 

2. Investigation on the effect of stiffness parameters of foundation indicates that the value of 
non homogeneous index has important role on the transverse displacement of plate. 
Transverse displacement for n=2 is maximum value for all values of stiffness parameter.   

3. Investigation on the electric potential indicates that varying the stiffness parameter has no 
considerable effect on electric potential distribution. In contrary, increasing the shear 
parameter has considerable decreasing manner for electric potential.     

4. A linear analysis is performed and the obtained results are compared with those results 
that are extracted from the nonlinear analysis. This comparison indicates that employing 
a nonlinear analysis has important effect on improvement of the results rather than a 
linear analysis.  
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Nomenclature 
 

ijklC  stiffness coefficient  , ,x y z  components of coordinate system 

e
ijklC , p

ijklC  stiffness coefficient for FG and 

FGP layer 

, ,u v w  displacement components at a general 

point 

K, G  parameters of foundation 0 0, ,u v w  displacement components at 

mid-plane 

iD  electric displacement ij  strain components 

ijke  piezoelectric coefficient ij  stress components 

kE  electric field components u  energy per unit volume 

2 eh  thickness of FG layer U  total energy of system 

ph  thickness of FGP layer ik  dielectric coefficient 

L    length of the square plate , , ,mn mn mn mnU V W  amplitude of assumed 

function 

p  applied pressure   electric potential 

( )E z distribution of material properties ,p q the number of terms for displacement and 

electric field 

n  non-homogeneous index   
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