
 
 
 
 
 
 
 

Smart Structures and Systems, Vol. 15, No. 6 (2015) 1503-1520 
DOI: http://dx.doi.org/10.12989/sss.2015.15.6.1503                                            1503 

Copyright © 2015 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=sss&subpage=8         ISSN: 1738-1584 (Print), 1738-1991 (Online) 
 
 

 

 
 
 
 

A novel solution for thick-walled cylinders made of functionally 
graded materials 

 

Y.Z. Chen 
 

Division of Engineering Mechanics, Jiangsu University, Zhenjiang, Jiangsu, 212013, P.R. China 
 

(Received September 5, 2013, Revised April 1, 2014, Accepted April 10, 2014) 

 
Abstract.    This paper provides a novel solution for thick-walled cylinders made of functionally graded 
materials (FGMs). In the formulation, the cylinder is divided into N layers. On the individual layer, the 
Young’s modulus is assumed to be a constant. For an individual layer, two undetermined constants are 
involved in the elastic solution. Those undetermined coefficients can be evaluated from the continuation 
condition along interfaces of layers and the boundary conditions at the inner surface and outer surface of 
cylinder. Finally, the solution for thick-walled cylinders made of functionally graded materials is obtainable. 
This paper provides several numerical examples which are useful for engineer to design a cylinder made of 
FGMs. 
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1. Introduction 
 

Since the thick-walled cylinders made of functionally graded materials are widely used in 
engineering structures, the problem for finding the stress state for the thick-walled cylinders made 
of functionally graded materials (FGMs) was studied by many researchers (Zhang and Hasebe 
1996, Jabbari et al. 2002, Shi et al. 2007, Tutuncu 2007, Theotokoglou and Stampouloglou 2008, 
Li and Peng 2009, Horgan and Chan 1999, Chen and Lin 2010, Arefi et al. 2012). 

In an earlier year, an exact elasticity solution was developed for a radially nonhomogeneous 
hollow circular cylinder of exponential Young's modulus and constant Poisson ' s ratio (Zhang and 
Hasebe 1996). A general analysis of one-dimensional steady-state thermal stresses in a hollow 
thick cylinder made of functionally graded material was developed (Jabbari et al. 2002). Two 
different kinds of heterogeneous elastic hollow cylinders were studied (Shi et al. 2007). One is a 
cylinder with multi-layers and another is a cylinder with continuously graded properties. Stress 
analysis for a thick-walled FGM cylinders with exponentially-varying properties was studied, and 
a governing equation for radial displacement was suggested. A series form solution for the 
displacement was suggested (Tutuncu 2007). The plane axisymmetric problem with axisymmetric 
geometry and loading was analyzed for a radially nonhomogeneous circular cylinder 
(Theotokoglou and Stampouloglou 2008). Exact solutions for radial deformations of a functionally 
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graded isotropic and incompressible second-order elastic cylinder were found (Batra and Iaccarino 

2008).  

For the mentioned problem, the associated elastic problem in the functionally graded cylinder 

was reduced to a Fredholm integral equation (Li and Peng 2009). By approximately solving the 

resulting equation, the distribution of the radial and circumferential stresses can be determined.  

Recently, numerical techniques were developed to solve the mentioned problem (Horgan and Chan 

1999, Chen and Lin 2010). The plane strain static deformations of a functionally graded hollow 

cylinder under both axisymmetric and non-axisymmetric loads were studied (Nie and Batra 2010). 

Both the Young’s modulus and the Poisson’s ratio are assumed in the form of power law variation. 

The problem is solved by using the Airy stress function. Analytical solutions for thick-walled 

cylinders made of functionally graded materials were obtained (Sburlati 2012). In the study, two 

kinds of Young’s modulus variation, or the power law and the exponential law, along the radius of 

cylinder were suggested. The obtained numerical results and solutions are helpful for materials 

scientists to design the FGM cylinders. 

We see from above-mentioned references that, if the Young’s modulus is an arbitrary function 

in the radial direction, some difficulties for the problem remain. For example, many researchers 

assumed that the Young’s modulus had a power function or an exponential function. 

In this paper, the Young’s modulus in radial direction is assumed to be an arbitrary function, 

and the Poisson’s ratio takes a constant value. The cylinder is divided into N layers.  Along the 

individual layer, we assume the Young’s modulus is a constant. Alternatively speaking, the 

Young’s modulus in radial direction is approximated by a step function. For an individual layer, 

two undetermined constants are involved in the elastic solution. Those undetermined coefficients 

can be evaluated from the continuation condition along interfaces of layers and the boundary 

conditions at the inner surface and outer surface of cylinder. After evaluating those coefficients, 

the displacement and the stress state in the cylinler is determined accordingly. Several numerical 

examples are presented in the paper. The obtained result shows that the FGMs property has a 

significant influence to the stress distribution. Numerical results are given which are useful for 

engineer to design a cylinder made of FGMs. 

 

 

2. Analysis 
 

In a problem for the thick-walled cylinder, the displacement in the r-direction is denoted by “u”. 

Two strain components can be expressed as (Chen and Lin 2010, Timoshenko and Goodier 1970) 

dr

du
r  ,     

r

u
                              (1) 

In the present study, the Young’s modulus E(r) is an arbitrary function, and the Poisson’s ratio 

takes a constant value  0.3. In the plane strain case, the stress-strain relation takes the form 
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Fig. 1 Boundary value problem for thick-walled cylinders made of functionally graded materials 
 

 

From Eqs. (2) and (3), we can express the stresses 
r and 

r  through the strains 
r and  . 

Further, after using Eq. (1), the stress components can be expressed as 
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The detailed expression for the Young’s modulus E(r) will be defined in the concrete example. 

Clearly, from the symmetric condition of deformation, the shear stress r  and the shear strain 

r  are generally vanishing. 

In the symmetrical deformation case, the equilibrium equation for the stress components 
r

and   takes the form (Timoshenko and Goodier 1970) 

0
rdr

d rr 



                               (6) 

Substituting Eqs. (4) and (5) into Eq. (6) yields 
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The cylinder is assumed within the range bra  (Fig. 1). In the formulation, the boundary 

condition is as follows  
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oa,rarr Q


,   0b,rbrr 


                    (8) 

where oQ is a given loading. 

Without losing the generality, we first consider the problem for functionally cylinder with the 

following elastic property 

)}
)ab(2

)ar(
sin(1{E)r(E o




                         (9) 

where  and oE are two elastic  constants. Thus, the Young’s modulus has the following 

properties 

oar
E)r(E 


,    )1(E)r(E obr




                   (10) 

The Poisson’s ratio takes a constant value 3.0  in the present paper. 

In the formulation, we assume that the cylinder is composed of many layers and the elastic 

constants take constant value in the individual layer (Fig. 2). The cylinder is divided into N layers. 

The radii are denoted by 
1rr   ( ar 1 ), 

2rr  , … jrr  , 1jrr  ,… and 1Nrr  ( br 1N  ), 

respectively.  

Clearly, at jrr  , and 1jrr   we have )}
N2

)1j(
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
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, respectively. Therefore, for the j-th layer defined by 

1jj rrr  , the relevant Young’s modulus is approximated by a constant value  
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That is to say, for j=1,2,…N, the jE  value changes from )]}N2/(5.0sin[1{EE oj 

(j=1), )]}N2/(5.1sin[1{EE oj  (j=2), …. to )]}N2/()5.0Nsin[(1{EE oj    

(j=N). 

Since Young’s elastic modulus (or jE ) is constant for the j-th layer defined along  

1jj rrr  , Eq. (7) becomes  

0
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 ,       ( 1jj rrr  )                  (12) 

Clearly, from Eq. (12), we have a general solution (Timoshenko and Goodier 1970) 

)r(fh)r(fg)r(u 2j1jj  ,( 1jj rrr  )                      (13) 
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where jg and jh  (j=1,2,…N) denote some undetermined coefficients and  

r)r(f1   ,     
r

1
)r(f2                            (14) 

Substituting the obtained function “u” into Eqs. (4) and (5), two stress component 
r  and 

are obtainable 
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In Eqs. (17) and (18), jE  denotes a constant Young’s modulus of elasticity which is defined on 

the j-th layer ( 1jj rrr  ). 

The task in the study is to evaluate the jg  and jh  (j=1,2,…N) values from the continuation 

condition along the interfaces of layers and the boundary conditions. 

Along the interface of the j-th layer ( 1jj rrr  ) and j+1-th layer ( 2j1j rrr   ), we have the 

following continuation condition for displacement 

1j1j rr1jrrj uu
 

 ,     (j=1,2,… N-1)                    (19) 

From Eq. (13), Eq. (19) can be rewritten as 

)r(fh)r(fg)r(fh)r(fg 1j21j1j11j1j2j1j1j   ,  (j=1,2,… N-1)             (20) 

Similarly, the continuation condition for the stress is as follows 

1j1j rr1j,rrrj,r
 

 ,   (j=1,2,… N-1)                    (21) 

From Eq. (15), Eq. (21) can be rewritten as 

)r(fh)r(fg)r(fh)r(fg 1j1j,41j1j1j,31j1jj,4j1jj,3j   , (j=1,2,… N-1)         (22) 

From traction condition along the inner surface shown by Eq. (8), or from Eq. (15), we have 

o11,4111,31rr1,r Q)r(fh)r(fg
1



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Fig. 2 A cylinder composed of N layers 
 

 

Similarly, from traction free condition along the outer surface shown by Eq. (8), or from Eq. 

(15), we have 

0)r(fh)r(fg 1NN,4N1NN,3NrrN,r
1N

  

                    (24) 

From Eqs. (20),(22),(23) and (24), we have total 2N  equations for jg  and jh  (j=1,2,…N). 

Thus, those coefficients jg  and jh  (j=1,2,…N) can be determined exactly. Further, the 

displacement and stresses in all layers can be evaluated by using Eqs. (13) to (18). 

In order to express the numerical solution more clearly, we choose the case N=3 for an 

example.  In this case, we have six unknowns  jg  and jh  (j=1,2,3) in Eqs. (20),(22),(23),(24), 

and  ar1  , 3/)ba2(r2  , 3/)b2a(r3  , br4  . In addition, from Eqs. (20),(22),(23) 

and (24), we can formulate the following algebraic equation 

][M }Y{}X{                               (25) 

where 

1508



 

 

 

 

 

 

A novel solution for thick-walled cylinders made of functionally graded materials 

][M
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T
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Note that, the first four columns in the matrix ][M  are derived from Eqs. (20) and (22). The 

fifth column in the matrix ][M  is derived from Eq. (23). In addition, the sixth column in the 

matrix ][M  is derived from Eq. (24), Therefore, we can obtain the solution for jg  and jh  

(j=1,2,3) from Eq. (25). For the arbitrary value of “N”, we can get the solution for jg  and jh  

(j=1,2,…N) in a similar manner. 

 

 

3. Numerical examples 
 

Three numerical examples are introduced below. Several forms of elastic property E(r) are 

assumed in examples. The influences for displacement and stresses from the assumed E(r) 

distribution are studied in details.  

 

Example 1 

In the first example (Fig. 3(a)), the Young’s modulus is assumed to be  

)}
)ab(2

)ar(
sin(1{E)r(E o




                        (29) 

Thus, we have 1E/)a(E o  , and 1E/)b(E o  (Fig. 3(a)).  

For the j-th layer ( 1jj rrr  ), the relevant Young’s modulus is approximated by 

)}
N2

)5.0j(
sin(1{E)r(E o


     (along 1jj rrr  , j=1,2..N)            (30) 

In the computation, N=100 and a/b=0.5 are adopted. The boundary condition for the cylinder is 

as follows 

oarrrrr Q
1




                         (31) 

0
brrrrr

1N


 

                          (32) 
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Fig. 3 (a) functionally  graded cylinder with the elastic property }2/)ab/()arsin{(1E/)r(E

o
 , 

(b) functionally  graded cylinder with the elastic property )ab/()ar(1E/)r(E
O

 , (c) 

functionally graded cylinder with the elastic property )ab/()rb(1E/)r(E
O

  
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As claimed previously, from Eqs. (20),(22),(23) and (24), we can evaluate the coefficients jg  

and jh  (j=1,2,…N) exactly. Therefore, the displacement and stresses in N layers can be 

evaluated exactly. Therefore, the displacement and stress components in the range bra   can 

be finally determined. 

The computed results for displacement and stresses are expressed as 

 
o

o

E

bQ
)ab/()ar(,Su  ,     ( bra  , or 1)ab/()ar(0  )      (33) 

  orr Q)ab/()ar(,T  ,   ( bra  , or 1)ab/()ar(0  )       (34) 

  oQ)ab/()ar(,T 
 ,   ( bra  , or 1)ab/()ar(0  )      (35) 

The calculated results for S, 
r

T  and 


T  under the conditions: (a) 5.0b/a   and (b) 

0,2,4,6 and 8 , five cases, are plotted in Figs. 4-6, respectively.  

From the plotted results, we see that the material parameter   can significantly affect the 

displacement and stress distribution. For example, at the point r=a, we have S=0.949, 0.496, 0.341, 

0.262 and 0.213 ( S- non-dimensional displacement for u ) for  =0,2,4,6 and 8, respectively ( Fig. 

4). In fact, there is a lowest résistance for deformation for the case  =0. Thus, the S curve for the 

case  =0 is located in the upper position in Fig. 4.  

 

 

 

Fig. 4 Non-dimensional displacement ))ab/()ar(,(S   for the displacement “u “ with the elastic 

property ]}2/)ab/()arsin[(1{E)r(E
o

  ( see Fig. 3(a) and Eq. (33)) 

1511



 

 

 

 

 

 

Y.Z. Chen 

 

 

 

Fig. 5 Non-dimensional stress ))ab/()ar(,(T
r

  for the stress 
r  with the elastic property 

]}2/)ab/()arsin[(1{E)r(E
o

 ( see Fig. 3(a) and Eq. (34)) 

 

 

 

Fig. 6 Non-dimensional stress ))ab/()ar(,(T   for the stress   with the elastic property 
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]}2/)ab/()arsin[(1{E)r(E
o

 ( see Fig. 3(a) and Eq. (35)) 

 

 

Fig. 7 Comparison results for (1) non-dimensional displacement ))ab/()ar(,(S  ,(2) non-dimensional 

stress ))ab/()ar(,(T
r

  and (3) non-dimensional stress ))ab/()ar(,(T 


 under different 

N ( N=50 and N=100) 

 

 

For the 
r  component, it changes from 1Tr  ( r=a) to

rT =0 (r=b), gradually (Fig. 5). 

For the   component in the case of 0 , it changes from T 1.653 ( r=a) to T 0.668 

(r=b)( Fig. 6). For the   component in the case of 8 , it changes from T 0.069 ( r=a) to 

T 1.176 (r=b). Clearly, in the case of 8 , we have 
oar

E)r(E 


 and 
obr

E9)r(E 


. 

That is to say, the outer circle surface of cylinder is more rigid, and it is subject to a higher stress. 

In order to examine the accuracy achieved in the present paper, under the conditions (a) a/b=0.5, 

(b) 2 , we perform a computation for two cases of N=50 and N=100 (N- number of the 

assumed layers). The computed results for non-dimensional displacement and stresses, or 

 
bQ

uE
)ab/()ar(,S

o

o ,  
o

r
r

Q
)ab/()ar(,T


  and  

oQ
)ab/()ar(,T 




 , are 

plotted in Fig. 7. From Fig. 7 we see that, the computed curves for N=50 and N=100 are merged 

into the same curve. This figure proves that a higher accuracy and a convergent tendency have 

been achieved in the presented method. 

 

Example 2 

In the second example (Fig. 3(b)), the Young’s modulus is assumed to be  
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))ab/()ar(1(E)r(E o                           (36) 

Thus, we have 1E/)a(E o  , and 1E/)b(E o  ( Fig. 3(b)).  

For the j-th layer ( 1jj rrr  ), the relevant Young’s modulus is approximated by 

)N/)5.0j(1(EE oj           (along 1jj rrr  , j=1,2..N)          (37) 

In the computation, N=100 and a/b=0.5 are adopted. The boundary condition for the cylinder is 

as follows 

oarrrrr Q
1




                        (38) 

0
brrrrr

1N


 

                         (39) 

The numerical procedure is same as for the first example. 

The computed results for displacement and stresses are expressed as 

 
o

o

E

bQ
)ab/()ar(,Su  ,     ( bra  , or 1)ab/()ar(0  )       (40) 

  orr Q)ab/()ar(,T  ,   ( bra  , or 1)ab/()ar(0  )          (41) 

  oQ)ab/()ar(,T 
 ,   ( bra  , or 1)ab/()ar(0  )       (42) 

The calculated results for S, 
r

T  and 


T  under the conditions: (a) 5.0b/a   and (b) 

0,1,2,3 and 4, five cases, are plotted in Figs. 8-10, respectively.  

From the plotted results, we see that the material parameter   can significantly affect the 

displacement and stress distribution. For example, at the point r=a, we have S=0.949, 0.705, 0.560, 

0.472 and 0.407 (S- non-dimensional displacement for u ) for  =0,1,2,3 and 4, respectively (Fig. 

8). In fact, there is a lowest résistance for deformation for the case  =0.  Thus, the S curve for 

the case  =0 is located in the upper position in Fig. 8.  

For the 
r  component, it changes from 1Tr  ( r=a) to

rT =0 (r=b), gradually (Fig. 9). 

For the   component in the case of 0 (homogenous case), it changes from T 1.653 

( r=a) to  T 0.668 (r=b) (Fig. 10). Clearly, T  in the case of 0  is a descending one. For 

the   component in the case of 4 , it changes from T 0.482 ( r=a) to  T 1.296 (r=b). 

That is to say, the outer rigid surface ( r=b) is subject to a higher stress. 

 

Example 3 

In the third example (Fig. 3(c)), the Young’s modulus is assumed to be  

))ab/()rb(1(E)r(E o 
                      

 (43) 

Thus, we have 1E/)a(E o  and 1E/)b(E o  (Fig. 3(c )). 
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For the j-th layer ( 1jj rrr  ), the relevant Young’s modulus is approximated by 

 

 

Fig. 8 Non-dimensional displacement ))ab/()ar(,(S   for the displacement “u “ with the elastic 

property ))ab/()ar((1(E)r(E
o

  ( see Fig. 3(b) and Eq. (40)) 

 

 

 

Fig. 9 Non-dimensional stress ))ab/()ar(,(T
r

  for the stress 
r  with the elastic property 

))ab/()ar((1(E)r(E
o

 ( see Fig. 3(b) and Eq. (41) 
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Fig. 10 Non-dimensional stress ))ab/()ar(,(T   for the stress   with the elastic property 

))ab/()ar((1(E)r(E
o

 ( see Fig. 3(b) and Eq. (42) 

 

 

 

)N/)5.0jN(1(EE oj           (along 1jj rrr  , j=1,2..N)          (44) 

In the computation, N=100 and a/b=0.5 are adopted. The boundary condition for the cylinder is 

as follows 

oarrrrr Q
1




                           (45) 

0
brrrrr

1N


 

                           (46) 

The numerical procedure is same as for the first example. 

The computed results for displacement and stresses are expressed as 

 
o

o

E

bQ
)ab/()ar(,Su  ,     ( bra  , or 1)ab/()ar(0  )       (47) 

  orr Q)ab/()ar(,T  ,   ( bra  , or 1)ab/()ar(0  )       (48) 

  oQ)ab/()ar(,T 
 ,   ( bra  , or 1)ab/()ar(0  )       (49) 

The calculated results for S, 
r

T  and 


T  under the conditions: (a) 5.0b/a   and (b) 
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0,1,2,3 and 4, five cases, are plotted in Figs. 11-13, respectively.  

From the plotted results, we see that the material parameter   can significantly affect the 

displacement and stress distribution. For example, at the point r=a, we have S=0.949, 0.578, 0.417, 

0.326 and 0.257 ( S- non-dimensional displacement for u ) for  =0,1,2,3 and 4, respectively (Fig. 

11). In fact, there is a lowest résistance for deformation for the case  =0. Thus, the S curve for 

the case  =0 is located in the upper position in Fig. 11.  

 

 

Fig. 11 Non-dimensional displacement ))ab/()ar(,(S   for the displacement “u “ with the elastic 

property ))ab/()rb((1(E)r(E
o

  ( see Fig. 3(c) and Eq. (47)) 

 

 

Fig. 12 Non-dimensional stress ))ab/()ar(,(T
r

  for the stress 
r  with the elastic property 

))ab/()rb((1(E)r(E
o

  (see Fig. 3(c) and Eq. (48)) 
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Fig. 13 Non-dimensional stress ))/()(,( abarT   for the stress   with the elastic property 

))ab/()rb((1(E)r(E
o

 ( see Fig. 3(c) and Eq. (49)). 

 

 

For the 
r  component, it changes from 1Tr  ( r=a) to

rT =0 (r=b), gradually (Fig. 12). 

For the   component in the case of 0 (homogenous case), it changes from T 1.653 

( r=a) to  T 0.668 (r=b) (Fig. 13).  For the   component in the case of 4 , it changes 

from T 2.490 ( r=a) to  T 0.201 (r=b).  In this case, both T  curves ( 0 and 4 ) 

are descending. From Fig.13, we see that the inner rigid surface ( r=a)  is subject to a higher 

stress for  . 

 

Example 4 

In the fourth  example, except for the Young’s modules all the conditions are same as in the 

three previous examples. In the example, the Young’s modulus is assumed as  

)}ab/()ar(exp{E)r(E o                         (50) 

Thus, we have 1E/)a(E o  and  expE/)b(E o . The boundary condition is still expressed 

as   oarr Q


and 0
brr 


. The same technique used in the previous examples is used to 

solve the problem.  

The non-dimensional stresses are still expressed in the form of Eqs. (48) and (49). In the 

conditions of (1) a/b=0.5 and (2)   -2, -1, 0 1,2, the computed results for non-dimensional 

stresses   
o

r
r

Q
)ab/()ar(,T


  and  

oQ
)ab/()ar(,T 




 are plotted in Figs. (14) 
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and (15) with solid line, respectively. In addition, the previously obtained results are also plotted in 

those figures with dash line. From Figs. (14) and (15) we see that two sets of curves are merged in 

to the same curve. Therefore, the accuracy of the present method is proved. 

 

 

 

Fig. 14 Comparison results for non-dimensional stress ))ab/()ar(,(T
r

   with the elastic property 

)}ab/()ar(exp{)r(E  . 

 

 

 

 

Fig. 15 Comparison results for non-dimensional stress ))ab/()ar(,(T 


 with the elastic property 

)}ab/()ar(exp{)r(E   
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4. Conclusions 
 

This paper provides a universal solution for thick-walled cylinders made of functionally graded 

materials with arbitrary Young’s modulus of elasticity in the radial direction. It is an important step 

to approximate the Young’s modulus of elasticity by a step function. The cylinder is divided into N 

layers. Since the Young’s modulus of elasticity is constant on the individual layer, the usual 

solution of cylinder for homogenous materials can be used to the individual layer. Several 

numerical examples are carried out in the present study. It is proved that the property of the 

functionally graded materials has significant influence to the stress state of the FGMs cylinder. 
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