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Abstract.    The electro-magneto- thermo-elastic behavior of a rotating functionally graded long hollow 
cylinder with functionally graded piezoelectric (FGPM) layers is analytically analyzed. The layers are 
imperfectly bonded to its inner and outer surfaces. The hybrid cylinder is placed in a constant magnetic field 
subjected to a thermo-electro-mechanical loading and could be rested on a Winkler-type elastic foundation. 
The material properties of the FGM cylinder and radially polarized FGPM layers are assumed to be graded 
in the radial direction according to the power law. The hybrid cylinder is rotating about its axis at a constant 
angular velocity. The governing equations are solved analytically and then stresses, displacement and 
electric potential distribution are calculated. Numerical examples are given to illustrate the effects of 
material in-homogeneity, magnetic field, elastic foundation, applied voltage, imperfect interface and 
thermo-mechanical boundary condition on the static behavior of a FG smart cylinder. 
 

Keywords:    functionally graded piezoelectric (FGPM); functionally graded material (FGM); magnetic 
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1. Introduction 
 

Recently, material structures consisting of piezoelectric components have been intensively 
investigated due to their potential for converting one form of energy to one another. They have 
found increasing applications in intelligent structures as actuators and sensors. Functionally graded 
piezoelectric material (FGPM) is a kind of piezoelectric material with material composition and 
properties varying continuously along certain directions. FGPM is a composite material that is 
intentionally designed to possess desirable properties for some specific applications. FGM is made 
of a mixture with arbitrary composition of two different materials. The volume fraction of each 
material changes continuously and gradually. FGM is attractive due to its many engineering 
applications in magnetic storage elements, plasma physics and the corresponding measurement 
techniques of magneto-thermo-elasticity. Stresses in FGM structures under mechanical or thermal 
loads can be optimized by selecting proper material distribution.  

It is possible to make intelligent hybrid materials by combining piezoelectric materials with 
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structural materials. New structures including FGM members bonded with piezoelectric actuators 

and sensors are smart in response to environmental changes. So, the integration of piezoelectric 

materials and composite materials or FGMs has become an attractive subject in the area of smart 

material and structures. Static analysis of functionally graded hollow cylinder with piezoelectric 

layers with different boundary condition was studied by Alibeigloo (2009, 2010). The functionally 

graded hollow thick cylinder with a piezoelectric ring is analyzed using FEM by Yas et al. (2011). 

Javanbakht et al. (2009) analyzed dynamic behavior of functionally graded shell with piezoelectric 

layers based on elasticity. The transient responses in a two-layered elasto-piezoelectric composite 

hollow cylinder in the state of axisymmetric plane strain are obtained by Wang (2007). Shakeri et 

al. (2009) studied dynamic response of functionally graded plate integrated with two piezoelectric 

layers, based on elasticity solution. Shen and Noda (2007) presented post-buckling analysis of a 

FGM cylindrical shell with piezoelectric actuators. Alibeigloo (2011) provided a thermo-elastic 

solution for axisymmetric deformations of a functionally graded cylindrical shell bonded to thin 

piezoelectric layers. To the best of authors’ knowledge using the piezoelectric layers as sensor and 

actuator in hybrid cylinder is considered in many papers. But, the application of FGPM layers as 

sensor and actuator in hybrid cylinder is rarely studied. Recently, the thermo-electro-elastic 

analytical solution of a long functionally graded hollow cylinder bonded to functionally graded 

piezoelectric layers was presented by authors (Aghaei khafri and Saadatfar 2013). 

Rotating disks and cylinders have important applications in rotating machinery and structures. 

The stress analysis of rotating homogeneous isotropic, orthotropic and anisotropic disks and 

cylinders has been an important topic in engineering design and applications (Chang 1975, Genta 

and Gola 1981, Tutuncu 1995, Reddy and Srinath 1974, Horgan and Chan 1999, Chen et al. 2007). 

The stress analysis of rotating FGM cylinders are carried out by researchers (El-Naggar et al. 2002, 

Eraslan and Akis 2006, Wang 2010). Also, rotating piezoelectric disks and cylinders are concerned 

in many investigations. Babaei and Chen (2008a) presented the exact solution for 

electromechanical behavior of a rotating FGP hollow cylinder. Ghorbanpour Arani et al. (2011) 

studied the electro-thermo-mechanical behaviors of rotating FGP cylinder. Dai et al. (2012) 

presented the exact solution for stresse distributions in a rotating FGP hollow cylinder for the case 

that properties of the material obey different power laws in the thickness direction. 

Akbarzadeh et al. (2011) found that reducing the hoop stress by imposing a magnetic field is a 

capable way to increase the reliability of an FGPM cylinder. This is due to that the orthotropic 

piezoelectric cylinders have been observed to fail at a critical hoop stress (Galic and Horgan 2003). 

Recently, Dai et al. (2006, 2007, 2011a) studied the magnetothermoelastic interactions in hollow 

and solid cylindrical and spherical structures of FGM. Thermo-magneto-dynamic stresses in a 

non-homogeneous hollow cylinder was investigated (Kong et al. 2009; Wang and Dong 2006). 

Analytical solution for the electromagnetoelastic behavior of piezoelectric and FGPM hollow 

cylinder under magnetic, thermal, electrical, and mechanical loading are presented (Dai 2007, 

2010). Babaei and Chen (2008b) presented the exact solutions for radially polarized and 

magnetized magnetoelectroelastic rotating cylinders.  

Furthermore, it is vital to analysis smart composite structures on elastic foundations for an 

accurate prediction of the structural behavior of smart materials. Ying et al. (2008) obtained the 

exact two-dimensional elastic solutions for the bending and free vibration of functionally graded 

beams on a Winkler–Pasternak elastic foundation. Kiani et al. (2012) studied the static, dynamic 

and free vibration behavior of FG doubly curved panels resting on a Pasternak-type elastic 

foundation. Akbarzadeh and Chen (2012) studied the Magneto-electro-elastic behavior of rotating 

solid and hollow cylinders resting on a Winkler elastic foundation under hygrothermal loading. 
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Electromagnetothermoelastic behavior of a rotating imperfect hybrid… 

Imperfect interfacial bonding or delamination is a common type of flaw in laminated composite 

structures due to manufacturing defects or environmental conditions. Recently, the interlaminar 

bonding imperfections have been considered (Chen and Lee 2004, Chen et al. 2004). Kapuria and 

Nair (2010) investigated the exact three-dimensional piezothermoelasticity solution for dynamic 

behavior of rectangular cross-ply hybrid plates with bonding imperfections. Wang (2011) studied 

the dynamic electromechanical behavior of a triple-layer piezoelectric composite cylinder with 

imperfect interfaces using the linear spring model. 

However, to the best of the authors’ knowledge the electro-magneto-thermo-elastic analysis of 

a rotating long functionally graded hollow cylinder imperfectly bonded with functionally graded 

piezoelectric layers has not yet been reported. In the present study an analytical solution of a 

rotating FGM hollow cylinder with surface bounded functionally graded piezoelectric layers of 

infinite length under pressure, electrical excitation and thermal condition is presented. The 

mechanical boundary conditions also include the Winkler-type elastic foundation. The hybrid 

cylinder is placed in a constant magnetic field. A general linear spring-layer model is employ to 

describe the weakness of the imperfect interface between the FGM layer and the FGPM layers. 

The material properties of the FGM cylinder and radially polarized FGPM layers are assumed to 

be graded in the radial direction according to the power law. But, Poisson’s ratio is assumed to be 

constant for FGM hollow cylinder. The hybrid cylinder is rotating about its axis at a constant 

angular velocity. The equations are solved analytically and the stresses and displacements and 

electric potential distributions are investigated. Numerical examples are given to show the 

influences of the material inhomogeneity, thermo-electro-mechanical boundary conditions, and 

magnetic field on the static behavior of smart FGM cylinder. 

 

 

2. Basic formulations of the problem 
 

An infinitely long hybrid functionally graded hollow cylinder (Fig. 1) with nonhomogeneous 

mechanical properties in the radial direction is considered. A cylindrical coordinate system (r, θ, z) 

is used. The cylinder rotates about its axis at the constant angular velocity ω. The hybrid cylinder 

is placed in a constant magnetic field H0 and subjected to an axisymmetric 

thermo-electro-mechanical loading. The cylinder could be rested on an elastic foundation with 

Winkler-type foundation stiffness Kw at the inner and/or outer surfaces or exposed to internal 

and/or external pressure. 

 

 

Fig. 1 Rotating FGM hollow cylinder with FGPM layers resting on an elastic foundation 
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2.1 Heat conduction problem 
 
In this section, the symmetric, steady-state heat transfer equation is solved for the assumed 

boundary conditions in the cylindrical coordinate system for FGM cylinder bonded with two 

FGPM layers. The heat conduction equation in the steady-state condition for the one-dimension 

problem without internal heat source in the cylindrical coordinate is expressed as 

,)(,0
)(

)(
1

dra
r

rT
rrk

rr


















                   (1)

 

where k(r) is the thermal conduction coefficient of the hollow cylinder in the radial direction. 

Thermal conduction coefficient of FGM cylinder, inner FGPM layer and outer FGPM layer can be 

expressed as ( ) fgmk r k r , ( ) ik r k r   and ( ) ok r k r   , respectively. η and β are 

inhomogeneity parameters of FGM and FGPM layers, respectively. Considering above expressions, 

Eq. (1) becomes 
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By integrating twice, the solution of Eq. (2) for every layer can be expressed as 
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where Ti, To and Tfgm are temperature distributions in the inner FGPM, outer FGPM and FGM 

layer, respectively. wi (i=1, 2, 3, 4) are unknown coefficients that can be found by applying 

boundary conditions. The linear spring model is considered due to the thermal field discontinuity 

(Kapuria and Nair 2010). The boundary conditions and continuity conditions can be expressed as 
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where h is the ratio of the convective heat-transfer coefficient of the cylinder and the surrounding 

medium, qj (j=i, o, fgm ) are heat flux and χ1 and χ2 are the compliance constants of the inner and 

outer interfaces for thermal field. Clearly, for perfectly bonded interface, we have χi =0 (i = 1,2). 
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Utilizing Eqs. (4) 
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2.2 FGM layer 

 
In the symmetric state, the nonzero components of displacement and thermal distribution can 

be denoted as  u = u(r) and T=T(r). The equation of motion of the rotating long FGM hollow 

cylinder with perfect conductivity in plane strain state is expressed as 

2 0,rr
z ff r

r r

 
 


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                       (6)
 

where ρf and ω are the mass density and the angular velocity and fz is defined as Lorentz’s force, 

which for a constant magnetic field H0 may be written as (Akbarzadeh et al. 2011, Dai et al. 2010, 

2011) 

2
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where μf is the magnetic permeability. By considering r

du

dr
   and

u

r
  , the 

stress-displacement relations for FGM cylinder are 
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In the FGM layer, the Poisson’s ratio ν is constant and the Young modulus, mass density, 

thermal expansion coefficient and magnetic permeability vary along the radial direction according 

to a power law as follows (Jabbari 2002) 
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where E0, ρf
0
 , α0 and μf

0 
are material constants and η is the inhomogeneous constant. Substituting 

Eqs. (8) and (7) into Eq. (6) gives 
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Substituting from Eq. (3) into Eq. (10) yields 
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Considering the basic displacement, complete solution of Eq. (12) may be expressed as 

following 

.pg uuu 
                               (13)

 

It is obvious that the homogeneous solution to Eq. (10) can be obtained by assuming 

,i
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where Q is an arbitrary constant. Substituting Eq. (14) into Eq. (12), one obtains 
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Considering |η|≤ 2, only real distinct roots will be obtained. However, these values of η do not 

necessarily pertain to a certain material. Thus, various η values are used to demonstrate the effect 

of inhomogeneity on the results. Consequently, the characteristic Eq. (15) has two real roots η1 and 

η2 as follows 

Now, the homogeneous solution to Eq. (12) can be expressed as 

2 2
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where D1 and D2 are unknown constants determined by the given boundary conditions. The 

particular solution uP(r) is 
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Utilizing Eqs. (17) and (18) we have 
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Since u(r) is known, Eqs. (8) can be written as 
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2.3 FGPM layers 
 

The inner and outer layers are radially polarized functionally graded piezoelectric material. For 

the cylindrically symmetric state, the nonzero components of displacement, temperature 
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distribution and electric potential can be denoted as u = u (r), T=T(r) and φ = φ(r), respectively. 

The constitutive equations for FGPM layers in the reference coordinate system are (Saadatfar and 

Razavi 2009) 
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where σi(r) (i = r, θ) and Dr are components of stress and electric displacement, respectively. cij ,e1j, 

g11 and p11 are the elastic, piezoelectric, dielectric, pyroelectric, constants, respectively, and 
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are thermal modulus where αi are thermal expansion coefficients. The equation of motion and the 

Maxwell equation in the absence of electric charge in the rotating piezoelectric layers are 

expressed as 
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where ρp is the mass density of FGPM layer and fz is Lorentz’s force, which may be written as 
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All material constants are assumed to obey power-law equation through the radius of the 

FGPM layer, i.e. 
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where 
0 0 0 0 0 0
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0, ,  ,  , ,ij i i ppc e g p    are material constants and β is the inhomogeneous constant. 

Now, Eqs. (23) become 
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Solving Eqs. (24(b)), yields 
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  ,
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rDr 
                             (28)

 

where A1 is an unknown constant. Substituting Eqs. (28) into the third equation of Eqs. (22), gives 

.
1

)(
)(

10

11

1

0

11

0

11

0

11

0

12

0

11

0

11
















rg

A
rT

g

p

r

u

g

e

r

u

g

e

r

r

                    (29)

 

Substituting Eq. (29) into the first and second equations of Eqs. (22) yields 

0 21
1 2 3 4 1

0 21
2 5 6 7 2

( ) ( ),

( ) ( ),

r

Au u
C r C r C r T r C r T r

r r r

Au u
C r C r C r T r C r T r

r r r

   

   



 

 


    




    

               (30)

 

where 

 

0 2 0 0 0 0 0
0 011 11 12 11 11 11

1 11 2 12 3 40 0 0 0

11 11 11 11

0 2 0 0 0
0 12 12 11 12

5 22 6 70 0 0

11 11 11

( )
, , , ,

( )
, , .

e e e e p e
C c C c C C

g g g g

e e p e
C c C C

g g g

     

   

           (31)

 

Substituting Eqs. (30) and (25) into Eq. (24(a)), the motion equation is expressed as 

2

1 2 3 42 2

2

5 6 1 7

1 ( ) ( ) ( )
(1 )

( )
,

u u u T r T r T r
W W r W W r

r r r r r r r

T r
W W A r W r

r

 





 

  
     

  


  

           (32)

 

where 

0 2 0 0 0
2 5 0 1 1 2

1 20 2 0 2

1 0 1 0

0

6 3 3 31
3 4 50 2 0 2 0 2

1 0 1 0 1 0

0 2

7
6 70 2 0 2

1 0 1 0

( 1) 2
, ,

, , ,

,

p

p p

p p p

p

p p

C C H
W W

C H C H

C C C C
W W W

C H C H C H

C
W W

C H C H

      

 

 

  

 

 

    
 

 

  
  

  


 

 
     (33)

 

Substituting the first equation of Eqs. (3) into Eq. (32), yields 

2
1 1 1 2

1 9 10 11 6 1 72 2

1
(1 ) ,

u u u
W W r W r W r W A r W r

r r r r

         
       

       (34)
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where (for inner FGPM layer) 

9 2 1 3 2 4 1 10 2 2 11 3 1 5 1, , .i i i i i iW W w W w W w W W w W W w W w      
      (35)

 

The homogenous solution of Eq. (34) can be expressed as 

1 2

1 2( ) ,gu r B r B r  
                         (36)

 

where B1 and B2 are unknown constants determined by the given boundary conditions, and 

).4(
2

1
),4(

2

1
1

2

21

2

1 WW  
          (37)

 

The particular solution uP(r) is in the following form 

1 1 3 6 1
3 4 5 6

1

( ) ,p

W A
u r B r B r B r B r r

W

         

             (38)

 

where 

9 10
3 4 2

1 1

711
5 6

1 1

, ,
1 2 3 1

, .
1 9 3

W W
B B

W W

WW
B B

W W

  

 

 
    

 
    

             (39)

 

Utilizing Eqs. (36) and (38) we have 

1 2 1 1 3 6 1
1 2 3 4 5 6

1

( ) .m m W A
u r B r B r B r B r B r B r r a r b

W

             

   (40)

 

Since u(r) is known, by integrating from the Eq. (29) 

1 2

1 2

1 1 3 6 1
4 1 2 3 4 5 6

1

1 1 35 6 6 11 2 4
7 3

1 2 1

0
111 1 1

2 20 0

11 11

( )

1 1 3 ( )

( ) ,
1

i
i

W A
r C B r B r B r B r B r B r r

W

B B W AB B B
C r r B r r r r r

W

p w A
r w r r A

g g

    

    

 



    

 

   

   

  

 
       

 

 
       

    

   
 

(41)

 

where A2 is an unknown constant. Substituting Eq. (40) into Eqs. (30), the stresses of the inner 

FGPM layer are obtained as 
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1 2

1 2

1 1 2 16 1
1 1 1 2 2 3 4 5 6

1

1 1 2 16 1 1
2 1 2 3 4 5 6 4

1

0 2
3 1 1 2

( 1) (1 ) 3

( )( ),

r

i i

W A
C r B r B r B B r B r B r r

W

W A A
C r B r B r B B r B r B r r C

W r

C r r w r w

    

    

  


    



    

    



 
         

 

 
        

 

  
(42a)

 

1 2

1 2

1 1 2 16 1
2 1 1 2 2 3 4 5 6

1

1 1 2 16 1 1
5 1 2 3 4 5 6 7

1

0 2

6 2 1 2

( 1) (1 ) 3

( )( ),i i

W A
C r B r B r B B r B r B r r

W

W A A
C r B r B r B B r B r B r r C

W r

C r r w r w

    



    

  


    



    

    



 
         

 

 
        

 

  
(42b)

 

The displacement, stresses and electric potential of the outer FGPM layer can be obtained by 

the same way just by replacing w1
i
 and w2

i
 by w1

o
 and w2

o
  in the Eq. (35) up to Eq. (42), 

respectively. The hybrid hollow cylinder may be simulated with or without a Winkler elastic 

foundation on the inner and/or outer surfaces. So, the elastic boundary conditions can be 

considered as follows (Akbarzadeh and Chen 2013) 

 Internal and external pressure 

 
, ,ip op

r i r o
r a r d

p p 
 
   

             (43a)
 

 Internal pressure and elastic foundation on the outer surface 

 
,ip op op

r i r w r
r a r d r d

p K u 
  
   

          (43b)
 

 Elastic foundation on the inner surface and external pressure 

 
,ip ip op

r w r r o
r a r a r d

K u p 
  
  

             (43c)
 

 Elastic foundation on both the inner and outer surfaces 

,ip ip op op

r w r r w r
r a r a r d r d

K u K u 
   
  

           (43d)
 

Furthermore, the electrical boundary conditions can be expressed as 

, ,

, ,

ip ip

a b
r a r b

op op

c d
r c r d

   

   

 

 

 

 
                     (44)

 

where superscripts ip, op and fgm denote parameters in the inner FGPM, outer FGPM and FGM 

layers, respectively.  

For piezoelectric composites under mechanical and electrical loading, the interface might be 

mechanically and/or electrically imperfect. It is found that the mechanical imperfection has more 
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significant effect on the behavior of the smart composite (Li and Lee 2009, Chen and Lee 2005). 

In this work, only the mechanical imperfection is considered. The linear spring-layer model is 

applied to describe the imperfect bonding (Wang 2011, Chen and Lee 2005). Thus 

1

2

ip fgm

r r
r b r b

op fgm

r r
r c r c

fgm ip ip

r r r
r b r br b

op fgm fgm

r r r
r c r c r c

u u

u u

 

 

 

 

 

 

 

  





 

 
                    (45)

 

where ζ1 and ζ2 are the compliance constants of the inner and outer interfaces for mechanical field. 

Clearly, for perfectly bonded interface, we have ζi =0 (i = 1,2). Unknown coefficients (A1, A2, B1 

and B2 coefficients for inner FGPM layer and also four coefficients for outer FGPM layer and D1 

and D2 for FGM layer) can be found by applying mechanical and electrical boundary conditions 

and interfacial conditions. For each case of boundary conditions, the system of ten linear algebraic 

equations for the unknown constants can be written in the following form 

1 2 1 2 1 2 1 2 1 2 ,
T

X B B A A D D B B A A F    
             (46)

 

where 1 2 1 2, ,A A B and B   are unknown coefficients for the outer FGPM layer and X and F are 

known matrix that their components are given in the appendix section. By solving the Eq. (46), the 

solution procedure is completed and stresses, displacement and electric potential are obtained 

analytically. 

 

 
3. Numerical results and discussions 
 

Considering numerical calculations, material constants for the hybrid hollow cylinder are listed 

in Table 1 (Alibeigloo 2008, Xiang and Shi 2009, Akbarzadeh and Chen 2012). A hybrid hollow 

cylinder with internal radius a =0.6 m and external radius d=1 m is considered. The thickness of 

each FGPM layer is 0.02 m. To study the influences of effective parameters (unless imperfection) 

on the behavior of hybrid cylinder, the layers are assumed perfectly bonded to each other 

(χ1=χ2=ζ1=ζ2=0). The cylinder rotates at constant angular velocity of ω=6π. The hybrid cylinder is 

placed in a constant magnetic field H0=0.2×10
9
. The temperature on the inner surface and 

foundation stiffness on the outer surface are considered as T0=50 K and Kw =600×10
9
. Considering 

pressure on the inner surface and elastic foundation on the outer surface (Eq. (43(b))), the other 

corresponding boundary conditions are expressed as 

91 10 , 0, 0, 0, 0.i a b c dP Pa         
  

 

The following non-dimensional quantities are introduced 
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(a) Radial stress 

 

(b) Hoop stress 

 

(c) Displacement 

Fig. 2 Variations of radial stress, hoop stress and displacement distributions for different β, η=2 

 

 

( )
, , , ( , ).

j

j

i

r a u r
R u j r

d a a P


  

   


 

 

The effect of gradient index (β) of FGPM layers on the behavior of smart cylinder is presented 

in Fig. 2. It can be observed that the interface continuity conditions and boundary conditions are 

satisfied. As it is expected, by decreasing the displacement in the outer surface of the cylinder, the 

radial stress in the outer surface reduces due to elastic foundation. The radial stress and 

displacement are decreasing with the decreasing of β. The decrease in the inner surface of FGM is 

more intensive than the outer surface. 

This is worth noting that decreasing the β value in the inner FGPM layer reduces the radial 

stress and displacement. However, this is less effective in the outer FGPM layer. The effect of 

gradient index on the radial stress is greater than that of the displacement. So, the stresses and 

displacement in FGM layer can be controlled more effectively by using functionally graded 

piezoelectric material with suitable gradient index rather than homogenous piezoelectric. 

Considering Fig. 2(b), the circumferential stress in the FGM layer and outer FGPM layer is almost 

constant with different β but in the inner FGPM layer it increased with the decreasing of β. 
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(a) Radial stress 

 

(b) Hoop stress 

 

 

(c) Displacement 

 

                                  (d) 

Temperature 

Fig. 3 Variations of radial stress, hoop stress, displacement and temperature distributions for different η,  

β =2 

 

 

The effect of gradient index (η) of FGM layer on the behavior of hybrid cylinder is presented in 

Fig. 3. The foundation stiffness is considered as Kw =400×10
9
. All other conditions remain 

unchanged. Fig. 3(a) depicts the distribution of radial stress along the radius for different values of 

η. It is clear that the radial stresses at the internal and the external surfaces of the hollow rotating 

cylinder satisfy the given boundary conditions. Moreover, the magnitude of the radial stress is 

increased as η is increased. Similar to the previous case, by decreasing the displacement in the 

outer surface of the cylinder, the magnitude of the radial stress in the outer surface reduced due to 

the elastic foundation. It can be observed (Fig. 3(b)) that we can significantly decrease the hoop 

stress in the inner surface of FGM layer (η=2) by use of a proper gradient index. Furthermore, we 

can obtain compressive hoop stress in the FGM layer and inner FGPM layer by considering a 

suitable gradient index (η=-2). 
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(a) Radial stress 

 

(b) Hoop stress 

 

(c) Displacement 

Fig. 4 Variations of radial stress, hoop stress and displacement distributions for different H0
* , η=β =-1.5 

 

 

Besides, it is observed that the hoop stress in the outer surface of the FGM layer is almost 

constant with different η. Figs. 3(c) and 3(d) show that the thermal boundary conditions and 

continuity conditions and also the displacement continuity conditions is satisfied. It is clear that 

the displacement increases and the outer temperature decreases with increasing η. Furthermore, 

increasing of η increases the displacement of the inner surface more than the outer surface. It 

seems that for reducing the magnitude of the radial stress and displacement at any point it is 

necessary to use a FGM shell with a hard inner surface. 

Fig. 4 shows the effects of magnetic field on the distribution of stresses and displacement along 

the radial direction of the hybrid cylinder under the boundary conditions that are expressed 

according to the Eq. (43(a)) and without any external pressure (η=-1.5 and β=-1.5). All other 

conditions remain unchanged. It can be observed that the influence of H0 on the radial stress is 

negligible (H0=H0
*
×10

9
 (A/m)). Figs. 4(b) and 4(c) show that imposing the magnetic field resulted 

in significant decrease of the hoop stress and displacement. It is clear that by increasing H0, the 

displacement decreases and the hoop stress in FGM layer vanishes (H0
*
=2). Consequently, 
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imposing a proper magnetic field reduces the hoop stress and displacement in a rotating hybrid 

FGM cylinder. This results in a smart structure that is more reliable. Moreover, increasing H0 

decreases the hoop stress of the inner surface of the FGM layer more than the outer surface. It 

seems that the influence of imposing magnetic field becomes negligible when H0>1.5×10
9 
(A/m). 

Fig. 5 show an interesting case in which η=1.5 and β=-1.5. It is interesting to note that unlike 

the Fig. 4(a), the effect of magnetic field on the radial stress is considerable. It can be seen that the 

interface continuity conditions and boundary conditions are satisfied completely. As it is shown in 

Fig. 5(a), the radial stress in the FGM layer significantly reduces by imposing a suitable magnetic 

field. It seems that there exists a fixed point at which the value of radial stress does not change 

with varying the magnetic field. Increasing the magnetic field decreases the magnitude of the 

radial stress on the inner surface and increases it on the outer surface of the FGM layer. Figs. 5(b) 

and 5(c) show that, unlike Figs. 4(b) and 4(c), imposing the magnetic field increases the hoop 

stress and displacement. Concerning Figs. 4 and 5, it is possible to obtain various static behaviors 

of smart FGM cylinder by applying a suitable gradient index (η) and imposing proper magnetic 

fields. 

 

 

 

(a) Radial stress 

 

(b) Hoop stress 

 

(c) Displacement 

Fig. 5 Variations of radial stress, hoop stress and displacement distributions for different H0
*, η=1.5, β 

=-1.5 
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Table 1 Materials constants 

FGM 
0 ( / )f H m  

0 3( / )f kg m  kfgm (W/mK) α0 (1/K) E0 (GPa) 

4π×10
-7 

7860 2.9 10×10
-6

 125 

FGPM 
0 2

12 ( / )e C m  
0 2

11 ( / )e C m  
0

22 ( )c GPa  
0

12 ( )c GPa  
0

11 ( )c GPa  

-5.2 15.1 139 78 139 
0 3( / )p kg m  

0 2 2

11 ( / )g C N m  
0 2 2

11 ( / )P C m k  k0 (W/mK) ki (W/mK) 

7750 5.6×10
-9

 -3.2×10
-5

 1.5 1.5 

 
0 ( / )p H m   2/h W m K  

0 (1/ )K  
0 (1/ )r K  

 4π×10
-7

 0.82 1.99×10
-6

 8.53×10
-6

 

 

 

 

 

(a) Radial stress 

 

(b) Hoop stress 

 

(c) Displacement 

Fig. 6 Effect of inner temperature on radial stress, hoop stress and displacement distributions, η=2, β =2 
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(a) Radial stress 

 

(b) Hoop stress 

 

(c) Displacement 

Fig. 7 Influence of elastic foundation on radial stress,  hoop stress and displacement distributions, η=β 

=2 

 

 

The effect of internal temperature (T0) of hybrid cylinder on the stresses and displacement is 

presented in Fig. 6. In this case, the elastic foundation on the outer surface is considered based on 

Eq. (43(b)). In this case, the foundation stiffness is considered as Kw =600×10
7
. All other 

conditions remain unchanged. Fig. 6a shows that there exists a fixed point at R=0.698 at which the 

value of radial stress does not change with altering the inner temperature. Before this point, 

increasing the inner temperature leads to an increase in the radial stress while after this point the 

behavior of the radial stress is reversed. By reducing the displacement in the outer surface of the 

cylinder, the radial stress in the outer surface reduces because of the elastic foundation. Figs. 6(b) 

and 6(c) show that raising the temperature on the inner surface increases the hoop stress and 

displacement in the hybrid cylinder.  

The effect of elastic foundation on the behavior of the FG smart cylinder under boundary 

conditions that are described based on the Eq. (43(b)) is shown in Fig. 7. In this case, the internal 

pressure is Pi=1×10
7
 Pa and the magnetic field is not considered (H0=0). All other conditions 

remain unchanged (Kw=kw×10
7
). Fig. 7(a) shows that an increase in the stiffness of the foundation 

results in an increase in the absolute value of the through thickness radial stresses. This is 
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reasonable that the presence of an elastic foundation helps to suppress the radial displacement and 

results in a compressive radial stress on the outer surface. It is valuable to note that, kw = 0 

simulates the situation in which the cylinder is traction free on the outer surface. Figs. 7(b) and 7(c) 

show that the hoop stress and the displacement decrease with increasing of the foundation stiffness. 

This was predictable that the presence of an elastic foundation helps to resist the radial 

displacement due to the outward radial displacement of the outer surface. 

The effect of applied voltage (in unit of volt) on the stresses and displacement of the cylinder 

under complex load is shown in Fig. 8. In this case, ω=2π, Pi=1×10
5
 Pa, H0=0.2×10

5
 (A/m) , kw=0 

and T0=0 K. It can be observed that the displacement and the hoop stress decrease by applying 

voltage in the inner FGPM layer and increase by applying voltage in the outer FGPM layer. It is 

also clear that the displacement and hoop stress are decreasing with increasing of the applied 

voltage in the inner FGPM layer. Thus, it can be concluded that the inner FGPM layer is more 

suitable for using as an actuator than the outer FGPM layer. The induced strain of the FGPM 

actuator layer caused by applied voltage can vary the stress and displacement distributions of the 

cylinder. Considering Fig. 8, the values of mechanical quantities can be controlled by applying 

voltage in actuator layer. 

 

 

 

(a) Radial stress 

 

(b) Hoop stress 

 

(c) Displacement 

Fig. 8 Influence of applied voltage on radial stress, circumferential stress and displacement distributions, 

η=1, β =2 
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(a) Displacement of the inner surface of FGM 

 

(b) Induced voltage 

Fig. 9 Influence of imperfect bonding on actuation authority and sensory potential, η=β =1.5 η=1, β =2 

 

 

The effects of imperfect bonding on the behavior of hybrid cylinder are depicted in Fig. 9. 

Actuation authority and sensory potential are important parameters that affected by imperfection in 

piezoelectric composites (Kapuria and Nair 2010). So, only the effect of imperfect bonding on the 

actuation authority and sensory potential of FGPM layers is considered here. The compliance 

coefficients at an imperfect interface are taken as ζ1=ζ2=ζ
*
/(139×10

9
) and  χ1=χ2= ζ

*
/290). The 

inner and outer FGPM layer are considered as actuator and sensor, respectively. As a first case, no 

any mechanical load is applied on the cylinder and other parameters are considered as ω=0, Pi=0, 

H0=0 , kw=0 and T0=20 K. An electrical load of φa=200 V is considered as actuation load. 

Fig. 9(a) depicts the displacement of the inner surface of the FGM layer through the 

compliance coefficient of the imperfect bonding. It is observed that the actuation capability of the 

actuator decreases by increasing the compliance coefficient of the imperfection. Concerning higher 

values of imperfection, the difference among the results is not appreciable. As a second case, no 

any electrical load is applied on the cylinder and other parameters are considered as ω=0, Pi=5×10
5
 

Pa, H0=0 , kw=0 and T0=50 K. The effect of imperfection on the induced voltage is presented in 

Fig. 9b. As it is expected, the measured voltage (φc) in sensor decreases by increasing the 

compliance coefficient of imperfection. For large values of ζ
*
 , the curve becomes nearly flat 

representing no further significant change in the measured voltage. 

In order to validate analytical results, the present analysis results are tried to be compared with 

reported results in the literature. It is worth noting that there are no published results in the open 

literature concerning multifiled analysis involving magneto-thermo-electroelastic behavior of a 

long FGM cylinder with FGPM layers. Thus, the present analysis is compared with 

electro-magneto-thermoelastic analysis in a FGM (Dai et al. 2011b) hollow cylinder and 

electroelastic analysis of rotating FGPM (Babaei and Chen 2008a) hollow cylinder. It should be 

mentioned that effects of piezoelectric layers on the response of FGM layer should be ignored if 

the thickness of piezoelectric layers become less than 2% of the cylinder thickness (Alibeigloo 

2011). Considering analysis of one layer FGM and/or FGPM hollow cylinder, the thickness of 

other layers can be assumed less than 0.001of the thickness of main layer. The mechanical 

boundary conditions are expressed as pi =30 ×10
6
 Pa and po=0 Pa, and the temperature of internal 

1430



 

 

 

 

 

 

Electromagnetothermoelastic behavior of a rotating imperfect hybrid… 

boundary is assumed to be T0=10C. Material constants can be found in Dai et al. (2011b). Other 

parameters are taken as: b=0.1 m, c=0.2 m, Hz=2.23×10
9
 (A/m), h=0.72 W/mK and ω=0. 

Distributions of temperature and displacement are depicted in Fig. 10. It can be observed that the 

obtained results are fairly well correlated to Dai (2011b). 

Concerning one layer rotating FGPM hollow cylinder, dimensionless quantities are taken as: 

r
R

a
 , ( )u r

u
a

  , 
0

11

, ( , )
j

j j r
c


    , 11

0

11

e

ac
  , 

2 2

11

a

c


  . The electromechanical boundary 

conditions are considered as: 1r
r a

 


 , 0r

r b
 


 ,  Φa=1 and Φb=0. Material constants can 

be found in Babaei and Chen (2008a).  The distributions of radial and circumferencial stresses for 

Ω=1 are depicted in Fig. 11. It is observed that results obtained are in good agreement with Babaei 

and Chen (2008a). It is worthwhile to mention that multiphysical closed-form solutions in previous 

section and graphical results in this section could be used as a benchmark solution for 

magneto-thermo-electroelastic analysis of hybrid composite cylinders. 

 

 

(a) Temperature distribution 

 

(b) Displacement 

Fig. 10 Temperature distribution and displacement in FGM Hollow cylinder subjected to 

magneto-thermoelastic loading 

 

 

(a) Radial stress 

 

(b) Circumferential stress 

Fig. 11 Radial and circumferential stresses in rotating FGPM Hollow cylinder (b=4a) 
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4. Conclusions 
 

An analytical solution for the electro-magneto-thermo-elastic behavior of a rotating long 

hollow FGM cylinder imperfectly bonded with FGPM layers on the Winkler elastic foundation is 

obtained. A linear spring model is adopted to describe the weakness of the imperfect interface. All 

material properties except the Poisson ratio are assumed as a power function of radius. The results 

are of great interest due to that the effects of different parameters on the response of the hybrid 

cylinder can be analytically characterized using the obtained mathematical formulations. Based on 

the numerical value of the solution to the problem the following conclusions can be obtained. 

 The radial Stress and displacement in FGM layer can be controlled more effectively by using 

functionally graded piezoelectric material with suitable gradient index.  

 The hoop stress in the inner surface of the FGM layer significantly decreases by the use of a 

proper gradient index, η. 

  Completely different static behavior of hybrid cylinder can be obtained by considering a 

proper gradient index (η) and imposing a suitable magnetic field. The application of a proper 

magnetic field can reduce the hoop stress (radial stress) in a rotating hybrid cylinder and results in 

a more reliable hybrid structure. 

 Raising the temperature on the inner surface increases the hoop stress and displacement in 

the hybrid cylinder. Also, there exists a fixed point at which the radial stress does not change with 

changing the inner temperature. 

 The inner FGPM layer is more suitable than the outer FGPM layer when it is considered as 

an actuator. The displacement and circumferential stress are decreasing with increasing of the 

applied voltage in the inner FGPM layer.  

 An increase of the foundation stiffness results in an increase in the absolute value of the 

through thickness radial stresses and a decrease in the hoop stress and displacement of the outer 

surface. 

 The actuation authority and sensory potential of the FGPM layers is severely affected by the 

presence of bonding imperfections. 

 It is concluded that by applying an appropriate combination of 

thermo-electro-magneto-mechanical boundary conditions over a rotating hybrid FG hollow 

cylinder, an even distribution of hoop stress can be achieved, which is valuable for designing smart 

structures.  
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Appendix 

 

In this section, components of matrixes X and F are given for a FGMEE hollow sphere. 

According to mechanical boundary conditions (43.a), we obtain 
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where parameters with prime symbol ( ′ ) is used to represent the corresponding value for the outer 

FGPM layer. For mechanical boundary conditions (43.b), the following components of matrixes in 

Eq. (A.1) are modified as 
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(A.2) 

 

For mechanical boundary conditions (43.c), following components of matrixes in Eq. (A.1) are 

modified 
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(A.3) 

 

Besides, for mechanical boundary conditions (43.d), both of modified components that defined 

in Eqs. (A.3) and (A.4) should be used. 
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