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Abstract.    The stiffness of a structure is one of several structural signals that are useful indicators of the 
amount of damage that has been done to the structure. To accurately estimate the stiffness, an equation of 
motion containing a stiffness parameter must first be established by expansion as a linear series model, a 
Taylor series model, or a power series model. The model is then used in multivariate autoregressive 
modeling to estimate the structural stiffness and compare it to the theoretical value. Stiffness assessment for 
modeling purposes typically involves the use of one of three statistical model refinement approaches, one of 
which is the efficient Akaike information criterion (AIC) proposed in this paper. If a newly added 
component of the model results in a decrease in the AIC value, compared to the value obtained with the 
previously added component(s), it is statistically justifiable to retain this new component; otherwise, it 
should be removed. This model refinement process is repeated until all of the components of the model are 
shown to be statistically justifiable. In this study, this model refinement approach was compared with the 
two other commonly used refinement approaches: principal component analysis (PCA) and principal 
component regression (PCR) combined with the AIC. The results indicate that the proposed AIC approach 
produces more accurate structural stiffness estimates than the other two approaches. 
 

Keywords:    Akaike information criterion; repetitive model refinement; multivariate autoregressive; 
stiffness estimation; structural health monitoring 

 
 
1. Introduction 
 

As it is difficult to judge whether a structure is safe by visual observation alone, structural 
health monitoring (SHM) is essential to structural safety and maintenance. The subject of SHM 
has recently received a growing amount of interest from researchers in diverse fields of 
engineering (Masri et al. 2000). For example, Ho et al. (2012) presented a solar-powered, 
multi-scale, vibration-impedance sensor node on an Imote2 platform for hybrid structural health 
monitoring (SHM) of a cable-stayed bridge. Chang et al. (2003) reviewed a number of research 
projects focused on improving damage detection methods, including the use of novel signal 
processing techniques, new types of sensors, and control theory. Sumitro and Wang (2005) 
qualitatively compared sensor technologies used in SHM systems and introduced some new 
sensory technologies, such as GPS-based MMS (movement monitoring systems), PDMD (peak 
displacement memory devices), and FOS (fiber optic sensors). Weng et al. (2008) presented two 
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modal identification methods that extract dynamic characteristics from output-only data sets 

collected using a wireless structural monitoring network. Nagayama et al. (2007) investigated the 

effects of time synchronization accuracy and communication reliability in SHM applications and 

examined coordinated computing for the management of large amounts of SHM data. Lu et al. 

(2008) used a wireless sensor system to detect structural damage with autoregressive (AR) and 

autoregressive-with-exogenous-inputs (ARX) modeling methods. Jo et al. (2013) used a 

high-sensitivity wireless strain sensor for structural health monitoring. Taylor et al. (2010) used a 

multi-scale wireless sensor node for health monitoring of civil infrastructure and mechanical 

systems. Kim et al. (2013) developed remote structural health monitoring systems for 

next-generation supervisory control and data acquisition (SCADA). Bennett et al. (2010) 

illustrated wireless sensor networks for underground railway applications. Ahin et al. (2011) and 

Lin (2011) have applied analysis of processed signals to determining dynamic characteristics for 

the purpose of assessing the condition of civil engineering structures. The results of these tests are 

expected to help engineers better understand and repair these types of structures in the future (Ahin 

et al. 2011).The formulation of selection criteria is of great importance to the selection process and 

the accuracy of the results obtained from signal processing because an appropriate selection model 

depends largely on prudent identification of selection criteria that reflect client and project 

objectives (Xia et al. 2011). 

A structure can be damaged by earthquake events in ways that are difficult to detect by visual 

observations alone, meaning that the effectiveness of visual inspections is limited. Hence, SHM 

technology is increasingly shaping the development of structural systems. The methods used 

include emerging sensor-based SHM technologies that offer the potential for cost-effective 

maintenance of aging civil infrastructure systems (Lin et al. 2012, Lin 2010). Signal processing 

plays an important role in SHM. A signal is usually a piece of information which provides 

signatures with significant implications. Successful and early detection of a signal‘s changes are 

very important as some changes can be detrimental (Chan et al. 2012). The stiffness of a structure 

is one of several structural signals that are useful indicators of the amount of damage that has been 

done to the structures (Lautour and Omenzetter 2010). 

Time series analysis, which was developed to study long sequences of regularly sampled data, 

is increasingly being used in SHM (Lautour and Omenzetter 2010). Multivariate auto regression 

(MAR) is a time series analysis procedure that is often used to characterize dynamic systems 

because of its simplicity (Rogers et al. 2010).Methods for health monitoring and damage detection 

using linear models developed from monitoring data are applicable to a wide range of civil 

structures, but the linearity of such models limits their usefulness (Lin and Chen 2009). Using 

higher-order sensitivity terms obtained from Taylor‘s series or power series expansion, different 

combinations of damage and nonlinearities in the damage can be modeled (Wong and Barhorst 

2006). In addition, although kinematic differential equations are linear, they have time-varying 

coefficients that make them amenable to solution by substitution with a power series model 

(Milenkovic 2011).  

The Akaike information criterion (AIC) is one of the indexes used to evaluate such models 

(Milenkovic 2011). The AIC is designed to estimate the predictive accuracy of competing 

hypotheses and can be applied to comparing the expected performance of competing models in 

predicting new data (Posada and Buckley 2004). The AIC has often been used to assess the 

generalization performance of linear models (Figueiredo et al. 2011).Principal component analysis 

(PCA) is perhaps the oldest and best known of the techniques of multivariate analysis (Jolliffe 

1986). PCA is, in principle, a data reduction technique (Statheropoulos et al. 1998) that finds a set 
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of mathematical spectra (or factors) that contains the maximum number of variations common to 

all spectra in a data set. This defines a new space within which each spectrum in the original group 

of data can be modeled using a linear combination of the factors identified (Park et al. 2001). In 

addition, the use of principal component regression (PCR) as a multivariate calibration tool raises 

the question of what subset of factors, i.e., what principal components (PCs) yield the best 

calibration model (Depczynski et al. 2000). 

In this paper, the equations of motion for signal processing are presented, a stiffness parameter 

is identified from the equations of motion, and the transformation of the equations of motion into 

three models—a linear series, a Taylor series, and a power series model—is described. The MAR 

modeling method implemented in each of the three models to estimate structural stiffness is then 

introduced. The criteria for refinement of the statistical models, including the efficient AIC 

proposed in this paper, the PCA, and the integration of PCR with AIC, are introduced. Finally, this 

paper presents the result of a case study conducted to assess the accuracy of structural stiffness 

estimates obtained using the three criteria by comparing experimental results with theoretical 

values obtained using the three criteria for the three models. 

 

 

2. Establishment of a power series model 
 
Modal parameters can be used for a variety of purposes, such as active control, and help us to 

understand the dynamic behavior of a structure (Meo et al. 2006). To analyze the measured signal 

of a test structure and identify the target parameter observed, the equations of motion for the signal 

processing must first be established. In general, for a multi-degree-of-freedom (MDOF) system 

subjected only to force excitation, the equations of motion can be written as follows (Pei et al. 

2004, Lin 2010, Lin 2011) 

M𝑥̈(𝑡) + 𝑟(𝑥(𝑡), 𝑥̇(𝑡)) = 𝑓(𝑡)                       (1) 

where M is the mass matrix; the vectors 𝑥̈(𝑡) and 𝑟arethe acceleration and restoring force, 

respectively; 𝑥(𝑡) and𝑥̇(𝑡) are the displacement and velocity, respectively; and  𝑓(𝑡) is the 

excitation force, which can be expressed as follows (Lin et al. 2001) 

𝑓(𝑡) = −M*I+𝑥̈𝐺(𝑡)                            (2) 

where*I+ is the identity column matrix and 𝑥̈𝐺(𝑡)is the ground (base)acceleration induced by the 

seismic event. 

The variation in the restoring force with time, 𝑟̇, i.e., ∆r/∆t, is by convention usually used in the 

modeling of the restoring force (Lin and Chen 2009). The Bouc-Wen hysteresis model, which is 

one of the most widely accepted smoothly varying differential models in the engineering field (Li 

and Meng 2007), is used to represent 𝑟̇.A generalized Bouc-Wen model can be expressed as 

follows (Lin and Chen 2009) 

𝑟̇𝜑 = 𝑐𝜑(𝑥̈𝜑 − 𝑥̈𝜑−1) + 𝑘𝜑(𝑥̇𝜑 − 𝑥̇𝜑−1) + 𝑓𝜑,3(𝑥𝜑 − 𝑥𝜑−1)
2
(𝑥̇𝜑 − 𝑥̇𝜑−1)- 

+𝑔𝜑|𝑥̇𝜑 − 𝑥̇𝜑−1||𝑟𝜑|
𝑝𝑜𝑤𝑒𝑟−1

𝑟𝜑 + 𝑒𝜑(𝑥̇𝜑 − 𝑥̇𝜑−1)|𝑟𝜑|
𝑝𝑜𝑤𝑒𝑟

(𝜑 = 1,2,… 𝑠)        (3) 

where the parameter power is given ‗a priori,‘ 𝑥̈𝜑−1 = 𝑥̇𝜑−1 = 𝑥𝜑−1 = 0 in the case of 𝜑 = 1, 

and s is the number of building stories. Through simple rearrangement, the formula above can be 

expressed using four parameters𝐴1,𝐴2,𝐴3, and 𝐴4, as follows 
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𝑟̇(𝑡) = ∑ (𝐴1𝑥(𝑡) + 𝐴2𝑥̇(𝑡) + 𝐴3𝑥̈(𝑡) + 𝐴4𝑟(𝑡))
𝑖𝑄

𝑖=1                (4) 

where 𝑄 is the maximum order of the moment required, which is usually specified by the user (Lin 

and Chen 2009, Lin 2013). In Eqs. (3) and (4), the parameter 𝐴2refers to the target parameter 

observed, i.e., the structural stiffness. The third order of moment is usually selected in the series 

model; a higher-order model would probably yield only a marginal improvement (Huang et al. 

1998). 

The developed model refinement approaches are implemented for the linear series, Taylor 

series, and power series models of multivariable polynomial expansions, leading to more accurate 

identification and a more controllable design for system vibration control (Lin and Chen 2009). 

Substituting Q = 3 into Eq. (4) yields the power series. The Taylor series can be obtained by 

removing the cross terms from the power series. The linear series can be obtained by retaining 

only the first-order terms from the Taylor series, as shown in Eq. (5). Removing a few terms from 

the power series does not influence the meaning of the curve fitting but does influence the 

accuracy of the prediction of  𝑟̇(𝑡) and the accuracy of the structural stiffness estimate obtained. 

 
 (5) 

 

 

3. Multivariate autoregressive method 
 

To estimate the structural stiffness, a suitable computation algorithm for a series model is 

required. In this study, the MAR modeling method was implemented in the linear series, Taylor 

series, and power series models. Although a scalar AR model is often used, the MAR process is 

more appropriate when correlated multi-channel signals are processed simultaneously (Jamoos et 

al. 2010). Using MAR, measures can be derived from the model parameters that represent the 

relationships within the system in the time and frequency domains (Rogers et al. 2010). 

Consider the following k-dimensional stationary time series 

X(𝑡) = (𝑋1(𝑡), 𝑋2(𝑡)…… , 𝑋𝑘(𝑡))
𝑇

                      (6) 

where( )𝑇 denotes transpose (Wada et al. 1996). The MAR model can be expressed as follows 
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Y(𝑡𝑗) = ∑ 𝐴𝑗𝑘𝑋𝑘(𝑡𝑗 −𝑀𝑘) + 𝐸𝑗
𝐾
𝑘=1 𝑗 = 1………𝑓              (7) 

where f is the total length of the time over which signals were measured divided by the time 

interval between signals. In this study, the time interval between signals was 0.005 s. In Eq. 

(7), 𝑀𝑘 is the delay and is set to 0, implying that there is no time delay between the variables, 

and 𝐸𝑗 is white noise with a zero mean vector (Wada et al.1996). 

 

 
4. Criteria for statistical model refinement 

 

The criteria for statistical model refinement examined in this study were an efficient AIC, PCA, 

and PCR combined with AIC. These three model refinement approaches were applied to the 

previously described linear series, Taylor series, and power series models, respectively, to assess 

their effects on the accuracy of stiffness estimation.  

 

4.1 Efficient Akaike information criterion 
 

The algorithm yielding the smallest AIC is considered to be the most desirable (Harada et al. 

2010). The AIC is defined as follows 

 I =    ( ) +
2 

 
                            (8) 

where  is the number of estimated parameters,   is the number of values in the estimation 

data set, and  is the loss function (Ljung 1999).In the AIC, as more parameters are added to the 

model, the first term in Eq. (8) becomes smaller, indicating an improvement infit, whereas the 

second component, or penalty term, becomes larger. Indeed, when the sample is large, the number 

of adjustable parameters makes a negligible difference, and more complex models are favored 

(Posada and Buckley 2004).     

The loss function V is defined by the following equation 

 = det {
1

 
∑ 𝜀(𝑡, 𝜃 ),𝜀(𝑡, 𝜃 )-

𝑇 
1 }                  (9) 

where 𝜃  represents the estimated parameters (Ljung 1999). The quality of fit to the data is 

usually measured using a loss function. If the class is not too large, good regression functions can 

be obtained by minimizing the loss (Hutter and Tran 2010). Assuming that the amount of 

information is fixed, the value of N is thus a constant. The value of d varies with the number of 

model parameters. In Eq. (8), the term 2d/N is proportional to d, as shown in Fig. 1. In general, the 

value of log (V) decreases nonlinearly as the value of d increases, as shown in Fig. 2. 

If the value of d increases by one and the increase represents the real contributing component of 

the model, the value of 2d/N increases very little and the value of log (V) decreases significantly, 

resulting in a decrease in the AIC value given by Eq. (8). For these reasons, the value of AIC can 

be used as an index in model refinement. For instance, if the added component of the power series 

model in Eq. (5) causes a decrease in the AIC value, indicating that the added component 

represents the real contributing component of the model, the component should be retained. 

Conversely, if the added component does not reduce the AIC value, it is statistically justifiable to 

remove the component. 
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Fig. 1 In the equation I =    ( ) +
2 

 
, the term 2d/N is proportional to the number of estimated model 

parameters d,   is the number of values in the estimation data set, and V is the loss function. Values 

from the case study described in section 5 are shown 

 

 

 

 

Fig. 2 The value of log (V) in the equation  I =    ( ) +
2 
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increases. Values from the case study described in section 5 are shown 
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4.2 Principal component analysis 
 

The objective of the multivariate statistical method known as PCA is to reduce the number of 

predictive variables in a model (Sousa et al. 2007, Boukhatem et al. 2012). Given a set of 

p-dimensional vectors𝑥𝑖 ( = 1,… ,  ) drawn from a statistical distribution with mean  and 

covariance matrix R, decomposition of the covariance matrix by singular value decomposition 

leads to the following (Lautour and Omenzetter 2010) 

 =    𝑇                               (10) 

where  = d a ( 1
2, … ,  𝑝

2) is a diagonal matrix containing the eigenvalues of R ranked in 

descending order  1
2     𝑝

2 and  is a matrix containing the corresponding eigenvectors 

or PCs (Lautour and Omenzetter 2010). For each PC, there is a coefficient, also known as a 

loading (Jolliffe 1986). The higher the loading of a variable is, the more that variable contributes 

to the variation accounted for by the particular PC (Abdul-Wahab et al. 2005).  

In practice, only loadings with absolute values greater than 50% are selected for PC 

interpretation (Lautour and Omenzetter 2010). In this study, we used the loading as the standard 

for screening, although some literature mentions using the total variance, typically 60–90%, as the 

screening criterion (Statheropoulos et al. 1998, Sousa et al. 2007). McAdams et al. (2000) stressed 

that a variable‘s significance may depend on its associations. Although an effect may be 

statistically significant, if the sample size is large, there is no reason for it to be retained if it makes 

only a minuscule difference in the predictions. 

 

4.3 Principal component regression mixed with Akaike information criterion 
 

The third model refinement approach adopts as the criterion PCR combined with AIC. This 

approach uses an adaptation of PCR that appears to have certain advantages over stepwise 

regression (McAdams et al. 2000). If a regression equation is obtained for PCs rather than 

predictor variables, the contribution of each transformed variable (i.e., each PC) to the equation 

can be more easily interpreted than the contributions of the original variables (Jolliffe 1986). A 

PCR model should be built by applying a selection process to the scores to determine which 

factors should be used to build a model for each constituent (Park et al.2001). The PCR model for 

time-domain data can be expressed as follows 

Y =  Z +                                 (11) 

Where Y is the matrix of original outputs, E is the appropriate error term, α is the regression 

coefficient matrix, and Z is the score matrix, which is given by the following equation (Jolliffe 

1986) 

Z = X                                 (12) 

where X is a matrix of the predictor variable and  is a matrix of eigenvector (loading) of 𝑋𝑇X. 

In this study, we attempted to convert the variables to PCs in a regression setting, with the 

converted variables being independent and orthogonal to each other. We then introduced the 

previously described efficient AIC to refine the PCs, and we converted the PCs back to the MAR 

to assess the stiffness of a structure. 
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5. Case study 
 

A case study was conducted to assess the stiffness of a structure by comparing experimental 

results with theoretical values derived on the basis of the three criteria described above for the 

three models. Estimation of structural parameters such as the stiffness was conducted using the 

Nonlinear Stress Analysis Technique (NSAT) computer program, which was designed for 

structural analysis (Tsai 1996). Using NSAT, a static analysis was performed to evaluate the 

stiffness of each floor of a building. A unit lateral force applied at the top floor of the structure was 

considered the input, and the relative displacements between each floor were calculated 

automatically. The stiffness estimates for the first, second, and third floors were 1,652,892.562 

N/m, 1,524,390.244 N/m, and 1,582,278.481 N/m, respectively (Lin and Chen 2009).  

A flow chart of the experimental design for the case study is shown in Fig. 3. The structural 

responses to the El Centro and TCU-084 seismic forces were represented by a power series model 

up to the third order of moments and by a Taylor series model and a linear series model, as shown 

in Eq. (5). The three models were then represented in the MAR modeling to estimate the 

stiffnesses of the building floors and compare them to the values obtained from NSAT. Stiffness 

values obtained from the models refined using the three statistical model refinement approaches 

(efficient AIC, PCA, and PCR combined with AIC) were also estimated. 

 

5.1 Example of AIC 
 

Using the power series model as an example, the measured data for the first floor of the test 

structure subjected to the El Centro earthquake were entered into Eq. (5), with 34 components, and 

then expressed using the MAR method to estimate structural parameter values. The 34 components 

were added one by one. When each additional component was added, the AIC value was 

recomputed, until all 34 components were included in the MAR method, resulting in the34 AIC 

values as listed in Table 1. 

 

 

 

Fig. 3 Flow chart of the experimental design for the case study 
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Table 1 The AIC value was recomputed each time a component was added, until all34 components were 

included in the MAR method. The results obtained using the power series model for the first floor 

of the test structure subjected to the El Centro earthquake are shown 

Component AIC value 𝑥̇(𝑡)𝑥̈(𝑡) 17.4302 𝑥̇(𝑡)2𝑟(𝑡) 17.3994 

𝑥(𝑡) 19.3932 𝑥̇(𝑡)𝑟(𝑡) 17.4316 𝑥̈(𝑡)2𝑥(𝑡) 17.3893 

𝑥̇(𝑡) 17.7480 𝑥̈(𝑡)𝑟(𝑡) 17.4332 𝑥̈(𝑡)2𝑥̇(𝑡) 17.3904 

𝑥̈(𝑡) 17.4790 𝑥(𝑡)3 17.4255 𝑥̈(𝑡)2𝑟(𝑡) 17.3920 

𝑟(𝑡) 17.4329 𝑥̇(𝑡)3 17.4193 𝑟(𝑡)2𝑥(𝑡) 17.3914 

𝑥(𝑡)2 17.4332 𝑥̈(𝑡)3 17.4202 𝑟(𝑡)2𝑥̇(𝑡) 17.3913 

𝑥̇(𝑡)2 17.4334 𝑟(𝑡)3 17.4192 𝑟(𝑡)2𝑥̈(𝑡) 17.3922 

𝑥̈(𝑡)2 17.4339 𝑥(𝑡)2𝑥̇(𝑡) 17.4195 𝑥(𝑡)𝑥̇(𝑡)𝑥̈(𝑡) 17.3918 

𝑟(𝑡)2 17.4343 𝑥(𝑡)2𝑥̈(𝑡) 17.4204 𝑥(𝑡)𝑥̇(𝑡)𝑟(𝑡) 17.3914 

𝑥(𝑡)𝑥̇(𝑡) 17.4352 𝑥(𝑡)2𝑟(𝑡) 17.4220 𝑥(𝑡)𝑥̈(𝑡)𝑟(𝑡) 17.3872 

𝑥(𝑡)𝑥̈(𝑡) 17.4307 𝑥̇(𝑡)2𝑥(𝑡) 17.4236 𝑥̇(𝑡)𝑥̈(𝑡)𝑟(𝑡) 17.3836 

𝑥(𝑡)𝑟(𝑡) 17.4297 𝑥̇(𝑡)2𝑥̈(𝑡) 17.3978   

 

 

As Table 1 shows, when the component𝑥(𝑡)2 was added in the MAR method, the AIC value 

increased from 17.4329 to 17.4332. According the model refinement rule introduced in section 4.1, 

this component should be removed. Similarly, the components 𝑥̇(𝑡)2, 𝑥̈(𝑡)2, 𝑟(𝑡)2, 𝑥(𝑡)𝑥̇(𝑡), 
𝑥̇(𝑡)𝑥̈(𝑡), 𝑥̇(𝑡)𝑟(𝑡) , 𝑥̈(𝑡)𝑟(𝑡) , 𝑥̈(𝑡)3 , 𝑥(𝑡)2𝑥̇(𝑡) , 𝑥(𝑡)2𝑥̈(𝑡) , 𝑥(𝑡)2𝑟(𝑡) , 𝑥̇(𝑡)2𝑥(𝑡) , 

𝑥̇(𝑡)2𝑟(𝑡) , 𝑥̈(𝑡)2𝑥̇(𝑡) , 𝑥̈(𝑡)2𝑟(𝑡) , and𝑟(𝑡)2𝑥̈(𝑡)caused the AIC value to increase, so these 

components should be removed from the MAR. When the model refinement is complete, the 

remaining components were placed in the MAR one by one to recalculate their AIC values, which 

are listed in Table 2. 

Table 2 listed the results for the second round of the model refinement approach using the AIC. 

Similarly, it was judged to be statistically sustainable to remove those components that caused the 

AIC value to rise, including the components 𝑥(𝑡)𝑟(𝑡), 𝑟(𝑡)2𝑥̇(𝑡), 𝑥(𝑡)𝑥̇(𝑡)𝑥̈(𝑡), 𝑥(𝑡)𝑥̇(𝑡)𝑟(𝑡), 
𝑥(𝑡)𝑥̈(𝑡)𝑟(𝑡), and𝑥̇(𝑡)𝑥̈(𝑡)𝑟(𝑡). The remaining components were then placed in the MAR one by 

one to recalculate their AIC values. This model refinement approach was repeated until the 

components‘ AIC values were obtained in descending order. In other words, the computed AIC 

value of each component in the refined model was smaller than that of the preceding component, 

provided that the model was arranged in an orderly fashion. The final results are listed in Table 3. 

 

 
Table 2 Results of the second round of the model refinement using the AIC, using the remaining components 

placed into the MAR one by one to recalculate their AIC values 

Component AIC value 𝑥(𝑡)3 17.4301 𝑥(𝑡)𝑥̇(𝑡)𝑥̈(𝑡) 17.4049 

𝑥(𝑡) 19.3932 𝑥̇(𝑡)3 17.4227 𝑥(𝑡)𝑥̇(𝑡)𝑟(𝑡) 17.4064 

𝑥̇(𝑡) 17.7480 𝑟(𝑡)3 17.4218 𝑥(𝑡)𝑥̈(𝑡)𝑟(𝑡) 17.4080 

𝑥̈(𝑡) 17.4790 𝑥̇(𝑡)2𝑥̈(𝑡) 17.4051 𝑥̇(𝑡)𝑥̈(𝑡)𝑟(𝑡) 17.4095 

𝑟(𝑡) 17.4329 𝑥̈(𝑡)2𝑥(𝑡) 17.4034   

𝑥(𝑡)𝑥̈(𝑡) 17.4313 𝑟(𝑡)2𝑥(𝑡) 17.4024   

𝑥(𝑡)𝑟(𝑡) 17.4326 𝑟(𝑡)2𝑥̇(𝑡) 17.4041   
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Table 3 Final results of the model refinement approach using the AIC, using the power series model for the 

first floor of the test structure subjected to the El Centro earthquake 

Component AIC value 𝑟(𝑡) 17.4329 𝑟(𝑡)3 17.4217 

𝑥(𝑡) 19.3932 𝑥(𝑡)𝑥̈(𝑡) 17.4313 𝑥̇(𝑡)2𝑥̈(𝑡) 17.4056 

𝑥̇(𝑡) 17.7480 𝑥(𝑡)3 17.4306   

𝑥̈(𝑡) 17.4790 𝑥̇(𝑡)3 17.4226   

 

 

Through the model refinement using the AIC, the number of components in the power series 

model was reduced from the original 34 to 9.These final nine components were placed into the 

MAR to estimate the corresponding value of the component𝑥̇(𝑡), i.e., the structural stiffness, 

as1,793,000 N/m. Comparison of the estimated stiffness with the reference value obtained using 

NSAT indicates a relative errorof8.4765%. 

 

5.2 Example of PCA 
 

Using the Taylor series model as an example, the measured data for the first floor of the test 

structure subjected to the El Centro earthquake was entered into Eq. (5), with 12 components, and 

then expressed in the MAR method to calculate the loadings. The results are shown in Table 4.  

As Table 4 shows, using the PCA refinement approach, the components with eigenvector 

absolute values greater than 0.5 are𝑥(𝑡), 𝑥̇(𝑡),𝑥̈(𝑡), 𝑟(𝑡),𝑥(𝑡)2, 𝑥̇(𝑡)2, 𝑥̈(𝑡)2, 𝑟(𝑡)2, 𝑥(𝑡)3, 

𝑥̇(𝑡)3, 𝑥̈(𝑡)3, and𝑟(𝑡)3. These components were selected in the refined model and placed into the 

MAR to obtain an estimateof1, 789,000 N/m for the structural stiffness. Comparison of the 

estimated structural stiffness with the reference value obtained suing NSAT indicates a relative 

error of 8.23%. 

 
Table 4 Principal component eigenvector of the Taylor series model for the first floor of the test structure 

subjected to the El Centro earthquake 

Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 

𝑥(𝑡) 0.374 -0.151 0.091 0.310 0.078 -0.023 -0.248 0.773 -0.206 -0.067 -0.107 0.091 

𝑥̇(𝑡) -0.074 -0.452 0.479 -0.236 0.052 0.020 -0.052 -0.160 -0.230 -0.648 -0.028 0.024 

𝑥̈(𝑡) -0.387 -0.148 -0.026 0.315 0.078 -0.105 -0.054 0.216 0.630 -0.276 0.432 -0.043 

𝑟(𝑡) 0.407 0.112 0.020 -0.148 -0.018 -0.521 0.262 -0.014 -0.172 -0.056 0.650 0.055 

𝑥(𝑡)2 -0.364 0.264 0.019 -0.388 -0.049 -0.092 0.033 0.295 -0.004 -0.038 -0.055 0.737 

𝑥̇(𝑡)2 0.010 -0.165 -0.341 -0.305 0.828 -0.107 -0.246 -0.032 -0.002 0.063 0.006 -0.019 

𝑥̈(𝑡)2 -0.024 0.367 0.421 0.202 0.520 0.305 0.525 0.074 -0.033 -0.016 0.026 -0.027 

𝑟(𝑡)2 -0.020 0.446 0.466 0.153 0.095 -0.272 -0.647 -0.229 0.0266 0.078 0.011 -0.003 

𝑥(𝑡)3 0.362 -0.258 -0.013 0.370 0.087 0.160 -0.012 -0.40 0.182 0.065 0.027 0.659 

𝑥̇(𝑡)3 -0.053 -0.447 0.493 -0.230 -0.004 -0.116 0.089 0.117 0.208 0.650 0.030 -0.028 

𝑥̈(𝑡)3 -0.332 -0.151 -0.064 0.430 0.099 -0.631 0.263 -0.098 -0.260 0.040 -0.346 0.049 

𝑟(𝑡)3 0.401 0.137 0.057 -0.210 0.005 -0.306 0.178 0.029 0.576 -0.239 -0.503 -0.067 
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5.3 Example of PCR mixed with AIC 
 

Using the power series model as an example, the measured data for the first floor of the test 

structure subjected to the El Centro earthquake were entered into Eq. (5), with 34 components, and 

then expressed in the MAR method to calculate the PC loadings. These loadings were then 

multiplied by the corresponding components in the power series to form PCs, a converted set of 

independent and orthogonal 34 components. The 34 converted components (i.e., PCs) were added 

into the PCR one by one. When each additional PC was added, the AIC value was recomputed, 

until all34 PCs were included, resulting in the AIC values listed in Table 5.  

According to the model refinement approach using PCR combined with AIC, the components 

𝑥⃑(𝑡)2, 𝑥(𝑡)𝑥̇(𝑡)⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ , 𝑥(𝑡)𝑟(𝑡)⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ , 𝑥̇(𝑡)2𝑟(𝑡)⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ , 𝑟(𝑡)2𝑥(𝑡)⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  and 𝑟(𝑡)2𝑥̈(𝑡)⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  were removed because each of 

them results in an AIC value greater than the preceding AIC value. The remaining components 

were then placed into the PCR to recalculate the AIC values. This component sifting process was 

repeated until the components could not be refined any further, which suggests that all of the 

components in the final set are statistically justifiable. The results are shown in Table 6. 

Table 6 indicates that the final results of the model refinement approach using PCR combined 

with AIC results in a set of only 4 PCs and their corresponding AIC values. By converting the PCs 

back to their original variables and placing the variables in the MAR method, it was possible to 

estimate the structural stiffness as 1,674,000 N/m. Comparison of the estimated stiffness with the 

reference value obtained using NSAT indicates a relative errorof1.277%. 

 

 
Table 5 When each additional PC was added, the AIC value was recomputed, until all34 PCs, converted 

from the power series, were included in the PCR, for the first floor of the test structure subjected to 

the El Centro earthquake 

Component AIC value 𝑥̇(𝑡)𝑥̈(𝑡)⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  3.7655 𝑥̇(𝑡)2𝑟(𝑡)⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  2.3547 

𝑥⃑(𝑡) 4.5088 𝑥̇(𝑡)𝑟(𝑡)⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  3.7633 𝑥̈(𝑡)2𝑥(𝑡)⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  2.354 

𝑥⃑̇(𝑡) 3.8076 𝑥̈(𝑡)𝑟(𝑡)⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  3.7597 𝑥̈(𝑡)2𝑥̇(𝑡)⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  2.3364 

𝑥⃑̈(𝑡) 3.7865 𝑥⃑(𝑡)3 3.7084 𝑥̈(𝑡)2𝑟(𝑡)⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  2.32 

𝑟(𝑡) 3.7782 𝑥⃑̇(𝑡)3 3.7061 𝑟(𝑡)2𝑥(𝑡)⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  2.3211 

𝑥⃑(𝑡)2 3.7797 𝑥⃑̈(𝑡)3 3.6344 𝑟(𝑡)2𝑥̇(𝑡)⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  2.1608 

𝑥⃑̇(𝑡)2 3.774 𝑟(𝑡)3 2.876 𝑟(𝑡)2𝑥̈(𝑡)⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  2.1614 

𝑥⃑̈(𝑡)2 3.771 𝑥(𝑡)2𝑥̇(𝑡)⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  2.5789 𝑥(𝑡)𝑥̇(𝑡)𝑥̈(𝑡)⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑ 2.0957 

𝑟(𝑡)2 3.7709 𝑥(𝑡)2𝑥̈(𝑡)⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  2.3651 𝑥(𝑡)𝑥̇(𝑡)𝑟(𝑡)⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑ 2.0065 

𝑥(𝑡)𝑥̇(𝑡)⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  3.772 𝑥(𝑡)2𝑟(𝑡)⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  2.3613 𝑥(𝑡)𝑥̈(𝑡)𝑟(𝑡)⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑ 1.962 

𝑥(𝑡)𝑥̈(𝑡)⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  3.7715 𝑥̇(𝑡)2𝑥(𝑡)⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  2.3573 𝑥̇(𝑡)𝑥̈(𝑡)𝑟(𝑡)⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑ 1.9516 

𝑥(𝑡)𝑟(𝑡)⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  3.7729 𝑥̇(𝑡)2𝑥̈(𝑡)⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  2.3535   

 

 
Table 6 Final results of the model refinement approach using PCR combined with AIC, indicating the PC 

and the corresponding AIC value, using the power series model for the first floor of the test structure 

subjected to the El Centro earthquake 

Component 𝑥⃑(𝑡) 𝑥⃑̇(𝑡) 𝑥⃑̈(𝑡) 𝑟(𝑡) 

AIC value 4.5088 3.8076 3.7865 3.7782 
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5.4 Experimental results 
 

Following the flow chart of the experimental design for the case study shown in Fig. 3, the 

responses of the three-story structure subjected to the El Centro and TCU-084 earthquakes were 

represented by linear series, Taylor series, and power series models, each of which was refined and 

represented in the MAR modeling to estimate the structural stiffness of the building. These 

estimates were then compared to the values obtained using NSAT. Table 7 lists the average relative 

errors of the estimates of the three-story structural stiffness, using the three statistical model 

refinement approaches: the efficient AIC, the PCA, and the PCR combined with AIC.  

Table 7 demonstrates that for the power series model, the model refinement approach using the 

AIC yields the best results, with the smallest average relative error of 2.887%, which is 1.418% 

lower than that for the original power series model. Comparisons with the results obtained with the 

other two refinement approaches, the PCA and the PCR combined with AIC, were also conducted, 

and the smallest average relative errors obtained were 3.266% and 3.518%, respectively, for the 

refined Taylor series. However, the model refinement approach using the PCA did not reduce the 

average relative error for the original linear series, the Taylor series, or the power series model, 

and neither did the approach using the PCR combined with AIC. The remaining components in the 

refined power series model for the El Centro earthquake obtained using the AIC for the estimation 

of the 3-story structural stiffness are listed in Table 8. 

As Table 8 shows, the refined power series model only contains either 8 or 9 components for 

the 3-story structure, a drastically reduced model in comparison to the original model with 34 

components. 

 
 
Table 7 Average relative errors of the estimates of the three-story structural stiffness obtained using the three 

statistical model refinement approaches (efficient AIC, PCA, and PCR combined with AIC), for two 

earthquakes and three original models 

 El Centro TCU-084 Total average 

Original linear series 3.106% 6.195% 4.651% 

Refined linear by AIC 3.106% 6.195% 4.651% 

Refined linear by PCA 3.106% 6.195% 4.651% 

Refined linear by PCR+AIC 3.127% 6.196% 4.661% 

Original Taylor series 4.733% 1.80% 3.266% 

Refined Taylor by AIC 4.268% 1.576% 2.922% 

Refined Taylor by PCA 4.733% 1.80% 3.266% 

Refined Taylor by PCR+AIC 4.669% 2.366% 3.518% 

Original power series 3.886% 4.724% 4.305% 

Refined power by AIC 3.740% 2.034% 2.887% 

Refined power by PCA 3.382% 7.671% 5.526% 

Refined power by PCR+AIC 2.562% 7.039% 4.801% 

1340



 

 

 

 

 

 

Repetitive model refinement for structural health monitoring… 

 
 
 
Table 8 Refined power series model for the El Centro earthquake using the AIC for estimation of the 3-story 

structural stiffness: the symbol ―․‖ denotes a component retained in the refined model 

Component Story 1 Story 2 Story 3 

𝑥(𝑡) ․ ․ ․ 
𝑥̇(𝑡) ․ ․ ․ 
𝑥̈(𝑡) ․ ․ ․ 
𝑟(𝑡) ․ ․ ․ 
𝑥(𝑡)2    
𝑥̇(𝑡)2    
𝑥̈(𝑡)2    
𝑟(𝑡)2    
𝑥(𝑡)𝑥̇(𝑡)    
𝑥(𝑡)𝑥̈(𝑡) ․   
𝑥(𝑡)𝑟(𝑡)    
𝑥̇(𝑡)𝑥̈(𝑡)   ․ 
𝑥̇(𝑡)𝑟(𝑡)    
𝑥̈(𝑡)𝑟(𝑡)    
𝑥(𝑡)3 ․   
𝑥̇(𝑡)3 ․ ․  
𝑥̈(𝑡)3    
𝑟(𝑡)3 ․ ․  

𝑥(𝑡)2𝑥̇(𝑡)   ․ 
𝑥(𝑡)2𝑥̈(𝑡)    
𝑥(𝑡)2𝑟(𝑡)    
𝑥̇(𝑡)2𝑥(𝑡)   ․ 
𝑥̇(𝑡)2𝑥̈(𝑡) ․ ․ ․ 
𝑥̇(𝑡)2𝑟(𝑡)    
𝑥̈(𝑡)2𝑥(𝑡)    
𝑥̈(𝑡)2𝑥̇(𝑡)    
𝑥̈(𝑡)2𝑟(𝑡)    
𝑟(𝑡)2𝑥(𝑡)    
𝑟(𝑡)2𝑥̇(𝑡)    
𝑟(𝑡)2𝑥̈(𝑡)    
𝑥(𝑡)𝑥̇(𝑡)𝑥̈(𝑡)    
𝑥(𝑡)𝑥̇(𝑡)𝑟(𝑡)    
𝑥(𝑡)𝑥̈(𝑡)𝑟(𝑡)  ․  
𝑥̇(𝑡)𝑥̈(𝑡)𝑟(𝑡)    
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6. Conclusions 
 

Structural health monitoring plays an important role in the maintenance and repair of structures. 

For structural health monitoring to be effective, precise signal processing is necessary and 

influences the accuracy of the estimation of structural stiffness. In this study, an efficient statistical 

model refinement approach using the AIC was developed and applied to a3-story test structure 

constructed in a laboratory for use in structural health monitoring research. If a newly added 

component of the model decreases the AIC value compared to the AIC value of the previously 

added component(s), it is statistically justifiable to retain this new component in the model; 

otherwise, it should be removed. This model refinement process is repeated until all of the 

components in the model are judged to be statistically sustainable.  

This paper describes the establishment of structural models for representing the restoring force, 

MAR modeling for purposes of structural stiffness estimation, and the establishment and 

verification of statistical model refinement approaches. For the power series model, the model 

refinement approach using AIC was found to yield the best results, with the smallest average 

relative error of 2.887%, which is 1.418% lower than that of the original power series model 

without model refinement. The smallest average relative errors produced using the other two 

model refinement approaches, PCA and PCR combined with AIC, were3.266% and 3.518%, 

respectively, for the refined Taylor series model. However, the PCA model refinement approach 

did not reduce the average relative error for the original linear series, the Taylor series, or the 

power series model, and neither did the approach using the PCR combined with the AIC. 
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