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Abstract.    In this paper, we have applied a new class of approximate analytical methods called Variational 
Approach (VA) for high nonlinear vibration equations. Three examples have been introduced and discussed.  
The effects of important parameters on the response of the problems have been considered. Runge-Kutta’s 
algorithm has been used to prepare numerical solutions. The results of variational approach are compared 
with energy balance method and numerical and exact solutions. It has been established that the method is an 
easy mathematical tool for solving conservative nonlinear problems. The method doesn’t need small 
perturbation and with only one iteration achieve us to a high accurate solution. 
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1. Introduction 
 

Differential equations arise in dynamical models and engineering problems and physical 
phenomena. Finding an analytical solution for structural mechanics problems and nonlinear 
mechanical systems is very important and also very interesting for civil and mechanical engine 
ringers. For many nonlinear problems, it is not always possible and sometimes not even 
advantageous to express exact solutions of nonlinear differential equations explicitly in terms of 
elementary functions, but it is possible to find elementary functions that are constant on solution 
curves. 

Recently, many researchers have been working on the analytical and numerical methods in 
nonlinear vibrations such as : Homotopy perturbation method (Shaban et al. 2010, Bayat 2013a), 
Hamiltonian approach (Bayat et al. 2011a, 2012a, 2013a,b, 2014a,b), energy balance method (He 
2002, Bayat et al. 2011b, Pakar et al. 2011a,b, Mehdipour 2010), variational iteration method 
(Dehghan 2010, Pakar et al. 2012), amplitude frequency formulation (Bayat 2011c, 2012b, Pakar 
et al. 2013a, He 2008), max-min approach (Shen et al. 2009, Zeng et al. 2009), variational 
approach (He 2007, Bayat et al. 2012c, 2013c, 2014c, Pakar et al. 2012b), and the other analytical 
and numerical (Xu 2009, Alicia et al. 2010, Bor-Lih et al. 2009, Wu 2011, Odibat et al. 2008). 

Among these methods, variational approach is considered to solve the nonlinear vibration 
equations in this paper. 
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The paper has been collocated as follows 
First, we describe the basic concept of variational approach. Then the applications of 

variational approach have been studied to demonstrate the applicability and preciseness of the 
method for three examples. Some comparisons between analytical and numerical solutions are 
presented. Eventually we show that VA can converge to a precise cyclic solution for nonlinear 
systems. The basic idea of energy balance method and Runge-Kutta’s algorithm are presented in 
Appendix A and Appendix B. 

 
 

2. Basic concept of Variational Approach (VA) 
 

He suggested a variational approach which is different from the known variational methods in 
open literature (He 2007). Hereby we give a brief introduction of the method 

  0f                                  (1) 

Its variational principle can be easily established utilizing the semi-inverse method (He 2007) 

   
/4 2
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T
J F dt      

                           (2) 

Where T is period of the nonlinear oscillator, F fu
  .Assume that its solution can be 

expressed as 

    cost A t                              (3) 

Where A  and   are the amplitude and frequency of the oscillator, respectively. Substituting 
Eq. (3) into Eq. (2) results in 
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Applying the Ritz method, we require 

0

0

J

A
J












 

(5)

(6)

But with a careful inspection, for most cases He find that 

 
/ 2 / 22 2

20 0

1 1
sin cos 0

2

J
A t dt F A t dt

 

 


   
                    (7) 

1312



 
 
 
 
 
 

Mathematical solution for nonlinear vibration equations using variational approach 

 

Thus, He modify conditions Eqs. (5) and (6) into a simpler form 

0
J







                                 (8) 

From which the relationship between the amplitude and frequency of the oscillator can be 
obtained. 

 
 

3. Application 
 
In order to assess the advantages and the accuracy of the variational approach, we will consider 

the following examples: 
 
3.1 Example 1 
 
Consider the motion of a mass m moving without friction along a circle of radius R that is 

rotating with a constant angular velocity  about its vertical diameter as shown in Fig. 1. The 
forces acting on the mass are gravitational force mg, the centrifugal of the circle O and the reaction 
force. The following governing equation has been obtained (Nayfe 1973) 

         2 2 2 sin cos sin 0, 0 , 0 0m R m R mgR A           
     (9) 

In order to apply the variational approach method to solve the above problem, the 
approximation 2 41 1

2 24cos 1      and 31
6sin     is used. we can re-write Eq. (9) in the 

following form 

        3 2 4 31 1 1 1

6 2 24 6
1 0, 0 , 0 0A                   (10) 

Where  

2 2 2, ,mR mR mgR                           (11) 

Its variational formulation can be readily obtained from Eq. (10) as follows 
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Choosing the trial function    cost A t   into Eq. (12) we obtain 
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The stationary condition with respect to A leads to 
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For comparison of the approximate solution, frequency obtained from solution of nonlinear 
equation with the energy balance method (Appendix A) is 

    2 2 2 22 2

2 2
4 cos ( ) 2 cos( ) cos 2 cos

EBM

R R A g A R A g A

RA


     
        (20) 

The numerical solution by with 4th order Runge-Kutta method (Appendix B) for nonlinear 
equation is 
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
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               (21) 

3.2 Example 2 
 
An example of a single degree of freedom conservative system has been considered that is 

described by an equation as follows. A rigid rod is rigidly attached to the axle as shown in Fig. 2. 
The wheels roll without slip as the pendulum swings back and forth. The wheel is restrained by a 
spring which is fixed to a wall on the other side .Only the ball on the end of the pendulum has 
appreciable mass and it may be considered as a particle. The governing equation of the motion is 
(Nayfe 1973) 

      2 2 2 22 cos sin sin 0m l r rl mrl mgl kr                       (22) 

With initial conditions 

   0 , 0 0.A                              (23) 

By using the Taylor’s series expansion for  cos ( )t ,  sin ( )t  and by some manipulation in Eq. 

(22) we can re-write Eq. (22) in the following form 

     2 4 3 31 1 1 1
2 2

2
1 2 3 4 5634 62 ( ) 0,1                           (24) 

Where 

2 2 2
1 2 3 4 5, , , ,ml mr mrl mgl kr                        (25) 

Its variational formulation can be readily obtained from Eq. (24) as follows 

   2 2 2 4 2 2 2 4 2
1 2 3 4 3 4 50

1 1 1 1 1 1

2 2 24 2 24 2
.

t
J dt                               (26) 

Choosing the trial function    cost A t   into Eq. (26) we obtain 
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Fig. 2 Pendulum attached to rolling wheels that are restrained by a spring 
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The stationary condition with respect to A leads to 
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Solving Eq. (29), according to , we have 
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By substituting Eq. (25) in to Eq. (31) we have 

3 2

2 2 4 2

8
2

32 32 16 64V A
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m r m l A m rl A m rl m rl
  


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According to    cost A t  and Eq. (32), we can obtain the following approximate 

solution 
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For comparison of the approximate solution, frequency obtained from solution of nonlinear 
equation with the energy balance method (Appendix A) is 

  
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The numerical solution by with 4th order Runge-Kutta method (Appendix B) for nonlinear 
equation is 
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3.3 Example 3 
 
The motion of a particle on a rotating parabola .The governing equation of motion and initial 

conditions can be expressed as (Nayfe1973) 

2 2 2 2(1 4 ) 4 0q u u q uu u      (0) , (0) 0u A u   (36) 

Where 0q  and 0  are known positive constants. 
Variational formulation of Eq. (36) can be readily obtained as follows 

2 2 2 2

0

21

2

1

2
( ) 2( )

t
u q u u uJ u dt    

                     (37)
 

Substituting the trial function ( ) cos( )u t A t  into Eq. (37), we obtain 

        2 2 2 2 4 2 2 2 2/4

0

21 1

2 2
) 2(

T
A sin t q A sin t cos t A coA ttJ ds        

      (38)
 

The stationary condition with respect to A leads to 
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Solving Eq. (40), according to , we have 
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Then we have 

2 21 2VA A q
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According to Eqs. (3) and (42), we can obtain the following approximate solution 
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1 2
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A q
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The exact period is 
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
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For comparison of the approximate solution, frequency obtained from solution of nonlinear 
equation with the energy balance method (Appendix A) is 

2 21 2EBM A q






                           (45) 

 
 
4. Results and discussions 

 
In this section, to illustrate and verify the accuracy of this approximate analytical approach, 

some comparisons of the analytic responses with the numerical solutions and exact solutions are 
presented for these three examples. 

In example 1, Table 1 is the comparison of the variational approach and energy balance method 
of different parameters of the problem. The results are very close together. 

Figs. 3 and 4 are shown the comparison of Runge-kutta’s algorithm and energy balance method 
with variational approach for  time history response and phase plan curve of the problems for two 
cases: (Fig. 3) : / 6, 3, 0.4, 1, 10A m R g      ,  
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(Fig. 4) :  / 4, 3, 1.2, 2, 10A m R g      . 
The motion of the system is periodic and also functions of initial conditions. The effects of 

angular velocity ( ) and radius(R) on nonlinear frequency is shown in Fig. 5. 
In example 2, Table 2 represents the comparison of variational approach and energy balance 

method for various parameters of the system. An excellent agreement can be seen from this 
comparison. 

Time history response and phase plan curves are shown in Figs. 6 and 7 for these two cases  
(Fig. 6): 5, 1.5, 0.5, 10, 500, / 3m l r g k A          

(Fig. 7): 5, 1.5, 0.5, 10, 500, / 3m l r g k A       . 
Figs. 8 and 9 are shown the Influence of important parameters on the nonlinear frequency of 

the systems. These important parameters are: axle length (l) and radius of wheel (r), mass (m) and 
spring stiffness (k) of system. 

 
 
 

Table 1 Comparison of nonlinear frequency of two approximate VA and EBM solution corresponding to 
various parameters of system (example 1) 

 
Constant parameter Approximate solution  

No A m g R   VA EBM Error % 

1   2 10 0.5 1.5 4.2018 4.2018 0.0013 

2   3 10 2 1.8 1.3811 1.3813 0.0165 

3   5 10 1.2 2.5 1.6181 1.6192 0.0661 

4   4 10 1.5 0.8 2.3857 2.3883 0.1104 

5   1 10 0.4 0.5 4.6301 4.6456 0.3349 

6   3 10 0.8 1 2.9086 2.9728 2.2099 

 
 

Fig. 3 Comparison of time history response and phase curve of variational approach and energy balance 
method with the numerical solution  for / 6, 3, 0.4, 1, 10A m R g       
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Fig. 4 Comparison of time history response and phase curve of variational approach and energy balance 
method with the numerical solution  for / 4, 3, 1.2, 2, 10A m R g       

 
 

Fig. 5 Effect of angular velocity( ) and radius(R) on nonlinear frequency 
 
 
Table 2 Comparison of nonlinear frequency of two approximate VA and EBM solution corresponding to 

various parameters of system (example 2) 

  Constant Parameter Approximate solution 

No   A l r m k g VA EBM Error% 

1    3 0.5 8 1000 10 3.1112 3.1112 0 

2    2 1 5 800 10 12.4827 12.4801 0.0209 

3    1.5 0.5 3 1200 10 10.1970 10.1945 0.0243 

4    1 0.2 10 1500 10 4.6666 4.6667 0.0022 

5    2 1.5 8 500 10 9.4122 9.3144 1.0498 

6    1 0.3 6 1800 10 6.4988 6.4438 0.8528 
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Fig. 6 Comparison of time history response and phase curve of variational approach and energy balance 
method with the numerical solution  for 5, 1.5, 0.5, 10, 500, / 3m l r g k A        

 
 

Fig. 7 Comparison of time history response and phase curve of variational approach and energy balance 
method with the numerical solution  for 10, 2, 0.3, 10, 1000, / 2m l r g k A        

 
 

Fig. 8 Influence of axle length (l) and radius of wheel (r) on nonlinear frequency 
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Fig. 9 Influence of mass (m) and spring stiffness (k) of system on nonlinear frequency 
 

Fig. 10 Comparison of time history response and phase curve of variational approach and energy balance 
method with the Exact solution  for 1.5, 2.5, 0.3,A q     

 
 
Table 3 Comparison of nonlinear frequency of two approximate VA and EBM solution with exact solution 

corresponding to various parameters of system (example 3) 

A q   &VA EBM   
Exact  Error% 

0.5 1 0.5 0.5774 0.5815 0.7135 

0.5 0.5 2 1.3333 1.3344 0.0774 

1 0.8 1.5 0.8111 0.8288 2.1399 

1 0.7 0.5 0.5025 0.5108 1.6300 

1.5 0.5 2 0.9701 0.9888 1.8836 

1.5 0.3 2.5 1.3339 1.3410 0.5298 

2 0.2 4 1.7408 1.7473 0.3725 

2 0.4 1 0.6623 0.6767 2.1399 

 

1 2 3 4 5 6 7 8 9 10

6

8

10

12

14

N
on

lin
ea

r 
fr

eq
ue

nc
y

m

 VA
 EBM 

500 750 1000 1250 1500

5.5

6.0

6.5

7.0

7.5

8.0

N
on

li
ne

ar
 fr

eq
ue

nc
y

k

 VA
 EBM 

0 2 4 6 8

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

di
sp

la
ce

m
en

t

time

 VA& EBM 
 Exact 

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-2

-1

0

1

2

u

u(t)

 VA& EBM 
 Exact

.

1322



 
 
 
 
 
 

Mathematical solution for nonlinear vibration equations using variational approach 

 

Fig. 11 Comparison of time history response and phase curve of variational approach and energy balance 
method with the Exact solution  for 0.5, 0.5, 1A q     

 
 

Fig. 12 Influence of various constant parameter ( ) and (q) of system on nonlinear frequency 
 
 
In example 3, frequency comparison for this example between variational approach and energy 

balance method and exact solution has been in Table 3. 
Figs. 10 and 11 are the comparisons of variational approach and exact solutions for (Fig. 10):
1.5, 2.5, 0.3,A q     and (Fig. 11) 0.5, 0.5, 1A q    . 

The final figure is shown the influence of (  ) and (q) on nonlinear frequency of the system. 
It is obvious that VA shows high accuracy with the numerical solution and is quickly 

convergent and valid for a wide range of vibration amplitudes and initial conditions. The accuracy 
of the results shows that the VA could be potentiality used for the analysis of strongly nonlinear 
oscillation problems. 

 
 

5. Conclusions 
 
In this study, a new application of variational approach has been completely presented and 

discussed. The results of variational approach and energy balance method and numerical solutions 
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have been compared. Three different examples were presented and effects of important parameters 
on the response of the systems were studied. The present approach doesn’t need any small 
perturbations and with only one iteration lead to a high accurate solution. It has been proven that 
the variational approach is very efficient, comfortable and sufficiently exact in engineering 
problems. Variational approach can be simply extended to any nonlinear conservative equations 
for the analysis of nonlinear systems. 
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Appendix A: Basic Idea of Energy Balance Method (EBM) 
 
Consider a general nonlinear oscillator in the form (He 2008) 

   0f t  
                            (A.1) 

In which   and t are generalized dimensionless displacement and time variables, 
respectively. Its variational principle can be easily obtained 

    2

0

1

2

t
J F dt     

                        (A.2)
 

Where  2T    is period of the nonlinear oscillator,     .F f d     

Its Hamiltonian, therefore, can be written in the form 

   21

2
H F F A   

                        (A.3) 

Or 

   21
( ) 0

2
t F F A     

                     (A.4) 

Oscillatory systems contain two important physical parameters, i.e., The frequency   and the 
amplitude of oscillation. A . So let us consider such initial conditions

 
   0 , 0 0A  

                         (A.5) 

We use the following trial function to determine the angular frequency   

   cost A t                             (A.6) 

Substituting (A.6) into   term of (A.4), yield 

     2 2 21
( ) sin cos( ) 0

2
t A t F A t F A      

                (A.7) 

If, by chance, the exact solution had been chosen as the trial function, then it would be possible 
to make zero for all values of t by appropriate choice of . Since Eq. (A.6) is only an 
approximation to the exact solution,  cannot be made zero everywhere. Collocation at 

4t  gives 

    
2 2

2 cos( )

sin ( )

F A F A t

A t








                      (A.8)
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Appendix B: Basic Idea of Runge-Kutta (RK) 
 
The most often used method of the Runge-Kutta family is the Fourth-Order one, which extends 

the idea of the mid-point method, by jumping 1/4th of the way first, then going half-way, a la the 
mid-point method, then going 3/4th of the way and finally jumping all the way. 

Consider an initial value problem be specified as follows 

   0 0, ,f t t    
                           (B.1) 

 is an unknown function of time t which we would like to approximate. Then RK4 method is 
given for this problem as below 

 1 1 2 3 4

1

1
2 2 ,

6
.

n n

n n

h k k k k

t t h

 



    

                        (B.2) 

for n = 0, 1, 2, 3, . . . , using 

 

 

1

2 1

3 3

4 3

, ,

1 1
, ,

2 2

1 1
, ,

2 2

, .

n n

n n

n n

n n

k f t

k f t h hk

k f t h hk

k f t h hk











    
 
    
 

  
                       (B.3)

 

Where 1nu  is the RK4 approximation of  1nt  . and the next value  1n  is determined by 

the present value  n plus the weighted average of four increments, where each increment is the 

product of the size of the interval, h, and an estimated slope specified by function f on the 
right-hand side of the differential equation. 

 1k is the increment based on the slope at the beginning of the interval, using ,  

 2k is the increment based on the slope at the midpoint of the interval, using 1
12

hk  ; 

 3k is again the increment based on the slope at the midpoint, but now using 1
22

hk   ; 

 4k is the increment based on the slope at the end of the interval, using 3hk  . 
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