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Abstract.   In the present paper, a method for identifying damage in a multi storeyed shear building 
structure is presented using minimum number of modal parameters of the structure. A damage at any level 
of the structure may lead to a major failure if the damage is not attended at appropriate time. Hence an early 
detection of damage is essential. The proposed identification methodology requires experimentally 
determined sparse modal data of any particular mode as input to detect the location and extent of damage in 
the structure. Here, the first natural frequency and corresponding partial mode shape values are used as input 
to the model and results are compared by changing the sensor placement locations at different floors  to 
conclude the best location of sensors for accurate damage identification. Initially experimental data are 
simulated numerically by solving eigen value problem of the damaged structure with inclusion of random 
noise on the vibration characteristics. Reliability of the procedure has been demonstrated through a few 
examples of multi storeyed shear structure with different damage scenarios and various noise levels. 
Validation of the methodology has also been done using dynamic data obtained through experiment 
conducted on a laboratory scale steel structure. 
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1. Introduction 
 

During the last three decades, vibration based methods have been developed and applied to 
detect structural damage in the civil, mechanical and aerospace engineering disciplines (Cawley 
and Adams 1979, Stubbs and Osegueda 1990, Ricles and Kosmatka 1992). These methods are 
based on the fact that the vibration characteristics of structures (namely frequencies, mode shapes, 
and modal damping) are functions of the structural parameters such as mass, stiffness and damping. 
Structural damage usually causes a decrease in structural stiffness, which produces change in the 
vibration characteristics of the structure.  

Chatterjee et al. (1994) have studied the vibration characteristics of a bridge structure when 
subjected to live loads. Li et al. (1999) have used flexibility approach for damage identification of 
cantilever type shear structures. Some related research work on vibration based damage 
identification are Santos et al. (2000), Dulieu-Barton et al. (2003), Darpe et al. (2004) and Gupta 
(2006). Bandyopadhyay and Bhattacharyya (2007) presented a statistical system identification 
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technique for health monitoring of beam and truss structures from limited noisy data. For dealing 
with noise in experimental data Panigrahi et al. (2009) developed a technique by optimising the 
residual force vector using genetic algorithm. The authors validated the methodology on a 
simulated uniform strength beam with different damage scenarios. Yang and Liu (2009) have 
presented a methodology by the eigen parameter decomposition of structural flexibility change to 
identify damage. A number of researchers have reviewed the works done on vibration based 
damage identification methods (Doebling et al. (1998), Carden and Fanning (2004), Humar et al. 
(2006), Fan and Qiao (2011) to name a few).  

Damage identification techniques are important for ensuring structural integrity and for health 
monitoring of structures. In case of an actual structure, mass and stiffness are distributed 
throughout the structure. Many a times, the structure can still be idealised as a lumped system. 
Usually, such a lumped mass idealisation leads to satisfactory result. Moreover, the mathematical 
model of the system becomes simpler to adopt. Thus, for damage identification, a structure may be 
represented as a lumped mass system for ease in computation. The damage is identified from 
reduction in the physical properties of a structure between two time-separated inferences.  

Although a number of works have been carried out in this particular area, still efforts are going 
on to refine and develop the analytical models for more accurate results. Udwadia (1994) have 
developed a methodology for optimum sensor locations for parameter identification in dynamic 
system. Loh and Ton (1995) studied a system identification approach to detect changes in 
structural dynamic characteristics on the basis of measurements. The authors used the recursive 
instrumental variable method and extended Kalman filter algorithm for the development of 
damage identification methodology. A memory-matrix based identification methodology for 
structural and mechanical systems has been studied by Udwadia and Proskurowski (1998). Yuan et 
al. (1998) have developed a method that estimates mass and stiffness matrices of shear structure 
from first two orders of structural mode measurement. Many references related to this topic for 
system identification of buildings may be found in a review paper by Datta et al. (1998). Morita et 
al. (2001) presented a damage detection technique of a five-storey steel frame with simulated 
damages. Chakraverty (2005) proposed computationally efficient procedures to refine the methods 
of Yuan et al. (1998) to identify the structural parameters from modal test data. The refinement has 
been obtained by using Holzer criteria (Harker 1983) along with other numerical techniques (Bhat 
and Chakraverty 2007). Medhi et al. (2008) used the system identification technique for health 
monitoring of shear structure. Casciati (2008) optimized an objective function considering 
stiffness values as optimisation variables. The computed stiffness values are compared with the 
designed one to identify the damage. The authors have considered a beam problem for 
identification of damage. The proposed strategy was adequate to follow the progressive growth of 
the damage, but it was not successful when the damage was already spread. Meruane and Heylen 
(2011) implemented a hybrid real-coded genetic algorithm with damage penalization to locate and 
quantify structural damage. The method is tested with different levels of incompleteness in the 
measured degrees of freedom. Chaekuk et al. (2011) introduced a new damage evaluation method 
that identifies the structural damage in a shear building based on a genetic algorithm using the 
structural flexibility matrix with dynamic analyses. The proposed method enables the deduction of 
the extent and location of structural damage, even when there is insufficient data on the dynamic 
characteristics and insufficient accurate measurements of the structural stiffness and mass. 
Panigrahi et al. (2013) established a methodology to identify damage in a shear structure using 
Genetic Algorithm with sparse modal information. The authors validated the methodology for 
identification of damage on a simulated multi-storeyed shear structure with different damage 
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scenarios with incomplete modal information as input. Kourehli et al. (2013) presented a novel 
approach to structural damage detection and estimation using incomplete modal data and 
incomplete static response of a damaged structure. The proposed method used available modal 
data or static displacement to formulate objective function which is further optimized by the 
simulated annealing algorithm to find out damage location and severity of damage in structural 
elements. The authors successfully applied the methodology for damage identification in a simply 
supported beam and a three-storey plane frame with and without noise in modal data and 
containing several damages. 

In the present paper, a method for locating and quantifying damage in a multi-storeyed shear 
building structure is presented using minimum number of modal characteristics of the structure. 
This paper consists of three parts. In the first part, a procedure has been developed to estimate the 
stiffness distribution matrices of a multi-storeyed shear building structure by using only the full 
modal data i.e., frequency and mode shape of any mode of vibration and the design values of the 
mass matrix. In the second part, a technique for identifying the full modal information from partial 
modal data has been discussed. In the last part, the stated methods are combined and applied for 
identification of damage at different damage scenarios with known frequency and partial mode 
shape values of any particular mode of vibration. The analysis is also carried out for situations 
where measurement noise in the vibration characteristics is present. First the input modal data is 
generated from the vibration analysis superimposed with different noise levels. Results are shown 
in tabular and graphical forms to show the efficacy of the method for damage identification. A 
detail study has been carried out for identifying the number of sensors and best location of sensors 
for identification of damage with maximum accuracy. The proposed model has also been validated 
with the available results in literature. Next, dynamic tests have been conducted on a laboratory 
scale for a five storey steel structure with and without damages and the developed methodology is 
validated. 

 
 

Fig. 1 Multi-storey structure with n levels 
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2. Determination of structural parameters 
 
2.1 Determination of stiffness values 
 
An idealised n-storeyed shear structure is considered as shown in Fig. 1. For a shear structure 

of n levels, with k1, k2..... kn and m1, m2......mn as the corresponding stiffness and mass values at 
different levels, the equation of motion of free vibration may be written as  
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In Eq. (1), M and K are the global mass and stiffness matrices, which may respectively be 

written as 

and 

   T
n

T
n yyyandyyy  ,,,, 2121  

are the vectors of acceleration and displacements respectively. 
For simple harmonic motion 
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may be assumed, where  is a natural frequency of the dynamic system. Substituting the same in 
Eq. (1), we may obtain  
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where j=j
2 is the jth eigen value and j

(r), r=1, n is the jth mode shape or eigen vector. 
The above equation may be expanded and written as, 
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(3) 

Yuan et al. (1998) and Chakraverty (2004) have determined the mass and stiffness values of all 
the levels by assuming that two frequency parameters and corresponding mode shapes are known. 
Moreover, the mass of the nth level was assumed to be unity. In the present paper it is assumed that 
the mass parameters are known and these remain at their original values. A procedure is proposed 
to obtain the stiffness values of all levels by assuming that frequency and mode shape values of a 
particular mode of vibration are known. 

Eq. (3) may now be rewritten and presented in matrix form as 

 

 Tn
jjn

n
jjnjjjj

T
nn

mmmm

kkkk

)(
)(

)1(
)1(

)2(
2

)1(
1

121

1)-(n
j

(n)
j

(n)
j

1)-(n
j

2)-(n
j

1)-(n
j

(3)
j

(2)
j

(1)
j

(2)
j

(2)
j

(1)
j

(1)
j

,..........,,

,.........,,

                              0                           .......                   0        0

                                           .....                    0        0

...                          ......                          .                       .          .

  ...                         ........                        .                       .          .

0                                       .......                               0

0                                         ......                          0             
























































(4) 

Eq. (4) is then written in compact form as 

      11   nnnn DcC                      (5) 

where C is the square matrix and {c} and {D}are the column vectors, representing the stiffness 
and the modified mass matrices. 

To avoid ill conditioning in computing {c} of Eq. (5) directly, the following steps are 
considered 
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    DCcCC TT                           (6) 
First, the Eq. (5) is rewritten by multiplying [C]T on both sides as 
Hence 
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Now the vector {c} of unknown stiffness parameters may be obtained as 
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where  
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Using Eq. (7), stiffness parameter for all the levels of the structure may be obtained in terms of 
the mass parameters, one frequency parameter j and corresponding mode shape j

(r). 
 
2.2 Computation of full modal information from partial modal data 
 
In this section, a method is described to obtain the complete mode shape at a particular 

frequency from partial modal information (Panigrahi et al. 2013).  
Eq. (2) may alternatively be expressed as 
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1
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Let total number of levels where modal measurements are made be Q at the jth frequency. The 
displacement at other levels may be calculated analytically from the existing modal data by 
rearranging Eq. (8). The levels whose modal component is known may be represented by Pq where 
q varies from 1 to Q. 

Now Eq. (8) may be represented as 
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where APq represents the Pq
th column of A matrix, jPq represents the Pq

th  element of modal matrix 
j. 

Eq. (9) may be rewritten as 
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where A' is the reduced A matrix obtained by eliminating  Pq
th row and Pq

th column. Similarly j
'   
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is the reduced column matrix from j without Pq
th element. We define Z as 

 
qq jPP

Q
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1

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  

Here A’
Pq is the Pq

th column matrix of A without the Pq
th elements in it and j

' represents the 
unknown modal matrix. This may be computed from Eq. (9) as 

  )'()''( 1' ZAAA TT
j

                            (11) 

Assuming that only one sensor is placed at lth level and so, 1st to (l-1) th and  (l+1)th to nth level 
modal components are unknown. Using the known data for lth level i.e. j

(l)) (of the jth mode), Eq. 
(10) may be expressed as 
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where Pt=kt+k(t+1)-jmt  for t= 1,2, ….l…. n.  
 
The unknown modal matrix may be obtained by using Eq. (11). 
The mode shape is obtained only as a ratio of the modal components. Hence, when two 

measurements are made at r and s levels, one of the values, say j
(r) may be taken as unity and j

(s) 
may be taken as the ratio of the two measurements. Other modal values are then obtained such that 
these are scaled with respect to j

(r). 
 
 

3. Damage assessment  
 
It is presumed that the developed damage in a structural system causes change in the stiffness 

without any major change in the mass at that level. If the amount of reduction in stiffness and the 
level at which this reduction takes place can be identified, then extent of damage and location may 
be identified. In general, the design mass and stiffness matrices of a structure during its 
construction are known a priori. During the inspection for damage identification of the structure, if 
one frequency and corresponding partial mode shape values are measured experimentally, the 
stiffness parameters of the damaged structure may be computed using Eqs. (11) and (7). By 
comparing each stiffness parameter of damaged state with that of design stiffness parameter, extent 
of damage and the location of damage may be identified. 
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Table 1 The design values of stiffness and mass taken for a ten-storeyed structure 

Stiffness 

values in kN/m 

k1 k2 k3 k4 k5 k6 K7 k8 k9 k10 

23.5 27 27 27 27 27 27 27 27 27 

Mass 

values in kg. 

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 

12 12 12 12 12 12 12 12 12 10 

 
 
 

Table 2 Mass participation factors for various modes of vibration 

Mode No. 1st  2nd  3rd  4th  5th  

Mass participation factor in % 79.38 8.89 3.25 1.68 1.03 

 
 
 
For the illustration purpose, a ten-storeyed shear building structure with design structural 

parameters as given in Table 1 is considered as an example. 
Two numbers of damaged scenarios i.e., examples (a) and (b) are presented here to show the 

reliability of the methodology. In practical cases, experimentally obtained modal information is 
used for damage identification. However, in the absence of experimental results, the input modal 
data generated from the vibration analysis of the known damaged shear structure is superimposed 
with noise. Hence, for simulating an experimental measurement, here the natural frequencies and 
the mode shape are perturbed randomly by measurement noise of two different levels: 

 
 Noise level I 

A random noise of 0.5% on frequency value and a random noise of 1% on each modal 
component of mode shape are imposed individually. 

 
 Noise level II 

A random noise of 1% on frequency value and a random noise of 3% on each modal 
component of mode shape are imposed individually. 

 
The natural frequency and corresponding mode shape (partial/ full) values for the first mode are 

considered as known. Also the first mode is contributing 79.38% of the total mass for the 
undamaged structure in mass participation as shown in Table 2. 

 
Example (a)  
A ten-storeyed shear building structure having some damage is considered. It is assumed that 

the third and eighth storeys of the structure are damaged partially to an extent of 40% and 20% 
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respectively. Damage factor is the ratio of stiffness value of damaged structure to that of 
undamaged one. Hence, the damage factor associated with third and eighth storeys are 0.6 and 0.8 
respectively. For other storeys, the prescribed damage factor is 1.0. Dynamic analysis has been 
carried out for the damaged shear building structure by reducing the stiffness values of third and 
eighth level by 40% and 20% respectively. The first natural frequency and corresponding modal 
information of the damaged structure are shown in Table 3. 

Stiffness values are computed using the above modal information for the first natural frequency 
and design mass values (shown in Table 1). Damage factors and the percentage errors are 
calculated by comparing these values with the design ones. 

The analysis is repeated by superimposing noise levels I and II on the simulated modal 
information. Corresponding results are shown in Table 4. In the absence of noise, damage is 
correctly identified. With noise level I, the maximum error percentage in computing the damage 
factors is around 8% and for noise level II this is around 12%. 

Next, the cases of known frequency value and corresponding partial mode shape have been 
utilized for the identification. Here four cases of sensor placements have been considered. The 
damage factors and the maximum % error have been computed and presented in Tables 5 and 6. 

From the above two Tables 5 and 6, a conclusion on sensor location and their effect on damage 
identification has been done and presented in Table 7. 

 
 
 

Table 3 Values of first natural frequency and corresponding mode shape 

Frequency in Hz. 1
(1) 1

(2) 1
(3) 1

(4) 1
(5) 1

(6) 1
(8) 1

(8) 1
(9) 1

(10) 

1.0531 0.1527 0.2826 0.4900 0.6048 0.7079 0.7973 0.8711 0.9422 0.9808 1.0 

 
 
 

Table 4 Identified damage factors for problem (a) from first natural frequency and corresponding full mode 
shape for different noise levels 

 
Story 
No. 

 
Theoretical 

damage factor 

Without noise Noise level I Noise level II 

Identified 
damage factor

% of 
error

Identified 
damage 
factor 

% of 
error 

Identified 
damage 
factor 

% of error

1 1.0 1.0 0.0 0.992 0.8 1.0 0.0 
2 1.0 1.0 0.0 1.0 0.0 1.0 0.0 
3 0.6 0.6 0.0 0.570 5.0 0.576 4.0 
4 1.0 1.0 0.0 1.0 0.0 0.991  0.9 
5 1.0 1.0 0.0 0.931 6.9 1.0 0.0 
6 1.0 1.0 0.0 1.0 0.0 0.957  4.3 
7 1.0 1.0 0.0 1.0 0.0 1.0 0.0 
8 0.8 0.8 0.0 0.736 8.0 0.703 12.1 
9 1.0 1.0 0.0 0.979 2.1 0.895 10.5 

10 1.0 1.0 0.0 1.0 0.0 1.0 0.0 
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Table 5 Damage factors obtained using the first frequency value and corresponding partial mode shape (i) at 
1st and 2nd level and (ii) at 1st, 3rd and 5th level 

 
Story 
No. 

Theoretical 
Damage 
Factor 

Sensors placed at 1st and 2nd level 
(Case-a) 

Sensors placed at 1st , 3rd and 5th 
level (Case-b) 

without 
noise 

 

with 
noise 
level I 

with 
noise 

level II 

without 
noise 

 

with noise 
level I 

with 
noise 

level II 

1 1.0 1.0 1.0 0.782 0.998 0.962 0.982 

2 1.0 0.99 0.999 1.0 1.0 0.803 

3 0.6 0.6 0.654 0.645 0.595 0.675 0.569 
4 1.0 1.0 0.891 0.927 1.0 0.998 1.0 
5 1.0 1.0 0.970 1.0 0.991 0.926 0.959 
6 1.0 0.997 0.950 0.959 0.998 1.0 0.922 
7 1.0 1.0 1.0 0.881 1.0 0.973 0.820 
8 0.8 0.807 0.688 0.867 0.795 0.783 0.692 
9 1.0 0.994 0.887 0.833 1.0 0.940 1.0 

10 1.0 0.99 0.898 0.848 0.999 0.968 0.905 
Maximum % of error 1 14 22 1 12.5 18 

 
 
 

Table 6 Damage factors obtained using the first frequency value and corresponding partial mode shape (i) at 
1st and 10th  level and (ii) at 1st, 5th and 10th  level 

 
Story 
No. 

Theoretical 
Damage 
Factor 

Sensors placed at 1st and 10th  level 
(Case-c) 

Sensors placed at 1st , 5th and 10th  
level (Case-d) 

without 
noise 

 

with 
noise 
level I 

with 
noise 

level II 

without 
noise 

 

with 
noise 
level I 

with 
noise 

level II 

1 1.0 1.0 0.912 0.952 0.998 0.968 0.978 
2 1.0 0.997 0.942 1.0 1.0 1.0 0.992 
3 0.6 0.597 0.655 0.676 0.602 0.587 0.655 
4 1.0 1.0 1.0 0.889 0.999 0.912 1.0 
5 1.0 0.998 0.912 1.0 1.0 0.931 0.952 
6 1.0 0.995 0.898 0.879 0.997 0.973 0.986 
7 1.0 1.0 1.0 0.845 1.0 0.983 0.973 
8 0.8 0.802 0.732 0.762 0.8 0.721 0.692 
9 1.0 0.999 1.0 1.0 1.0 0.989 0.861 

10 1.0 1.0 0.880 0.899 0.995 1.0 1.0 
Maximum % of error 0.5 12 15.5 0.5 10.0 14.0 
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Table 7 Comparison chart for identification error with sensors placed at different positions (1st mode 
considered) 

Case Sensor position 
Max. % of error in damage identification 

with noise  
level I 

with noise  
level II 

Case (a) 
Sensors placed at 1st and 
2nd level 

14.0 22.0 

Case (b) 
Sensors placed at 1st , 3rd 
and 5th level 

12.5 18.0 

Case (c) 
Sensors placed at 1st and 
10th  level 

12.0 15.5 

Case (d) 
Sensors placed at 1st, 5th 
and 10th  level 

10.0 14.0 

 
 

Table 8 Damage factors obtained using the first frequency value and corresponding partial mode shape at 1st, 
5th and 10th  level  

Story 
No. 

Theoretical Damage 
Factor 

without noise 
with noise level 

I 
with noise 

level II 

1 1.0 0.988 0.913 0.882 
2 0.8 0.789 0.750 0.903 
3 1.0 0.991 0.961 0.868 
4 1.0 0.985 0.951 0.927 
5 0.55 0.546 0.508 0.601 
6 1.0 1.0 1.0 0.959 
7 1.0 1.0 0.976 1.0 
8 0.7 0.71 0.684 0.679 
9 1.0 1.0 0.987 0.898 

10 1.0 0.986 1.0 1.0 
Maximum % of error 1.5 9.0 13.0 

 
 
From Table 7 it is observed that the accuracy in damage assessment depends upon the level of 

noise, no of sensors and their placement. The accuracy decreases as the noise level increases as 
obtained in all the four cases. It may be worth mentioning that the sensor placement location has 
significant role on accuracy of damage identification. Case (d) gives better accuracy in comparison 
to case (b) where same number of sensors are placed in both the cases but in case (d) it is 
distributed in comparison to case (b). Similarly, the case (c) is more accurate in comparison to case 
(b) even though additional sensor is placed in case (b). From the above cases it is observed that for 
better accuracy, the sensors are to be placed uniformly throughout the structure when modal 
information of first mode is known. Similar results were obtained when second frequency and 
corresponding partial mode shape values are considered but not presented herein. For best results 
of damage identification, sensors are to be placed in such a way that the curve of the mode 
considered is almost covered.  
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Example (b)  
In this example, it is assumed that the second, fifth and eighth storeys of the structure are 

damaged partially to an extent of 20%, 45% and 30% respectively. Two noise levels as taken in the 
previous example are again considered here. Results are shown in Table 8 for first mode of 
vibration with sensors placed at first, fifth and tenth levels. It is observed that the error in damage 
detection is 1.5% for without damage case, 9% with noise level I and 13% with noise level II. 

 
 
4. Validation of the methodology 
 

4.1 Validation through available results 
 
For validation of the proposed formulation, a comparison has been made with the results of 

Yang and Liu (2009). Yang and Liu (2009) proposed a new flexibility-based method to provide an 
insight to the characteristics of structural damage. The method proposed by the authors made use 
of the eigen parameter decomposition of structural flexibility change and approached the damage 
identification problem in a decoupled manner. The authors presented the results for a ten-storeyed 
shear building with an irregular distribution of mass and stiffness as shown in Fig. 2. Damage is 
simulated as a loss of stiffness of 15% in level 2 and 20% in level 6 considering 5% noise on 
modal information. The damage was identified using full modal information of four modes. 

The same example has been analysed in the present paper and damage factors are obtained 
using the proposed methodology with known first frequency value and corresponding partial mode 
shape values at first, fifth and tenth level. Results have been obtained considering two situations. 
In the first situation, a random noise of 5% on both frequency value and on partial mode shape 
values is considered. Next, a case where 1% random noise on frequency value and 3% noise on 
modal information is considered. Results obtained in these two situations are compared with that 
of Yang and Liu (2009) in Table 9. 

 
 

Table 9 Comparison of damage factors between Yang and Liu (2009) and present model considering noise  
on modal information 

Story 
No. 

Actual 
Damage 
factor 

Yang and Liu (2008)  
(Full modal data with 5% 
noise of first four modes 

known) 

Present Method (frequency values of 1st mode and 
corresponding partial mode shape at 1st, 5th and 10th 

level known) 

Situation (a) 
5% noise on both frequency 

and mode shape 

Situation (b) 
1% noise on frequency 
and 3% noise on mode 

shape 

Damage 
factor 

Error %
Damage 
factor 

Error % Damage 
factor 

Error %

2 0.85 0.7708 9.0 0.697 18.0 0.735 13.5 
6 0.80 0.6954 13.0 0.708 11.5 0.752 6.0 
 

1226



 
 
 
 
 
 

Damage detection of multi-storeyed shear structure using sparse and noisy modal data 

 

Fig. 2 Ten-story shear structure by Yang and Liu (2009)
 
 

Fig. 3 Laboratory Scale 5-Storeyed Steel Structure 
 
 
Results given by Yang and Liu (2008) show a maximum of 13% error in damage identification. 

The authors have used four frequency values and corresponding complete mode shape values 
superimposed with 5% noise. As discussed earlier, practically it is difficult to calculate up to four 
modes and getting modal information from all the levels. In the present paper only first frequency 
values have been used and sensors are placed at three levels only and identified damage with 18% 
of error when modal information is superimposed with 5% noise (Situation (a)). At lower noise 
level as in situation (b), the % of error in damage identification is 13.5% which is almost same as 
of Yang and Liu (2009). 
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4.2 Validation through experimental results 
 
For experimental verification, a test frame has been fabricated which is a five- storey steel 

structure as shown in Fig. 3. Floor height is 300mm and total height is 1.5 m. Floor plan is 200 
mm  300 mm. The beams, columns and floor plates are connected by bolts and tightened by 
spring washers and nuts to make the structure more rigid. 

The accelerometers used are PCB Piezotronics, model 352C33 which are of high sensitivity 
(100 mV/g). Accelerometers are put at each floor level. Dynamic analysis has been carried out for 
both the intact and damaged structure. Here excitation to the structure has been given using a 
hammer. FFT of the accelerometer output has been done using the software SIGVIEW. The 
frequency domain graph is shown in Fig. 4. Time domain data has also been collected at ambient 
conditions. The signature record has been found to be noisy, but lower frequencies are accessible. 
Those data have not been shown here. 

In this experiment, first natural frequency and corresponding mode shape have been considered 
for identification of damage. Theoretically first natural frequency and corresponding mode shape 
have been computed of the intact structure. Next, these are compared with the experimental ones 
as shown in Table 10. Here, the eigen vector is normalised so that modal value of the top floor will 
be unity. The comparison graph may also be seen in Fig. 5. 

 
 

 

Fig. 4 Response in Frequency domain after FFT
 

 
Table 10 Theoretical and Experimental Frequency values and corresponding mode shapes (Intact Structure) 

 First Natural 

Frequency in 

Hz 

Mode Shape Values after normalisation 

1
(1) 1

(2) 1
(3) 1

(4) 1
(5) 

Expt. 12.97 0.2747 0.5563 0.7651 0.89 1.0 

Theo. 13.77 0.2846 0.5462 0.7635 0.9189 1.0 
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Fig. 5 Comparison of theoretical and experimental mode shapes for intact structure 
 
 
The discrepancy between finite-element model data and measured data as shown in Table 10 

may be due to model structure errors, model order errors, model parameter errors and errors in 
measurements (Friswell and Mottershead 1995). Here, the theoretically computed frequency value 
is updated by changing the stiffness values of each floor. 

In general, to induce and control the damage in a structure either bolts are to be loosened or 
part of the column to be cut as discussed by Morita et al. (2001). However, here the authors have 
given the damage to a floor by reducing the width of the column at the floor level where damage is 
to be induced. However the mass removed has not been considered as it is very less compared to 
the floor mass considered. Many damages situations have been created to validate experimentally 
the proposed methodology for damage identification and optimization of sensor placements. 
However, only two cases of damage situations have been presented here. In the first case (a), 
second and fourth floor were damaged to a percentage of 10 and 30 respectively. Next in case (b), 
second, third and fifth floors were damaged to a percentage of 15, 7 and 25 respectively. 
Accelerometers are placed on first, third and fifth floors only. 

Full modal information for each case has been computed from experimentally obtained modal 
data of first, third and fifth floors using Eq. (11).  

Next, stiffness values have been computed from Eq. (7). Obtained stiffness values are 
compared with those of intact structure and damage factors have been identified which are shown 
in Table 11.  

For the damaged situation of case (a), the frequency value has been obtained as 12.48 Hz. 
whereas the experimentally obtained frequency of intact structure was 12.97 Hz. (Table 10). 

Fig. 6 shows a comparison between the computed mode shapes of the intact and damaged 
structure (case (a)) obtained from the experimental displacements recorded using three sensors 
placed on first, third and fifth floors only. 
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Fig. 6 Comparison of experimental mode shapes for intact and damaged structure case (a) 
 
 
 

Table 11 Identified damage factors for case (a) and case (b) from first natural frequency and corresponding  
partial mode shape at 2nd, 3rd and 5th floor 

Case (a) Case (b) 
Storey 

No. 
Actual 
damage 
factor 

introduced 

Identified 
damage 

factor from 
experiment 

% of 
error 

Damaged
Storey No.

Actual 
damage 
factor 

introduced

Identified 
damage 

factor from 
experiment 

% of 
error 

1st  1.0 1.0 0.0 1st 1.0 0.98 2.0 
2nd 0.9 0.85 5.6 2nd 0.85 0.82 3.8 
3rd  1.0 1.0 0.0 3rd 1.0 0.99 1.0 
4th 0.7 0.64 8.5 3rd 0.93 0.87 6.5 
5th  1.0 0.98 2.0 5th 0.75 0.69 8.0 

 
 
 
From the Table 11, it is observed that damage factors are identified with reasonable accuracy    

using the proposed methodology. The maximum percentage of error in identification of extent of 
damage is 8.5% which is permissible. It is also observed that the proposed method is making a 
false identification of the undamaged floor as damaged floor by assigning some value to the 
computed damage factor other than unity. However, in these cases also we get the deviation from 
unity by 2% only which may also be permissible.  
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5. Conclusions 
 

Methodology presented in this paper is effective in damage identification when the frequency 
and corresponding partial mode shape values of any particular mode are known. Using this 
technique it will be easier to identify the damaged storey and the extent of damage of a 
multi-storey shear structure. This damage identification method is first validated with known first 
natural frequency and corresponding full modal data. Moreover, it is also validated with known 
first natural frequency and corresponding partial mode shape data. From the results of damage 
factors and percentage errors, it is evident that the proposed damage identification method gives 
good results when the frequency and corresponding mode shape have lesser measurement noise. In 
the absence of measurement noise, the percentage error in damage detection is practically absent. 
It may also be pointed out that the inaccuracy in damage identification increases as the noise level 
increases. Number of sensors and their location have also significant effect on accuracy of the 
methodology. It is observed that less number of sensors placed at suitable locations gives more 
accuracy than more number of sensors placed randomly. However, the method is very effective for 
damage identification where less noisy experimental data of one frequency and corresponding 
partial modal information is known. The limitation of this methodology is that the modal data of 
more than one mode cannot be used simultaneously to further increase the accuracy in damage 
identification, even if they are known to us.  
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